import numpy as np import torch from torch import nn from torch.nn import init class AFT_FULL(nn.Module): def __init__(self, d_model, n=49, simple=False): super(AFT_FULL, self).__init__() self.fc_q = nn.Linear(d_model, d_model) self.fc_k = nn.Linear(d_model, d_model) self.fc_v = nn.Linear(d_model, d_model) if (simple): self.position_biases = torch.zeros((n, n)) else: self.position_biases = nn.Parameter(torch.ones((n, n))) self.d_model = d_model self.n = n self.sigmoid = nn.Sigmoid() self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input): bs, n, dim = input.shape q = self.fc_q(input) # bs,n,dim k = self.fc_k(input).view(1, bs, n, dim) # 1,bs,n,dim v = self.fc_v(input).view(1, bs, n, dim) # 1,bs,n,dim numerator = torch.sum(torch.exp(k + self.position_biases.view(n, 1, -1, 1)) * v, dim=2) # n,bs,dim denominator = torch.sum(torch.exp(k + self.position_biases.view(n, 1, -1, 1)), dim=2) # n,bs,dim out = (numerator / denominator) # n,bs,dim out = self.sigmoid(q) * (out.permute(1, 0, 2)) # bs,n,dim return out # 输入 B C N, 输出 B C N if __name__ == '__main__': block = AFT_FULL(d_model=512, n=64).cuda() input = torch.rand(64, 64, 512).cuda() output = block( input) print(input.size(), output.size())