from model.mlp.repmlp import RepMLP import torch from torch import nn N=4 #batch size C=512 #input dim O=1024 #output dim H=14 #image height W=14 #image width h=7 #patch height w=7 #patch width fc1_fc2_reduction=1 #reduction ratio fc3_groups=8 # groups repconv_kernels=[1,3,5,7] #kernel list repmlp=RepMLP(C,O,H,W,h,w,fc1_fc2_reduction,fc3_groups,repconv_kernels=repconv_kernels) x=torch.randn(N,C,H,W) repmlp.eval() for module in repmlp.modules(): if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d): nn.init.uniform_(module.running_mean, 0, 0.1) nn.init.uniform_(module.running_var, 0, 0.1) nn.init.uniform_(module.weight, 0, 0.1) nn.init.uniform_(module.bias, 0, 0.1) #training result out=repmlp(x) #inference result repmlp.switch_to_deploy() deployout = repmlp(x) print(((deployout-out)**2).sum())