import os import time import datetime import torch from src import UNet from train_utils import train_one_epoch, evaluate, create_lr_scheduler from my_dataset import DriveDataset import transforms as T class SegmentationPresetTrain: def __init__(self, base_size, crop_size, hflip_prob=0.5, vflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): min_size = int(0.5 * base_size) max_size = int(1.2 * base_size) trans = [T.RandomResize(min_size, max_size)] if hflip_prob > 0: trans.append(T.RandomHorizontalFlip(hflip_prob)) if vflip_prob > 0: trans.append(T.RandomVerticalFlip(vflip_prob)) trans.extend([ T.RandomCrop(crop_size), T.ToTensor(), T.Normalize(mean=mean, std=std), ]) self.transforms = T.Compose(trans) def __call__(self, img, target): return self.transforms(img, target) class SegmentationPresetEval: def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): self.transforms = T.Compose([ T.ToTensor(), T.Normalize(mean=mean, std=std), ]) def __call__(self, img, target): return self.transforms(img, target) def get_transform(train, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): base_size = 565 crop_size = 480 if train: return SegmentationPresetTrain(base_size, crop_size, mean=mean, std=std) else: return SegmentationPresetEval(mean=mean, std=std) def create_model(num_classes): model = UNet(in_channels=3, num_classes=num_classes, base_c=32) return model def main(args): device = torch.device(args.device if torch.cuda.is_available() else "cpu") batch_size = args.batch_size # segmentation nun_classes + background num_classes = args.num_classes + 1 # using compute_mean_std.py mean = (0.709, 0.381, 0.224) std = (0.127, 0.079, 0.043) # 用来保存训练以及验证过程中信息 results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) train_dataset = DriveDataset(args.data_path, train=True, transforms=get_transform(train=True, mean=mean, std=std)) val_dataset = DriveDataset(args.data_path, train=False, transforms=get_transform(train=False, mean=mean, std=std)) num_workers = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=True, collate_fn=train_dataset.collate_fn) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, num_workers=num_workers, pin_memory=True, collate_fn=val_dataset.collate_fn) model = create_model(num_classes=num_classes) model.to(device) params_to_optimize = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD( params_to_optimize, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay ) scaler = torch.cuda.amp.GradScaler() if args.amp else None # 创建学习率更新策略,这里是每个step更新一次(不是每个epoch) lr_scheduler = create_lr_scheduler(optimizer, len(train_loader), args.epochs, warmup=True) if args.resume: checkpoint = torch.load(args.resume, map_location='cpu') model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) args.start_epoch = checkpoint['epoch'] + 1 if args.amp: scaler.load_state_dict(checkpoint["scaler"]) best_dice = 0. start_time = time.time() for epoch in range(args.start_epoch, args.epochs): mean_loss, lr = train_one_epoch(model, optimizer, train_loader, device, epoch, num_classes, lr_scheduler=lr_scheduler, print_freq=args.print_freq, scaler=scaler) confmat, dice = evaluate(model, val_loader, device=device, num_classes=num_classes) val_info = str(confmat) print(val_info) print(f"dice coefficient: {dice:.3f}") # write into txt with open(results_file, "a") as f: # 记录每个epoch对应的train_loss、lr以及验证集各指标 train_info = f"[epoch: {epoch}]\n" \ f"train_loss: {mean_loss:.4f}\n" \ f"lr: {lr:.6f}\n" \ f"dice coefficient: {dice:.3f}\n" f.write(train_info + val_info + "\n\n") if args.save_best is True: if best_dice < dice: best_dice = dice else: continue save_file = {"model": model.state_dict(), "optimizer": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "epoch": epoch, "args": args} if args.amp: save_file["scaler"] = scaler.state_dict() if args.save_best is True: torch.save(save_file, "save_weights/best_model.pth") else: torch.save(save_file, "save_weights/model_{}.pth".format(epoch)) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("training time {}".format(total_time_str)) def parse_args(): import argparse parser = argparse.ArgumentParser(description="pytorch unet training") parser.add_argument("--data-path", default="./", help="DRIVE root") # exclude background parser.add_argument("--num-classes", default=1, type=int) parser.add_argument("--device", default="cuda", help="training device") parser.add_argument("-b", "--batch-size", default=4, type=int) parser.add_argument("--epochs", default=200, type=int, metavar="N", help="number of total epochs to train") parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('--print-freq', default=1, type=int, help='print frequency') parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--save-best', default=True, type=bool, help='only save best dice weights') # Mixed precision training parameters parser.add_argument("--amp", default=False, type=bool, help="Use torch.cuda.amp for mixed precision training") args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() if not os.path.exists("./save_weights"): os.mkdir("./save_weights") main(args)