import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset, random_split import os import numpy as np import matplotlib.pyplot as plt import cv2 def load_data(pix, use_type='train'): datasets = list() file_list = [x for x in os.listdir(f"./out_mat/{pix}/{use_type}/") if x.endswith('.npy')][:3000] for file in file_list: file_img = np.load(f"./out_mat/{pix}/{use_type}/{file}")[:,:,:1] datasets.append(file_img) return np.asarray(datasets) train_set = load_data(96, 'train') val_set = load_data(96, 'valid') test_set = load_data(96, 'test') def load_mask(mask_rate): mask_files = os.listdir(f'./out_mat/96/mask/{mask_rate}') masks = list() for file in mask_files: d = cv2.imread(f'./out_mat/96/mask/{mask_rate}/{file}', cv2.IMREAD_GRAYSCALE) d = (d > 0) * 1 masks.append(d) return np.asarray(masks) masks = load_mask(20) maxs = train_set.max(axis=0) mins = train_set.min(axis=0) len(train_set) norm_train = (train_set - mins) / (maxs-mins) del train_set norm_valid = (val_set - mins) / (maxs-mins) del val_set norm_test = (test_set - mins) / (maxs-mins) del test_set norm_train.shape trans_train = np.transpose(norm_train, (0, 3, 1, 2)) trans_val = np.transpose(norm_valid, (0, 3, 1, 2)) trans_test = np.transpose(norm_test, (0, 3, 1, 2)) # 可视化特定特征的函数 def visualize_feature(input_feature,masked_feature, output_feature, title): plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1) plt.imshow(input_feature[0].cpu().numpy()) plt.title(title + " Input") plt.subplot(1, 3, 2) plt.imshow(masked_feature[0].cpu().numpy()) plt.title(title + " Masked") plt.subplot(1, 3, 3) plt.imshow(output_feature[0].detach().cpu().numpy()) plt.title(title + " Recovery") plt.show() # 设置随机种子以确保结果的可重复性 torch.manual_seed(0) np.random.seed(0) # 数据准备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) # 将numpy数组转换为PyTorch张量 tensor_train = torch.tensor(trans_train.astype(np.float32), device=device) tensor_valid = torch.tensor(trans_val.astype(np.float32), device=device) tensor_test = torch.tensor(trans_test.astype(np.float32), device=device) # 创建一个数据集和数据加载器 train_set = TensorDataset(tensor_train, tensor_train) # 输出和标签相同,因为我们是自编码器 val_set = TensorDataset(tensor_valid, tensor_valid) test_set = TensorDataset(tensor_test, tensor_test) batch_size = 64 train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False) def mask_data(data, device, masks): mask_inds = np.random.choice(masks.shape[0], data.shape[0]) mask = torch.from_numpy(masks[mask_inds]).to(device) tmp_first_channel = data[:, 0, :, :] * mask masked_data = torch.clone(data) masked_data[:, 0, :, :] = tmp_first_channel return masked_data class SEBlock(nn.Module): def __init__(self, in_channels, reduced_dim): super(SEBlock, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, reduced_dim, kernel_size=1), nn.ReLU(), nn.Conv2d(reduced_dim, in_channels, kernel_size=1), nn.Sigmoid() ) def forward(self, x): return x * self.se(x) class Conv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False): super(Conv, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2) ) class ConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False): super(ConvBNReLU, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2), norm_layer(out_channels), nn.ReLU() ) class SeparableBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableBNReLU, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), norm_layer(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False), nn.ReLU6() ) class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample if in_channels != out_channels or stride != 1: self.downsample = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True) self.drop = nn.Dropout(drop, inplace=True) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class MultiHeadAttentionBlock(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.1): super(MultiHeadAttentionBlock, self).__init__() self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) self.norm = nn.LayerNorm(embed_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): B, C, H, W = x.shape x = x.view(B, C, H * W).permute(2, 0, 1) # (B, C, H, W) -> (HW, B, C) attn_output, _ = self.attention(x, x, x) attn_output = self.norm(attn_output) attn_output = self.dropout(attn_output) attn_output = attn_output.permute(1, 2, 0).view(B, C, H, W) return attn_output class SpatialAttentionBlock(nn.Module): def __init__(self): super(SpatialAttentionBlock, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False) def forward(self, x): #(B, 64, H, W) avg_out = torch.mean(x, dim=1, keepdim=True) #(B, 1, H, W) max_out, _ = torch.max(x, dim=1, keepdim=True)#(B, 1, H, W) out = torch.cat([avg_out, max_out], dim=1)#(B, 2, H, W) out = torch.sigmoid(self.conv(out))#(B, 1, H, W) return x * out #(B, C, H, W) class DecoderAttentionBlock(nn.Module): def __init__(self, in_channels): super(DecoderAttentionBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1) self.conv2 = nn.Conv2d(in_channels // 2, in_channels, kernel_size=1) self.spatial_attention = SpatialAttentionBlock() def forward(self, x): # 通道注意力 b, c, h, w = x.size() avg_pool = F.adaptive_avg_pool2d(x, 1) max_pool = F.adaptive_max_pool2d(x, 1) avg_out = self.conv1(avg_pool) max_out = self.conv1(max_pool) out = avg_out + max_out out = torch.sigmoid(self.conv2(out)) # 添加空间注意力 out = x * out out = self.spatial_attention(out) return out class MaskedAutoencoder(nn.Module): def __init__(self): super(MaskedAutoencoder, self).__init__() self.encoder = nn.Sequential( Conv(1, 32, kernel_size=3, stride=2), nn.ReLU(), SEBlock(32,32), ConvBNReLU(32, 64, kernel_size=3, stride=2), ResidualBlock(64,64), SeparableBNReLU(64, 128, kernel_size=3, stride=2), MultiHeadAttentionBlock(embed_dim=128, num_heads=4), SEBlock(128, 128) ) self.mlp = Mlp(in_features=128, hidden_features=256, out_features=128, act_layer=nn.ReLU6, drop=0.1) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(32), nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(16), nn.ReLU(), nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1), # 修改为 output_padding=1 nn.Sigmoid() ) def forward(self, x): encoded = self.encoder(x) print("Encoded size:", encoded.size()) decoded = self.decoder(encoded) print("Encoded size:", decoded.size()) return decoded # 实例化模型、损失函数和优化器 model = MaskedAutoencoder() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练函数 def train_epoch(model, device, data_loader, criterion, optimizer): model.train() running_loss = 0.0 for batch_idx, (data, _) in enumerate(data_loader): masked_data = mask_data(data, device, masks) optimizer.zero_grad() reconstructed = model(masked_data) loss = criterion(reconstructed, data) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / (batch_idx + 1) # 评估函数 def evaluate(model, device, data_loader, criterion): model.eval() running_loss = 0.0 with torch.no_grad(): for batch_idx, (data, _) in enumerate(data_loader): data = data.to(device) masked_data = mask_data(data, device, masks) reconstructed = model(masked_data) if batch_idx == 8: rand_ind = np.random.randint(0, len(data)) visualize_feature(data[rand_ind], masked_data[rand_ind], reconstructed[rand_ind], title='NO_2') loss = criterion(reconstructed, data) running_loss += loss.item() return running_loss / (batch_idx + 1) # 测试函数 def test(model, device, data_loader): model.eval() with torch.no_grad(): for batch_idx, (data, _) in enumerate(data_loader): data = data.to(device) masked_data = mask_data(data, device, masks) masked_ind = np.argwhere(masked_data[0][0]==0) reconstructed = model(masked_data) recon_no2 = reconstructed[0][0] ori_no2 = data[0][0] return model = model.to(device) num_epochs = 100 train_losses = list() val_losses = list() for epoch in range(num_epochs): train_loss = train_epoch(model, device, train_loader, criterion, optimizer) train_losses.append(train_loss) val_loss = evaluate(model, device, val_loader, criterion) val_losses.append(val_loss) print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}') # 测试模型 test_loss = evaluate(model, device, test_loader, criterion) print(f'Test Loss: {test_loss}')