import numpy as np import torch from torch import nn from torch.nn import init class MobileViTv2Attention(nn.Module): ''' Scaled dot-product attention ''' def __init__(self, d_model): ''' :param d_model: Output dimensionality of the model :param d_k: Dimensionality of queries and keys :param d_v: Dimensionality of values :param h: Number of heads ''' super(MobileViTv2Attention, self).__init__() self.fc_i = nn.Linear(d_model, 1) self.fc_k = nn.Linear(d_model, d_model) self.fc_v = nn.Linear(d_model, d_model) self.fc_o = nn.Linear(d_model, d_model) self.d_model = d_model self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input): ''' Computes :param queries: Queries (b_s, nq, d_model) :return: ''' i = self.fc_i(input) # (bs,nq,1) weight_i = torch.softmax(i, dim=1) # bs,nq,1 context_score = weight_i * self.fc_k(input) # bs,nq,d_model context_vector = torch.sum(context_score, dim=1, keepdim=True) # bs,1,d_model v = self.fc_v(input) * context_vector # bs,nq,d_model out = self.fc_o(v) # bs,nq,d_model return out if __name__ == '__main__': block = MobileViTv2Attention(d_model=512).cuda() input = torch.rand(64, 64, 512).cuda() output = block(input) print(input.size(), output.size())