from model.backbone.CoaT import CoaT import torch from torch import nn if __name__ == '__main__': input=torch.randn(1,3,224,224) model = CoaT(patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6, num_heads=8, mlp_ratios=[4, 4, 4, 4]) output=model(input) print(output.shape) # torch.Size([1, 1000])