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Abstract

The Convolutional Neural Networks (CNNs) generate the feature representation
of complex objects by collecting hierarchical and different parts of semantic sub-
features. These sub-features can usually be distributed in grouped form in the
feature vector of each layer [43, 32], representing various semantic entities. How-
ever, the activation of these sub-features is often spatially affected by similar
patterns and noisy backgrounds, resulting in erroneous localization and identifica-
tion. We propose a Spatial Group-wise Enhance (SGE) module that can adjust the
importance of each sub-feature by generating an attention factor for each spatial
location in each semantic group, so that every individual group can autonomously
enhance its learnt expression and suppress possible noise. The attention factors
are only guided by the similarities between the global and local feature descriptors
inside each group, thus the design of SGE module is extremely lightweight with
almost no extra parameters and calculations. Despite being trained with only
category supervisions, the SGE component is extremely effective in highlighting
multiple active areas with various high-order semantics (such as the dog’s eyes,
nose, etc.). When integrated with popular CNN backbones, SGE can significantly
boost the performance of image recognition tasks. Specifically, based on ResNet50
backbones, SGE achieves 1.2% Top-1 accuracy improvement on the ImageNet
benchmark and 1.0∼2.0% AP gain on the COCO benchmark across a wide range
of detectors (Faster/Mask/Cascade RCNN and RetinaNet). Codes and pretrained
models are available at https://github.com/implus/PytorchInsight.

1 Introduction

The idea of grouping features is long-standing. In the early research of computer vision, many
artificially designed image features are presented in groups, such as SIFT [24], HOG [7]. For
example, a HOG vector comes from several spatial cells where each cell is represented by a normalized
orientation histogram. With the rapid development of CNNs [19, 18, 35, 36, 11, 16, 40], there are
widely used module designs that introduce the grouping methodology, such as group convolution
[44] and group normalization [43]. These techniques typically group features along the channel
dimension in a convolutional feature map into multiple sub-features, and use general convolution
or normalization for the transformations of these sub-features in each group. In CapsuleNet [32],
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Figure 1: Illustration of the proposed lightweight SGE module. It processes the sub-features of
each group in parallel, and uses the similarity between global statistical feature and local positional
features in each group as the attention guidance to enhance the features, thus obtaining well-distributed
semantic feature representations in space.

the grouped sub-features are modeled as capsules, which represent the instantiation parameters of a
specific type of entity, such as an object or an object part.

In addition to grouping the dimension of channels into multiple sub-features to represent different
semantics, we also need to consider another important dimension in the convolutional feature map: the
space. For a particular semantic group, it is reasonable and beneficial to generate the corresponding
semantic features in the correct spatial positions of the original image. However, due to lack of
supervision of specific region details and possible noise in the image, the spatial distribution of the
semantic features will suffer from certain chaos, which considerably weakens the representation of
learning and makes it difficult in constructions of hierarchical understanding (see X of Figure 1).

In order to make each set of features robust and well-distributed over the space, we model a spatial
enhance mechanism inside each feature group, by scaling the feature vectors over all the locations
with an attention mask. Such an attention mask is designed intentionally to suppress the possible
noise and highlight the correct semantic feature regions. Different from other popular attention
methods [39, 15, 20, 26, 42], we use the similarity between the global statistical feature and the local
ones of each location as the source of generation for the attention masks. This simple yet effective
mechanism described above is our proposed Spatial Group-wise Enhance (SGE) module, which is
extremely lightweight and requires almost no additional parameters and calculations by its nature.

We examine the changes in the distribution of the feature map and the statistics of the variance of the
activation values for each group after the introduction of the SGE module. The results show that SGE
significantly improves the spatial distribution of different semantic sub-features within its group, and
produces a large variance statistically, which strengthens the feature learning in semantic regions and
compresses the noise and interference.

We show on the ImageNet [31] benchmark that the SGE module performs better or comparable to a
series of recently proposed state-of-the-art attention modules, despite its superiority in both model
capacity and complexity. Meanwhile, for the most advanced detectors (Faster/Mask/Cascade RCNN
[29, 9, 2]), SGE can always bring more than 1% AP gains on the COCO [23] benchmark. Notably,
on RetinaNet [22], SGE outperforms the widely used SE [15] module on detecting small objects by
∼1% AP, which demonstrates its remarkable advantages in accurate spatial modeling.

2 Related Work

Grouped Features. Learning and distributing features into groups in convolutional networks has
been widely studied recently. AlexNet [18] initially presents the group convolution and divides
features into two groups on different GPUs to save computing budgets. ResNeXt [44] examines the
importance of grouping in feature transfer and suggests that the number of groups should be increased
to obtain higher accuracy under similar model complexity. The MobileNet series [14, 33, 13]
and Xception [4] treat each channel as a group and model only spatial relationships inside these
groups. The ShuffleNet [46, 25] family rearranges the grouped features to produce efficient feature
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representation. Res2Net [8] uses a hierarchical mode to transfer grouped sub-features, enabling the
network to incorporate multi-scale features in a single bottleneck. CapsuleNet [32] models each of the
grouped neurons as a capsule, where the activities of the neurons within an active capsule represent
the various properties of a particular entity that is present in the image. The overall length of the
vector of instantiation parameters is used to represent the existence of the entity and the orientation
of the vector is forced to represent the properties of the entity. In SGE, all enhancements are operated
inside groups, which saves computational overhead similarly as in group convolution. Conceptually,
the SGE module adopts the basic modeling assumptions of CapsuleNet, and believes that the features
of each group are able to actively learn various semantic entity representations. At the same time, in
the process of visualization of this paper, we also use the length of the sub-feature to measure as its
activation value, analogous to the probability of the existence of entities in CapsuleNet.

Attention Models. Attention models have recently become very popular. It first attracts widespread
attention from the field of machine translation [1, 38] and is later extended to more natural language
processing tasks such as text summary [30] and reading comprehension [34]. Since then, it has also
achieved very promising results in the field of computer vision with emerging applications, such as
person re-ID [5], image recovery [47], lip reading [45], image classification [39], and object detection
[3]. SENet [15] brings an effective, lightweight gating mechanism to self-recalibrate the feature
map via channel-wise importances. Beyond channel, BAM [26] and CBAM [42] introduce spatial
attention in a similar way. SKNet [20] further introduces a dynamic kernel selection mechanism
which is guided by the multi-scale group convolutions, with a small number of additional parameters
and calculations to improve the classification performance. GCNet [3] fully explores the advantages
and disadvantages of Non-Local [41] and SE [15] modules, and combines the advantages of both
to design a more effective global context module, obtaining compelling results on object detection
tasks. SGE differs from all existing attention mechanisms in that it aims at improving the learning
of different semantic sub-features of each group, intentionally self-enhancing its spatial distribution
within the group. Compared to other attention modules, SGE has fewer parameters, less computational
complexity (Table 1), and a more interpretable mechanism (Figure 2).

3 Method

3.1 Spatial Group-wise Enhance

We consider a C channels, H ×W convolutional feature map and divide it into G groups along
the channel dimension. Without loss of generality, we first examine a certain group separately (see
the bottom black box in Figure 1). Then the group has a vector representation at every position in
space, namely X = {x1...m} , xi ∈ RC

G ,m = H ×W . Conceptually inspired by the capsules [32],
we further assume that this group gradually captures a specific semantic response (such as the dog’s
eyes) during the course of network learning. In this group space, ideally we can get features with
strong responses at the eye positions (i.e., features with a larger vector length and similar vector
directions among multiple eye regions), whilst other positions almost have no activation and become
zero vectors. However, due to the unavoidable noise and the existence of similar patterns, it is usually
difficult for CNNs to obtain the well-distributed feature responses. To address this issue, we propose
to utilize the overall information of the entire group space to further enhance the learning of semantic
features in critical regions, given the fact that the features of the entire space are not dominated
by noise (otherwise the model learns nothing from this group). Therefore we can use the global
statistical feature through spatial averaging function Fgp(·) to approximate the semantic vector that
this group learns to represent:

g = Fgp(X ) =
1

m

m∑
i=1

xi. (1)

Next, using this global feature, we can generate the corresponding importance coefficient for each
feature, which is obtained by simple dot product that measures the similarity between the global
semantic feature g and local feature xi to some extent. Thereby for each position, we have:

ci = g · xi. (2)

Note that ci can also be expanded as ‖g‖‖xi‖ cos(θi), where θi is the angle between g and xi. It
indicates that features that have a larger vector length (i.e., ‖xi‖) and a direction (i.e., θi) closer to g
are more likely to obtain a larger initial coefficient, which is in line with our assumptions. In order to
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18th nose 22nd tongue 41st eyesResNet +SGE ResNet +SGE ResNet +SGE

Figure 2: We select several feature groups with representative semantics to display before and after
using SGE on ResNet50. The semantics of the activated regions are found to be the nose from the
18th group, the tongue from the 22nd group, and the eyes from the 41st group, respectively. We
sample images of different shapes, categories, and angles to verify the robustness of the SGE module.

prevent the biased magnitude of coefficients between various samples, we normalize c over the space,
as is widely practiced in [17, 43, 28]:

ĉi =
ci − µc

σc + ε
, µc =

1

m

m∑
j

cj , σ
2
c =

1

m

m∑
j

(cj − µc)
2, (3)

where ε (e.g., 1e-5) is a constant added for numerical stability. To make sure that the normalization
inserted in the network can represent the identity transform, we introduce a pair of parameters γ, β
for each coefficient ĉi, which scale and shift the normalized value:

ai = γĉi + β. (4)
Note that γ, β here are the only parameters introduced in our module. In a single SGE unit, the
number of γ, β is the same as the number of groups G, and the order of their magnitude is about
tens (typically, 32 or 64), which is basically negligible compared to the millions of parameters of
the entire network. Finally, to obtain the enhanced feature vector x̂i, the original xi is scaled by the
generated importance coefficients ai via a sigmoid function gate σ(·) over the space:

x̂i = xi · σ(ai), (5)

and all the enhanced features form the resulted feature group X̂ = {x̂1...m} , x̂i ∈ RC
G ,m = H ×W .
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variance distribution before and after SGE in the last bottleneck of SGE-ResNet50

original feature map (before SGE)
SGE enhanced feature map (after SGE)

Figure 4: The distribution of variance of activation values of each group, from the feature maps before
and after SGE module in the last bottleneck of SGE-ResNet50. Standard deviation is also plotted.

3.2 Visualization and Interpretation

Visualization of Semantic Activation. In order to verify whether our approach achieves the goal of
improving the semantic feature representation, we train a network based on ResNet50 on ImageNet
[31] and place the SGE module after the last BatchNorm [17] layer of each bottleneck with reference
to SENet [15], by setting G = 64. To better reflect the semantic information while preserving the
large spatial resolution as much as possible, we choose to examine the feature maps of the 4th stage
with output size of 14 × 14. For each feature vector of each group, we use its length (i.e., ‖xi‖) to
indicate their activation value and linearly normalize it to the interval [0, 1] for a better view. Figure 2
shows three representative groups with semantic responses. As listed in three large columns, they are
the 18th, 22nd, and 41st group, which are empirically found to correspond to the concept of the nose,
tongue, and eyes. Each large column contains three small columns, where the first small column is
the original image, the second small column is the feature map response from the original ResNet50,
and the third one is the feature map response enhanced by the SGE module. We select images of
dogs of different angles and types to test the robustness of SGE for feature enhancement. Despite
its simplicity, the SGE module is very effective in improving the feature representation of specific
semantics at corresponding locations while suppressing a large amount of noise. It is worth noting
that in the 4th and 7th rows, SGE can strongly emphasize the activation of the eye areas, although
their eyes are almost closed. In contrast, the original ResNet fails to capture such patterns.
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Figure 3: Histogram of activations.

The Statistical Change of Activation. We note that if the
ideal feature map is obtained, the spatial activation value of
the network will have a more pronounced contrast, such as a
large or sharp numerical activation in the semantically relevant
regions, and nearly no response in other non-correlated regions.
This contrast may probably correspond to a large degree of
variance or sparsity to some extent. To validate this, we take
the length of each sub-feature (i.e., ‖xi‖) as the activation
value, and calculate their distribution of variance in each group
of the last (highest) residual layer before and after using the
SGE module. These statistics are based on the pretrained SGE-

ResNet50, using all the samples on ImageNet validation set (i.e., 50k samples). As shown in Figure
4, the statistical results are in line with our expectations. The response variance of the feature map
enhanced by the SGE module is indeed statistically increased, which greatly improves the efficiency
of SGE to accurately capture semantic features. Furthermore, we plot the detailed histogram of
the activation values of the first group over each position and all validation samples in Figure 3. It
is observed that the smaller activation values bias towards zero and larger activation values nearly
remain unchanged, which statistically implies the noise suppression and critical-region enhancement.

4 Experiments on Image Classification

We first compare SGE with a set of state-of-the-art attention modules on ImageNet benchmark. The
ImageNet 2012 dataset [31] comprises 1.28 million training images and 50k validation images from
1k classes. We train networks on the training set and report the Top-1 and Top-5 accuracies on the
validation set with single 224 × 224 central crop. For data augmentation, we follow the standard
practice [36] and perform the random-size cropping to 224 × 224 and random horizontal flipping.
The practical mean channel subtraction is adopted to normalize the input images. All networks are
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Table 1: Comparisons to the state-of-the-art attention modules on ImageNet validation set. Single
224× 224 central crop is adopted for evaluation. All results are reproduced in the pytorch framework.
∗ denotes the modified versions based on ResNet backbones. The best and the second best records
are marked as bold and blue, respectively.

Backbone Param. GFLOPs Top-1 Acc (%) Top-5 Acc (%)
ResNet50 [11] 25.56M 4.122 76.3840 92.9080
SE-ResNet50 [15] 28.09M 4.130 77.1840 93.6720
SK-ResNet50∗ [20] 26.15M 4.185 77.5380 93.7000
BAM-ResNet50 [26] 25.92M 4.205 76.8980 93.4020
CBAM-ResNet50 [42] 28.09M 4.139 77.6260 93.6600
GC-ResNet50 [3] 28.11M 4.130 73.8880 91.6800
SGE-ResNet50 25.56M 4.127 77.5840 93.6640

ResNet101 [11] 44.55M 7.849 78.2000 93.9060
SE-ResNet101 [15] 49.33M 7.863 78.4680 94.1020
SK-ResNet101∗ [20] 45.68M 7.978 78.7920 94.2680
BAM-ResNet101 [26] 44.91M 7.933 78.2180 94.0180
CBAM-ResNet101 [42] 49.33M 7.879 78.3540 94.0640
GC-ResNet101 [3] 49.36M 7.863 74.6420 92.0720
SGE-ResNet101 44.55M 7.858 78.7980 94.3680

trained with naive softmax cross entropy without label-smoothing regularization [37]. We train all
the architectures from scratch by synchronous SGD with weight decay 0.0001 and momentum 0.9
for 100 epochs, starting from learning rate 0.1 and decreasing it by a factor of 10 every 30 epochs.
The total batch size is set as 256 and 8 GPUs (32 images per GPU) are utilized for training, using the
weight initialization strategy in [10]. Our codes are implemented in the pytorch [27] framework. Note
that in the following tables, Param. denotes the number of parameter and the definition of FLOPs
follow [46], i.e., the number of multiply-adds.

4.1 Comparisons with state-of-the-art Attention Modules

We select a series of state-of-the-art attention modules, which is considered to be relatively lightweight,
and demonstrate their performance based on ResNet50 and ResNet101 [11, 12]. They contain SE [15],
SK [20], BAM [26], CBAM [42], and GC [3]. For a fair comparison, we implement all the attention
modules (partially refer to the official codes4) with their respective best settings using a unified
pytorch framework. Following [15, 42], these attention modules are placed after the last BatchNorm
[17] layer inside each bottleneck except for BAM and SK. BAM [26] is naturally designed between
stages. SK [20] is originally designed on ResNeXt-like bottlenecks with multiple large-kernel group
convolutions. To transfer it to the ResNet backbones, we make a slight modification and only append
one additional 3 × 3 group (G = 32) convolution to each original 3 × 3 convolution of ResNet, to
prevent the parameters and calculations of the corresponding SKNets from being too large or too
small. From the results of Table 1, we observe that based on ResNet50, SGE is on par with the best
entries from CBAM (Top-1) and SK/SE (Top-5) but has much fewer parameters and slightly less
calculations. As for ResNet101, it outperforms most other competing modules with a non-negligible
margin. Please note that in our experiments, we find that the GC [3] module is difficult to train from
the beginning, and it will be stuck in a higher loss for a long time before the training loss begins to
decline normally. Therefore it does not eventually lead to a high accuracy. In the original paper of
GCNet, the authors do not adopt the commonly used training from scratch settings, but finetune the
GC module on the well pretrained ResNets to report the results.

4.2 Ablation Study

In this section, we report the ablation studies on the ImageNet dataset based on SGE-ResNet50, to
thoroughly investigate the components of the SGE modules.

Group number G. In the SGE module, the number of groups G controls the number of different
semantic sub-features. Since the total number of channels is fixed, too many groups will result in a

4https://github.com/Jongchan/attention-module, https://github.com/xvjiarui/GCNet
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Figure 5: Performance of
SGE-ResNet50 as a function
of group number G.

Table 2: Performance of SGE-
ResNet50 as a function of initial-
izations of γ and β.

γ β
SGE-ResNet50 Acc

Top-1 (%) Top-5 (%)
0 0 77.3780 93.7140
0 1 77.5840 93.6640
1 0 77.2200 93.5820
1 1 77.0820 93.7040

Table 3: Performance of SGE-
ResNet50 with and without
the normalization part.

Norm
SGE-ResNet50 Acc

Top-1 (%) Top-5 (%)
w/ 77.5840 93.6640
w/o 76.4980 93.1580

reduction in the sub-feature dimension within each group, leading to weaker feature representation
for each semantic response; On the contrary, too few groups will make the diversity of semantics
limited. It is natural to speculate that there is a moderate hyperparameter G that balances semantic
diversity and the ability of representing each semantic to optimize network performance. From Figure
5, we can see that with the increase of G, the performance of the network shows a trend of increasing
first and then decreasing (especially in terms of Top-1 accuracy), which is highly consistent with our
deduction. Through the experimental results, we usually recommend the number of groups G to be
32 or 64. In subsequent experiments, we use G = 64 by default.

Initialization of the γ and β. During the experiment, we found that the initialization of the parameter
γ and β has a small but not negligible effect on the result. To investigate this, we use values 0, 1 for
grid search to see the effects of the initialization. From Table 2 we find that initializing γ to 0 tends
to get better results. We speculate that when the ordinary patterns of semantic learning has not yet
been completely formulated in convolutional feature maps during the initial stage of network training,
it may be appropriate to temporarily discard the attention mechanism, but let the network learn a
basic semantic representation first. After the initial training period, the attention modules then need
to be gradually turned in effect. Therefore, in the early moments of network learning, the attention
mechanism of SGE is not suggested to participate heavily in training by setting γ to 0. Such an
operation is almost equivalent to simulate the learning process of a network without attention modules
during the very early training stage, since each sub-feature of each location is linearly multiplied by
the same constant (i.e., σ(β)), whose effect can be cancelled by the following BatchNorm layer.

Normalization. To investigate the importance of normalization in SGE modules, we conduct
experiments by eliminating the normalization part from SGE (as shown in Table 3) and find that
performance is considerably reduced. This confirms our previous conjecture: because the distribution
of features generated by different samples for the same semantic group is inconsistent, it is difficult to
learn robust importance coefficients without normalization. This is also partially validated in Figure
4, where the variance statistic usually has a relatively large standard deviation. It demonstrates that
the variance of the activation values of different samples in the same group can be statistically very
different, indicating that normalization is essential for SGE to work.

5 Experiments on Object Detection

We further evaluate the SGE module on object detection on COCO 2017 [23], whose train set
is comprised of 118k images, validation set of 5k images. We follow the standard setting [9] of
evaluating object detection via the standard mean Average-Precision (AP) scores at different box
IoUs or object scales, respectively.

The input images are resized with their shorter side being 800 pixels [21]. We train on 8 GPUs
with 2 images per each. The backbones of all models are pretrained on ImageNet [31] (directly
borrowed from the models listed in Table 1), then all layers except for the first two stages are jointly
finetuned with FPN [21] neck and a set of detector heads. Following the conventional finetuning
setting [9], the BatchNorm layers are frozen during finetuning. All models are trained for 24 epochs
using synchronized SGD with a weight decay of 0.0001 and momentum of 0.9. The learning rate
is initialized to 0.02, and decays by a factor of 10 at the 18th and 22nd epochs. The choice of
hyper-parameters follows the latest release of the detection benchmark [6].
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Table 4: Comparisons based on the state-of-the-art detectors. The Parm. and GFLOPs are only with
the backbone parts, given that all the remaining structures are kept the same for a specific detector.
The numbers in brackets denote the improvements over the baseline backbones. The SGE modules
tend to obtain a larger gain on the stronger baseline detection models.

Backbone Param. GFLOPs Detector AP50:95 (%) AP50 (%) AP75 (%)
ResNet50 [11] 23.51M 88.032 Faster RCNN [29] 37.5 59.1 40.6
SGE-ResNet50 23.51M 88.149 Faster RCNN [29] 38.7 (+1.2) 60.8 41.7
ResNet50 [11] 23.51M 88.032 Mask RCNN [9] 38.6 60.0 41.9
SGE-ResNet50 23.51M 88.149 Mask RCNN [9] 39.6 (+1.0) 61.5 42.9
ResNet50 [11] 23.51M 88.032 Cascade RCNN [2] 41.1 59.3 44.8
SGE-ResNet50 23.51M 88.149 Cascade RCNN [2] 42.6 (+1.5) 61.4 46.2

ResNet101 [11] 42.50M 167.908 Faster RCNN [29] 39.4 60.7 43.0
SGE-ResNet101 42.50M 168.099 Faster RCNN [29] 41.0 (+1.6) 63.0 44.3
ResNet101 [11] 42.50M 167.908 Mask RCNN [9] 40.4 61.6 44.2
SGE-ResNet101 42.50M 168.099 Mask RCNN [9] 42.1 (+1.7) 63.7 46.1
ResNet101 [11] 42.50M 167.908 Cascade RCNN [2] 42.6 60.9 46.4
SGE-ResNet101 42.50M 168.099 Cascade RCNN [2] 44.4 (+1.8) 63.2 48.4

Table 5: Performance on RetinaNet for objects of three scales. The notations are similar as in Table 4.
The best and the second best records are marked as bold and blue, respectively. Compared to the
SE/SK module, the detection of small objects from SGE has been significantly improved.

Backbone Param. GFLOPs APsmall (%) APmedia (%) APlarge (%)
ResNet50 [11] 23.51M 88.032 19.9 39.6 48.3
SE-ResNet50 [15] 26.04M 88.152 20.7 (+0.8) 41.3 (+1.7) 50.0 (+1.7)

SK-ResNet50 [20] 24.11M 89.414 20.2 (+0.3) 40.9 (+1.3) 50.4 (+2.1)

BAM-ResNet50 [26] 23.87M 89.804 19.6 (-0.3) 40.1 (+0.5) 49.9 (+1.6)

CBAM-ResNet50 [42] 26.04M 88.302 21.8 (+1.9) 40.8 (+1.2) 49.5 (+1.2)

SGE-ResNet50 23.51M 88.149 21.8 (+1.9) 41.2 (+1.6) 49.9 (+1.6)

5.1 Experiments on state-of-the-art Detectors

We embed the SGE modules into the popular detector framework separately to check if the enhanced
feature map helps to detect objects. We select three popular two-stage detection frameworks, including
Faster RCNN [29], Mask RCNN [9], and Cascade RCNN [2], and choose the widely used FPN
[21] as the detection neck. For a fair comparison, we only replace the pretrained backbone model
on ImageNet while keeping the other components in the entire detector intact. Table 4 shows the
performance of embedding the backbone with the SGE module on these state-of-the-art detectors.
We find that although SGE introduces almost no additional parameters and calculations, the gain
of detection performance is still very noticeable with basically more than 1% AP point. It is worth
noting that SGE can be more prominently advanced on stronger detectors (+1.5% AP on ResNet50
and +1.8% on ResNet101 in Cascade RCNN).

5.2 Comparisons with state-of-the-art Attention Modules

Next, we chose a representative one-stage detection framework RetinaNet [22], to compare SGE
with several competitive state-of-the-art attention modules, especially for objects with three different
scales. The original backbones are replaced with the corresponding attention embedded ResNets,
which are pretrained on ImageNet, for a fair comparison. In Table 5, SGE greatly improves the
accuracy of detection for small objects while its performance of the media and large objects is close
to the optimal ones (41.2 vs 41.3 from SE and 49.9 vs 50.4 from SK), indicating that the SGE module
is able to retain the feature representation of the precise spatial area well and is very robust to various
object scales. Conversely, the SE/SK module has only a small increase in the recognition of small
objects. For SE/SK, in each channel, the same importance coefficient is allocated to each location of
the space, probably resulting in the loss of the ability to express the details of micro-regions.
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6 Conclusion

We propose a Spatial Group-wise Enhance (SGE) module that enables each of its feature groups
to autonomously enhance its learnt semantic representation and suppress possible noise, nearly
without introducing additional parameters and computational complexity. We visually show that the
feature groups have the ability to express different semantics, while the SGE module can significantly
enhance this ability. Despite its simplicity, SGE has achieved a steady improvement in both image
classification and detection tasks, which demonstrates its compelling effectiveness in practice.
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