# Strip Pooling: Rethinking spatial pooling for scene parsing (CVPR 2020) import torch from torch import nn import torch.nn.functional as F class StripPooling(nn.Module): """ Reference: """ def __init__(self, in_channels, pool_size, norm_layer, up_kwargs): super(StripPooling, self).__init__() self.pool1 = nn.AdaptiveAvgPool2d(pool_size[0]) self.pool2 = nn.AdaptiveAvgPool2d(pool_size[1]) self.pool3 = nn.AdaptiveAvgPool2d((1, None)) self.pool4 = nn.AdaptiveAvgPool2d((None, 1)) inter_channels = int(in_channels / 4) self.conv1_1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv1_2 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv2_0 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels)) self.conv2_1 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels)) self.conv2_2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels)) self.conv2_3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False), norm_layer(inter_channels)) self.conv2_4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False), norm_layer(inter_channels)) self.conv2_5 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv2_6 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.conv3 = nn.Sequential(nn.Conv2d(inter_channels * 2, in_channels, 1, bias=False), norm_layer(in_channels)) # bilinear interpolate options self._up_kwargs = up_kwargs def forward(self, x): _, _, h, w = x.size() x1 = self.conv1_1(x) x2 = self.conv1_2(x) x2_1 = self.conv2_0(x1) x2_2 = F.interpolate(self.conv2_1(self.pool1(x1)), (h, w), **self._up_kwargs) x2_3 = F.interpolate(self.conv2_2(self.pool2(x1)), (h, w), **self._up_kwargs) x2_4 = F.interpolate(self.conv2_3(self.pool3(x2)), (h, w), **self._up_kwargs) x2_5 = F.interpolate(self.conv2_4(self.pool4(x2)), (h, w), **self._up_kwargs) x1 = self.conv2_5(F.relu_(x2_1 + x2_2 + x2_3)) x2 = self.conv2_6(F.relu_(x2_5 + x2_4)) out = self.conv3(torch.cat([x1, x2], dim=1)) return F.relu_(x + out) # 输入 N C H W, 输出 N C H W if __name__ == '__main__': block = StripPooling( 64, (20, 12), nn.BatchNorm2d, {'mode': 'bilinear', 'align_corners': True}) input = torch.rand(4, 64, 64, 64) output = block(input) print(input.size(), output.size())