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Abstract

Spatial pooling has been proven highly effective in cap-

turing long-range contextual information for pixel-wise

prediction tasks, such as scene parsing. In this paper, be-

yond conventional spatial pooling that usually has a reg-

ular shape of N × N , we rethink the formulation of spa-

tial pooling by introducing a new pooling strategy, called

strip pooling, which considers a long but narrow kernel,

i.e., 1 × N or N × 1. Based on strip pooling, we further

investigate spatial pooling architecture design by 1) intro-

ducing a new strip pooling module that enables backbone

networks to efficiently model long-range dependencies, 2)

presenting a novel building block with diverse spatial pool-

ing as a core, and 3) systematically comparing the per-

formance of the proposed strip pooling and conventional

spatial pooling techniques. Both novel pooling-based de-

signs are lightweight and can serve as an efficient plug-

and-play module in existing scene parsing networks. Ex-

tensive experiments on popular benchmarks (e.g., ADE20K

and Cityscapes) demonstrate that our simple approach es-

tablishes new state-of-the-art results. Code is available at

https://github.com/Andrew-Qibin/SPNet.

1. Introduction

Scene parsing, also known as semantic segmentation,

aims to assign a semantic label to each pixel in an image.

As one of the most fundamental tasks, it has been applied

in a wide range of computer vision and graphics applica-

tions [10], such as autonomous driving [47], medical diag-

nosis [46], image/video editing [41, 27], salient object de-

tection [3], and aerial image analysis [38]. Recently, meth-

ods [37, 5] based on fully convolutional networks (FCNs)

have made extraordinary progress in scene parsing with

their ability to capture high-level semantics. However, these

approaches mostly stack local convolutional and pooling

operations, thus are hardly able to well cope with complex

scenes with a variety of different categories due to the lim-

ited effective fields-of-view [65, 23].

One way to improve the capability of modeling the long-

range dependencies in CNNs is to adopt self-attention or

non-local modules [51, 23, 7, 45, 21, 53, 66, 62, 61, 28].

However, they notoriously consume huge memory for com-

puting the large affinity matrix at each spatial position.

Other methods for long-range context modeling include: di-

lated convolutions [5, 8, 6, 57] that aim to widen the recep-

tive fields of CNNs without introducing extra parameters; or

global/pyramid pooling [26, 65, 19, 5, 8, 54] that summa-

rizes global clues of the images. However, a common limi-

tation for these methods, including dilated convolutions and

pooling, is that they all probe the input features map within

square windows. This limits their flexibility in capturing

anisotropy context that widely exists in realistic scenes. For

instance, in some cases, the target objects may have long-

range banded structure (e.g., the grassland in Figure 1b) or

distributed discretely (e.g., the pillars in Figure 1a). Using

large square pooling windows cannot well solve the prob-

lem because it would inevitably incorporate contaminating

information from irrelevant regions [19].

In this paper, to more efficiently and effectively capture

long-range dependencies, we exploit spatial pooling for en-

larging the receptive fields of CNNs and collecting infor-

mative contexts, and present the concept of strip pooling.

As an alternative to global pooling, strip pooling offers two

advantages. First, it deploys a long kernel shape along one

spatial dimension and hence enables capturing long-range

relations of isolated regions, as shown in the top part of Fig-

ures 1a and 1c. Second, it keeps a narrow kernel shape along

the other spatial dimension, which facilitates capturing lo-

cal context and prevents irrelevant regions from interfering

the label prediction. Integrating such long but narrow pool-

ing kernels enables the scene parsing networks to simulta-

neously aggregate both global and local context. This is es-

sentially different from the traditional spatial pooling which

collects context from a fixed square region.

Based on the strip pooling operation, we present two

pooling based modules for scene parsing networks. First,

we design a Strip Pooling Module (SPM) to effectively en-

large the receptive field of the backbone. More concretely,

the SPM consists of two pathways, which focus on encod-

ing long-range context along either the horizontal or vertical

spatial dimension. For each spatial location in the pooled

map, it encodes its globally horizontal and vertical informa-
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Figure 1. Illustrations on how strip pooling and spatial pooling

work differently for scene parsing. From top to bottom: strip

pooling; conventional spatial pooling; ground-truth annotations;

our results with conventional spatial pooling only; our results with

strip pooling considered. As shown in the top row, compared to

conventional spatial pooling (green grids), strip pooling has a ker-

nel of band shape (red grids) and hence can capture long-range de-

pendencies between regions distributed discretely (yellow bound-

ing boxes).

tion and then uses the encodings to balance its own weight

for feature refinement. Furthermore, we present a novel

add-on residual building block, called the Mixed Pooling

module (MPM), to further model long-range dependencies

at high semantic level. It gathers informative contextual in-

formation by exploiting pooling operations with different

kernel shapes to probe the images with complex scenes.

To demonstrate the effectiveness of the proposed pooling-

based modules, we present SPNet which incorporates both

modules into the ResNet [20] backbone. Experiments show

that our SPNet establishes new state-of-the-art results on

popular scene parsing benchmarks.

The contributions of this work are as follows: (i) We

investigate the conventional design of the spatial pooling

and present the concept of strip pooling, which inherits the

merits of global average pooling to collect long-range de-

pendencies and meanwhile focus on local details. (ii) We

design a Strip Pooling Module and a Mixed Pooling Mod-

ule based on strip pooling. Both modules are lightweight

and can serve as efficient add-on blocks to be plugged into

any backbone networks to generate high-quality segmen-

tation predictions. (iii) We present SPNet integrating the

above two pooling-based modules into a single architecture,

which achieves significant improvements over the baselines

and establishes new state-of-the-art results on widely-used

scene parsing benchmark datasets.

2. Related Work

Current state-of-the-art scene parsing (or semantic seg-

mentation) methods mostly leverage convolutional neural

networks (CNNs). However, the receptive fields of CNNs

grow slowly by stacking the local convolutional or pool-

ing operators, which therefore hampers them from taking

enough useful contextual information into account. Early

techniques for modeling contextual relationships for scene

parsing involve the conditional random fields (CRFs) [25,

49, 1, 67]. They are mostly modeled in the discrete label

space and computationally expensive, thus are now less suc-

cessful for producing state-of-the-art results of scene pars-

ing albeit have been integrated into CNNs.

For continuous feature space learning, prior work use

multi-scale feature aggregation [37, 5, 33, 18, 42, 31, 32, 2,

44, 4, 48, 17] to fuse the contextual information by probing

the incoming features with filters or pooling operations at

multiple rates and multiple fields-of-view. DeepLab [5, 6]

and its follow-ups [8, 54, 39] adopt dilated convolutions and

fuse different dilation rate features to increase the receptive

filed of the network. Besides, aggregating non-local context

[36, 58, 29, 15, 7, 45, 21, 53, 66, 23, 14] is also effective for

scene parsing.

Another line of research on improving the receptive field

is the spatial pyramid pooling [65, 19]. By adopting a set

of parallel pooling operations with a unique kernel size at

each pyramid level, the network is able to capture large-

range context. It has been shown promising on several scene

parsing benchmarks. However, its ability to exploit contex-

tual information is limited since only square kernel shapes

are applied. Moreover, the spatial pyramid pooling is only

modularized on top of the backbone network thus rendering

it is not flexible or directly applicable in the network build-

ing block for feature learning. In contrast, our proposed

strip pooling module and mixed pooling module adopt pool-

ing kernels with size 1×N or N × 1, both of which can be

plugged and stacked into existing networks. This difference

enables the network to exploit rich contextual relationships

in each of the proposed building blocks. The proposed mod-

ules have proven to be much more powerful and adaptable

than the spatial pyramid pooling in our experiments.

3. Methodology

In this section, we first give the concept of strip pooling

and then introduce two model designs based on strip pool-

ing to demonstrate how it improves scene parsing networks.

Finally, we describe the entire architecture of the proposed
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Figure 2. Schematic illustration of the Strip Pooling (SP) module.

scene parsing network augmented by strip pooling.

3.1. Strip Pooling

Before describing the formulation of strip pooling, we

first briefly review the average pooling operation.

Standard Spatial Average Pooling: Let x ∈ R
H×W be

a two-dimensional input tensor, where H and W are the

spatial height and width, respectively. In an average pooling

layer, a spatial extent of the pooling (h × w) is required.

Consider a simple case where h divides H and w divides W .

Then the output y after pooling is also a two-dimensional

tensor with height Ho = H
h

and width Wo = W
w

. Formally,

the average pooling operation can be written as

yio,jo =
1

h× w

∑

0≤i<h

∑

0≤j<w

xio×h+i,jo×w+j , (1)

where 0 ≤ io < Ho and 0 ≤ jo < Wo. In Eqn. 1, each

spatial location of y corresponds to a pooling window of

size h × w. The above pooling operation has been suc-

cessfully applied to previous work [65, 19] for collecting

long-range context. However, it may unavoidably incorpo-

rate lots of irrelevant regions when processing objects with

irregular shapes as shown in Figure 1.

Strip Pooling: To alleviate the above problem, we present

the concept of ‘strip pooling’ here, which uses a band shape

pooling window to perform pooling along either the hori-

zontal or the vertical dimension, as shown in the top row of

Figure 1. Mathematically, given the two-dimensional ten-

sor x ∈ R
H×W , in strip pooling, a spatial extent of pooling

(H, 1) or (1,W ) is required. Unlike the two-dimensional

average pooling, the proposed strip pooling averages all

the feature values in a row or a column. Thus, the output

y
h ∈ R

H after horizontal strip pooling can be written as

yhi =
1

W

∑

0≤j<W

xi,j . (2)

Similarly, the output yv ∈ R
W after vertical strip pooling

can be written as

yvj =
1

H

∑

0≤i<H

xi,j . (3)

Given the horizontal and vertical strip pooling layers, it

is easy to build long-range dependencies between regions

distributed discretely and encode regions with the banded

shape, thanks to the long and narrow kernel shape. Mean-

while, it also focuses on capturing local details due to its

narrow kernel shape along the other dimension. These prop-

erties make the proposed strip pooling different from con-

ventional spatial pooling that relies on square-shape ker-

nels. In the following, we will describe how to leverage

strip pooling (Eqn. 2 and Eqn. 3) to improve scene parsing

networks.

3.2. Strip Pooling Module

It has been demonstrated in previous work [8, 16] that

enlarging the receptive fields of the backbone networks is

beneficial to scene parsing. In this subsection, motivated

by this fact, we introduce an effective way to help back-

bone networks capture long-range context by exploiting

strip pooling. In particular, we present a novel Strip Pooling

module (SPM), which leverages both horizontal and ver-

tical strip pooling operations to gather long-range context

from different spatial dimensions. Figure 2 depicts our pro-

posed SPM. Let x ∈ R
C×H×W be an input tensor, where

C denotes the number of channels. We first feed x into

two parallel pathways, each of which contains a horizontal

or vertical strip pooling layer followed by a 1D convolu-

tional layer with kernel size 3 for modulating the current

location and its neighbor features. This gives yh ∈ R
C×H

and y
v ∈ R

C×W . To obtain an output z ∈ R
C×H×W that

contains more useful global priors, we first combine yh and

y
w together as follows, yielding y ∈ R

C×H×W :

yc,i,j = yhc,i + yvc,j . (4)
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Then, the output z is computed as

z = Scale(x, σ(f(y))), (5)

where Scale(·, ·) refers to element-wise multiplication, σ

is the sigmoid function and f is a 1 × 1 convolution. It

should be noted that there are multiple ways to combine

the features extracted by the two strip pooling layers, such

as computing the inner product between two extracted 1D

feature vectors. However, taking the efficiency into account

and to make the SPM lightweight, we adopt the operations

described above, which we find still work well.

In the above process, each position in the output tensor

is allowed to build relationships with a variety of positions

in the input tensor. For example, in Figure 2, the square

bounded by the black box in the output tensor is connected

to all the locations with the same horizontal or vertical co-

ordinate as it (enclosed by red and purple boxes). There-

fore, by repeating the above aggregation process a couple of

times, it is possible to build long-range dependencies over

the whole scene. Moreover, benefiting from the element-

wise multiplication operation, the proposed SPM can also

be considered as an attention mechanism and directly ap-

plied to any pretrained backbone networks without training

them from scratch.

Compared to global average pooling, strip pooling con-

siders long but narrow ranges instead of the whole feature

map, avoiding most unnecessary connections to be built be-

tween locations that are far from each other. Compared to

attention-based modules [16, 19] that need a large amount

of computation to build relationships between each pair of

locations, our SPM is lightweight and can be easily embed-

ded into any building blocks to improve the capability of

capturing long-range spatial dependencies and exploiting

inter-channel dependencies. We will provide more anal-

ysis on the performance of our approach against existing

attention-based methods.

3.3. Mixed Pooling Module

It turns out that the pyramid pooling module (PPM) is

an effective way to enhance scene parsing networks [65].

However, PPM heavily relies on the standard spatial pooling

operations (albeit with different pooling kernels at different

pyramid levels), making it still suffers as analyzed in Sec-

tion 3.1. Taking into account the advantages of both stan-

dard spatial pooling and the proposed strip pooling, we ad-

vance the PPM and design a Mixed Pooling Module (MPM)

which focuses on aggregating different types of contextual

information via various pooling operations to make the fea-

ture representations more discriminative.

The proposed MPM consists of two sub-modules that

simultaneously capture short-range and long-range depen-

dencies among different locations, which we find are both

essential for scene parsing networks. For long-range de-

pendencies, unlike previous work [60, 65, 8] that use the

global average pooling layer, we propose to gather such

kind of clues by employing both horizontal and vertical

strip pooling operations. A simplified diagram can be found

in Figure 3(b). As analyzed in Section 3.2, the strip pool-

ing makes connections among regions distributed discretely

over the whole scene and encoding regions with banded

structures possible. However, for cases where semantic re-

gions are distributed closely, spatial pooling is also nec-

essary for capturing local contextual information. Taking

this into account, as depicted in Figure 3(a), we adopt a

lightweight pyramid pooling sub-module for short-range

dependency collection. It has two spatial pooling layers

followed by convolutional layers for multi-scale feature ex-

traction plus a 2D convolutional layer for original spatial

information preserving. The feature maps after each pool-

ing are with bin sizes of 20× 20 and 12× 12, respectively.

All three sub-paths are then combined by summation.

Based on the above two sub-modules, we propose to nest

them into residual blocks [20] with bottleneck structure for

parameter reduction and modular design. Specifically, be-

fore each sub-module, a 1 × 1 convolutional layer is first

used for channel reduction. The outputs from both sub-

modules are concatenated together and then fed into another

1 × 1 convolutional layer for channel expansion as done in

[20]. Note that all convolutional layers, aside from the ones

for channel reduction and expansion, are with kernel size

3× 3 or 3 (for 1D convolutional layers).

It is worth mentioning that unlike the spatial pyramid

pooling modules [65, 8], the proposed MPM is a kind of

modularized design. The advantage is that it can be easily

used in a sequential way to expand the role of the long-range

dependency collection sub-module. We find that with the

same backbone our network with only two MPMs (around

1/3 parameters of the original PPM [65]) performs even bet-

ter than the PSPNet. In our experiment section, we will pro-

vide more results and analysis on this.

3.4. Overall Architecture

Based on the proposed SPM and MPM, we introduce an

overall architecture, called SPNet, in this subsection. We

adopt the classic residual networks [20] as our backbones.

Following [5, 65, 16], we improve the original ResNet with

the dilation strategy and the final feature map size is set to

1/8 of the input image. The SPMs are added after the 3× 3
convolutional layer of the last building block in each stage

and all building blocks in the last stage. All convolutional

layers in an SPM share the same number of channels to the

input tensor.

For the MPM, we directly build it upon the backbone

network because of its modular design. Since the output

of the backbone is with 2048 channels, we first connect a
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Figure 3. (a) Short-range dependency aggregation sub-module. (b)

Long-range dependency aggregation sub-module. Inspired by [34,

35], a convolutional layer is added after the fusion operation in

each sub-module to reduce the aliasing effect brought by down-

sampling operations.

1× 1 convolutional layer to the backbone to reduce the out-

put channels from 2048 to 1024 and then add two MPMs.

In each MPM, following [20], all convolutional layers with

kernel size 3 × 3 or 3 have 256 channels (i.e., a reduction

rate of 1/4 is used). A convolutional layer is added at the

end to predict the segmentation map.

4. Experiments

We evaluate the proposed SPM and MPM on pop-

ular scene parsing datasets, including ADE20K [68],

Cityscapes [11], and Pascal Context [40]. Moreover, we

also conduct comprehensive ablation analysis on the effect

of the proposed strip pooling based on the ADE20K dataset

as done in [65].

4.1. Experimental Setup

Our network is implemented based on two public tool-

boxes [64, 59] and Pytorch [43]. We use 4 GPUs to run all

the experiments. The batch size is set to 8 for Cityscapes

and 16 for other datasets during training. Following most

previous works [5, 65, 60], we adopt the ‘poly’ learning rate

policy (i.e., the base one multiplying (1− iter
max iter

)power) in

training. The base learning rate is set to 0.004 for ADE20K

and Cityscapes datasets and 0.001 for the Pascal Context

dataset. The power is set to 0.9. The training epochs are

as follows: ADE20K (120), Cityscapes (180), and Pascal

Context (100). Momentum and weight decay rate are set to

0.9 and 0.0001, respectively. We use synchronized Batch

Normalization in training as done in [60, 65].

For data augmentation, similar to [65, 60], we randomly

Settings #Params SPM mIoU Pixel Acc

Base FCN 27.7 M ✗ 37.63 77.60%

Base FCN + PPM [65] +21.0 M ✗ 41.68 80.04%

Base FCN + 1 MPM +4.4 M ✗ 40.50 79.60%

Base FCN + 2 MPM +8.8 M ✗ 41.92 80.03%

Base FCN + 2 MPM +11.9 M ✓ 44.03 80.65%

Table 1. Ablation analysis on the number of mixed pooling mod-

ules (MPMs). ‘SPM’ refers to the strip pooling module. As can

be seen, when more MPMs are used, better results are yielded. All

results are based on ResNet-50 backbone and single-model test.

Best result is highlighted in bold.

flip and rescale the input images from 0.5 to 2 and finally

crop the image to a fixed size of 768 × 768 for Cityscapes

and 480 × 480 for others. By default, we report results un-

der the standard evaluation metric—mean Intersection of

Union (mIoU). For datasets with no ground-truth annota-

tions available, we get results from the official evaluation

servers. For all experiments, we use cross-entropy loss to

optimize all models. Following [65], we exploit an auxiliary

loss (connected to the last residual block of the forth stage)

and the loss weight is set to 0.4. We also report multi-model

results to fairly compare our approach with others, i.e., aver-

aging the segmentation probability maps from multiple im-

age scales {0.5, 0.75, 1.0, 1.25, 1.5, 1.75} as in [32, 65, 60].

4.2. ADE20K

The ADE20K dataset [68] is one of the most challeng-

ing benchmarks, which contains 150 classes and a variety

of scenes with 1,038 image-level labels. We follow the offi-

cial protocal to split the whole dataset. Like most previous

works, we use both pixel-wise accuracy (Pixel Acc.) and

mean of Intersection over Union (mIoU) for evaluation. We

also adopt multi-model test and use the averaged results for

evaluation following [32, 65]. For ablation experiments, we

adopt ResNet-50 as our backbone as done in [65]. When

comparing with prior works, we use ResNet-101.

4.2.1 Ablation Studies

Number of MPMs: As stated in Section 3.3, the MPM is

built based on the bottleneck structure of residual blocks

[20] and hence can be easily repeated multiple times to ex-

pand the role of strip pooling. Here, we investigate how

many MPMs are needed to balance the performance and

the runtime cost of the proposed approach. As shown in Ta-

ble 1, we list the results when different numbers of MPMs

are used based on the ResNet-50 backbone. One can see

when no MPM is used (base FCN), we achieve a result of

37.63% in terms of mIoU. When 1 MPM is used, we have

a result of 40.50%, i.e. around 3.0% improvement. Fur-
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Settings w/ SPM mIoU Pixel Acc

Base FCN ✗ 37.63 77.60%

Base FCN + 2 MPM (SRD only) ✗ 40.50 79.34%

Base FCN + 2 MPM (LRD only) ✗ 41.14 79.64%

Base FCN + 2 MPM (SRD + LRD) ✗ 41.92 80.03%

Base FCN + 2 MPM (SRD + LRD) ✓ 44.03 80.65%

Table 2. Ablation analysis on the mixed pooling module (MPM).

‘SPM’ refers to the strip pooling module. ‘SRD’ and ‘LRD’ de-

note the short-range dependency aggregation sub-module and the

long-range dependency aggregation sub-module, respectively. As

can be seen, collecting both short-range and long-range depen-

dencies are essential for yielding better segmentation results. All

results are based on single-model test.

thermore, when we add two MPMs to the backbone, a per-

formance gain of around 4.3% can be obtained. However,

adding more MPMs gives trivial performance gain. This

may be because the receptive field is already large enough.

As a result, regarding the runtime cost, we set the number

of MPMs to 2 by default.

To show the advantages of the proposed MPM over PPM

[65], we also show the result and the parameter number

of PSPNet in Table 1. It can be easily seen that the set-

ting of ‘Base FCN + 2 MPM’ already performs better than

PSPNet despite 12M fewer parameters than PSPNet. This

phenomenon demonstrates that our modularized design of

MPM is much more effective than PPM.

Effect of strip pooling in MPMs: It has been described

in Section 3.3 that the proposed MPM contains two sub-

modules for collecting short-range and long-range depen-

dencies, respectively. Here, we ablate the importance of

the proposed strip pooling. The corresponding results are

shown in Table 2. Obviously, collecting long-range depen-

dencies with strip pooling (41.14%) is more effective than

collecting only short-range dependencies (40.5%), but gath-

ering both of them further improves (41.92%). To further

demonstrate how the strip pooling works in MPM, we vi-

sualize some feature maps at different positions of MPM in

Figure 5 and some segmentation results under different set-

tings of MPM in Figure 4. Clearly, the proposed strip pool-

ing can more effectively collect long-range dependencies.

For example, the feature map output from the long-range

dependency aggregation module (LRD) in the top row of

Figure 5 can accurately locate where the sky is. However,

global average pooling cannot do this because it encodes the

whole feature map to a single value.

Effectiveness of SPMs: We empirically find that there is

no need to add the proposed SPM to each building block

of the backbone network despite its light weight. In this

experiment, we consider four scenarios, which are listed in

Table 3. We take the base FCN followed by 2 MPMs as

(a) Image (b) GT (c) 2 SRD (d) 2 LRD (e) 2 MPM

Figure 4. Visual comparisons among different settings of the MP

module (MPM). ‘2 SRD’ means we use 2 MPMs with only

the short-range dependency aggregation module included and ‘2

LRD’ means we use 2 MPMs with only the long-range depen-

dency aggregation module included.

Settings SPM Position #MPM mIoU Pixel Acc.

Base FCN - 2 41.92 80.03%

Base FCN + SPM L 2 42.61 80.38%

Base FCN + SPM A 2 42.30 80.22%

Base FCN + SE [22] A + L 2 41.34 80.05%

Base FCN + SPM A + L 0 41.66 79.69%

Base FCN + SPM A + L 2 44.03 80.65%

Table 3. Ablation analysis on the strip pooling module (SPM). L:

Last building block in each stage. A: All building blocks in the last

stage. As can be seen, SPM can largely improve the performance

of the base FCN from 37.63 to 41.66.

the baseline. We first add an SPM to the last building block

in each stage; the resulting mIoU score is 42.61%. Sec-

ond, we attempt to add SPMs to all the building blocks in

the last stage, and find the performance slightly declines to

42.30%. Next, when we add SPMs to both the above posi-

tions, an mIoU score of 44.03% can be yielded. However,

when we attempt to add SPMs to all the building blocks of

the backbone, there is nearly no performance gain already.

Regarding the above results, by default, we add SPMs to

the last building block of each stage and all the building

blocks of the last stage. In addition, when we take only the

base FCN as our baseline and add the proposed SPMs, the

mIoU score increases from 37.63% to 41.66%, achieving an

improvement of nearly 4%. All the above results indicate

that adding SPMs to the backbone network does benefit the

scene parsing networks.

Strip Pooling v.s. Global Average Pooling: To demon-

strate the advantages of the proposed strip pooling over the

global average pooling, we attempt to change the strip pool-

ing operations in the proposed SPM to global average pool-

ing. Taking the base FCN followed by 2 MPMs as the base-

line, when we add SPMs to the base FCN, the performance

64008



(a) Image (b) GT (c) After VSP (d) After HSP (e) After LRD (f) After SRD (g) After MPM (h) Results

Figure 5. Visualization of selected feature maps at different positions of the proposed MP module. VSP: vertical strip pooling; HSP:

horizontal strip pooling; SRD: short-range dependency aggregation sub-module (Figure 3a); LRD: long-range dependency aggregation

sub-module (Figure 3b); MPM: mixed pooling module.

Settings Multi-Scale + Flip mIoU (%) Pixel Acc. (%)

SPNet-50 44.03 80.65

SPNet-50 ✓ 45.03 81.32

SPNet-101 44.52 81.37

SPNet-101 ✓ 45.60 82.09

Table 4. More ablation experiments when different backbone net-

works are used.

increases from 41.92% to 44.03%. However, when we

change the proposed strip pooling to global average pool-

ing as done in [22], the performance drops from 41.92% to

41.34%, which is even worse than the baseline as shown in

Table 3. This may be due to directly fusing feature maps to

construct a 1D vector which leads to loss of too much spa-

tial information and hence ambiguity as pointed out in the

previous work [65].

More experiment analysis: In this part, we show the influ-

ence of different experiment settings on the performance,

including the depth of the backbone network and multi-

scale test with flipping. As listed in Table 4, multi-scale test

with flipping can largely improve the results for both back-

bones. Moreover, using deeper backbone networks also

benefits the performance (ResNet-50: 45.03% → ResNet-

101: 45.60%).

Visualization: In Figure 6, we show some visual results un-

der different settings of the proposed approach. Obviously,

adding either MPM or SPM to the base FCN can effectively

improve the segmentation results. When both MPM and

SPM are considered, the quality of the segmentation maps

can be further enhanced.

4.2.2 Comparison with the State-of-the-Arts

Here, we compare the proposed approach with previous

state-of-the-art methods. The results can be found in Ta-

ble 5. As can be seen, our approach with ResNet-50 as

backbone reaches an mIoU score of 45.03% and pixel ac-

Method Backbone mIoU (%) Pixel Acc. (%) Score

RefineNet [32] ResNet-152 40.70 - -

PSPNet [65] ResNet-101 43.29 81.39 62.34

PSPNet [65] ResNet-269 44.94 81.69 63.32

SAC [63] ResNet-101 44.30 81.86 63.08

EncNet [60] ResNet-101 44.65 81.69 63.17

DSSPN [30] ResNet-101 43.68 81.13 62.41

UperNet [52] ResNet-101 42.66 81.01 61.84

PSANet [66] ResNet-101 43.77 81.51 62.64

CCNet [23] ResNet-101 45.22 - -

APNB [69] ResNet-101 45.24 - -

APCNet [19] ResNet-101 45.38 - -

SPNet (Ours) ResNet-50 45.03 81.32 63.18

SPNet (Ours) ResNet-101 45.60 82.09 63.85

Table 5. Comparisons with the state-of-the-arts on the validation

set of ADE20K [68]. We report both mIoU and Pixel Acc. on this

benchmark. Best results are highlighted in bold.

curacy of 81.32%, which are already better than most of the

previous methods. When taking ResNet-101 as our back-

bone, we achieve new state-of-the-art results in terms of

both mIoU and pixel accuracy.

4.3. Cityscapes

Cityscapes [11] is another popular dataset for scene

parsing, which contains totally 19 classes. It consists of

5K high-quality pixel-annotated images collected from 50

cities in different seasons, all of which are with 1024×2048
pixels. As suggested by previous work, we split the whole

dataset into three splits for training, validation, and test,

which contain 2,975, 500, and 1,525 images, respectively.

For a fair comparison, we adopt ResNet-101 as the back-

bone network. We compare our approach with existing

methods on the test set. Following previous work [16], we

train our network with only fine annotated data and submit

the results to the official server. The results can be found

in Table 6. It is obvious that the proposed approach outper-

forms all other methods.
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(a) Image (b) GT (c) Base FCN (d) 1 MPM only (e) 2 MPM only (f) SPM only (g) SPNet

Figure 6. Visual results of the proposed approach under different model settings.

Method Publication Backbone Test mIoU

SAC [63] ICCV’17 ResNet-101 78.1%

DUC-HDC [50] WACV’18 ResNet-101 80.1%

DSSPN [30] CVPR’18 ResNet-101 77.8%

DepthSeg [24] CVPR’18 ResNet-101 78.2%

DFN [56] CVPR’18 ResNet-101 79.3%

DenseASPP [54] CVPR’18 DenseNet-161 80.6%

BiSeNet [55] ECCV’18 ResNet-101 78.9%

PSANet [66] ECCV’18 ResNet-101 80.1%

DANet [16] CVPR’19 ResNet-101 81.5%

SPGNet [9] ICCV’19 ResNet-101 81.1%

APNB [69] ICCV’19 ResNet-101 81.3%

CCNet [23] ICCV’19 ResNet-101 81.4%

SPNet (Ours) - ResNet-101 82.0%

Table 6. Comparisons with the state-of-the-arts on the Cityscapes

test set [11].

4.4. Pascal Context

Pascal Context dataset [40] has 59 categories and 10,103

images with dense label annotations, which are divided to

4,998 images for training and 5,015 for testing. Quantita-

tive results can be found in Table 7. As can be seen, our

approach works much better than other methods.

5. Conclusions

In this paper, we present a new type of spatial pooling

operation, strip pooling. Its long but narrow pooling win-

dow allows the model to collect rich global contextual infor-

mation that is essential for scene parsing networks. Based

Method Publication Backbone mIoU (%)

CRF-RNN [67] ICCV’15 VGGNet 39.3

BoxSup [12] ICCV’15 VGGNet 40.5

Piecewise [33] CVPR’16 VGGNet 43.3

DeepLab-v2 [5] PAMI’17 ResNet-101 45.7

RefineNet [32] CVPR’17 ResNet-152 47.3

CCL [60] CVPR’18 ResNet-101 51.6

EncNet [60] CVPR’18 ResNet-101 52.6

DANet [16] CVPR’19 ResNet-101 52.6

SVCNet [14] CVPR’19 ResNet-101 53.2

EMANet [29] ICCV’19 ResNet-101 53.1

APNB [69] ICCV’19 ResNet-101 52.8

BFP [13] ICCV’19 ResNet-101 53.6

SPNet (Ours) - ResNet-101 54.5

Table 7. Comparisons with the state-of-the-arts on the Pascal Con-

text dataset [40].

on both strip and spatial pooling operations, we design a

novel strip pooling module to increase the receptive fields of

the backbone network and present a mixed pooling module

based on the classic residual block with bottleneck struc-

ture. Experiments on several widely-used datasets demon-

strate the effectiveness of the proposed approach.
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