import argparse import logging import os import random import numpy as np import torch import torch.backends.cudnn as cudnn from networks.vit_seg_modeling import VisionTransformer as ViT_seg from networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg from trainer import trainer_synapse parser = argparse.ArgumentParser() parser.add_argument('--root_path', type=str, default='../data/Synapse/train_npz', help='root dir for data') parser.add_argument('--dataset', type=str, default='Synapse', help='experiment_name') parser.add_argument('--list_dir', type=str, default='./lists/lists_Synapse', help='list dir') parser.add_argument('--num_classes', type=int, default=9, help='output channel of network') parser.add_argument('--max_iterations', type=int, default=30000, help='maximum epoch number to train') parser.add_argument('--max_epochs', type=int, default=150, help='maximum epoch number to train') parser.add_argument('--batch_size', type=int, default=24, help='batch_size per gpu') parser.add_argument('--n_gpu', type=int, default=1, help='total gpu') parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training') parser.add_argument('--base_lr', type=float, default=0.01, help='segmentation network learning rate') parser.add_argument('--img_size', type=int, default=224, help='input patch size of network input') parser.add_argument('--seed', type=int, default=1234, help='random seed') parser.add_argument('--n_skip', type=int, default=3, help='using number of skip-connect, default is num') parser.add_argument('--vit_name', type=str, default='R50-ViT-B_16', help='select one vit model') parser.add_argument('--vit_patches_size', type=int, default=16, help='vit_patches_size, default is 16') args = parser.parse_args() if __name__ == "__main__": if not args.deterministic: cudnn.benchmark = True cudnn.deterministic = False else: cudnn.benchmark = False cudnn.deterministic = True random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) dataset_name = args.dataset dataset_config = { 'Synapse': { 'root_path': '../data/Synapse/train_npz', 'list_dir': './lists/lists_Synapse', 'num_classes': 9, }, } args.num_classes = dataset_config[dataset_name]['num_classes'] args.root_path = dataset_config[dataset_name]['root_path'] args.list_dir = dataset_config[dataset_name]['list_dir'] args.is_pretrain = True args.exp = 'TU_' + dataset_name + str(args.img_size) snapshot_path = "../model/{}/{}".format(args.exp, 'TU') snapshot_path = snapshot_path + '_pretrain' if args.is_pretrain else snapshot_path snapshot_path += '_' + args.vit_name snapshot_path = snapshot_path + '_skip' + str(args.n_skip) snapshot_path = snapshot_path + '_vitpatch' + str(args.vit_patches_size) if args.vit_patches_size!=16 else snapshot_path snapshot_path = snapshot_path+'_'+str(args.max_iterations)[0:2]+'k' if args.max_iterations != 30000 else snapshot_path snapshot_path = snapshot_path + '_epo' +str(args.max_epochs) if args.max_epochs != 30 else snapshot_path snapshot_path = snapshot_path+'_bs'+str(args.batch_size) snapshot_path = snapshot_path + '_lr' + str(args.base_lr) if args.base_lr != 0.01 else snapshot_path snapshot_path = snapshot_path + '_'+str(args.img_size) snapshot_path = snapshot_path + '_s'+str(args.seed) if args.seed!=1234 else snapshot_path if not os.path.exists(snapshot_path): os.makedirs(snapshot_path) config_vit = CONFIGS_ViT_seg[args.vit_name] config_vit.n_classes = args.num_classes config_vit.n_skip = args.n_skip if args.vit_name.find('R50') != -1: config_vit.patches.grid = (int(args.img_size / args.vit_patches_size), int(args.img_size / args.vit_patches_size)) net = ViT_seg(config_vit, img_size=args.img_size, num_classes=config_vit.n_classes).cuda() net.load_from(weights=np.load(config_vit.pretrained_path)) trainer = {'Synapse': trainer_synapse,} trainer[dataset_name](args, net, snapshot_path)