import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from timm.models.layers import DropPath, to_2tuple, trunc_normal_ import timm import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from torch.nn.init import trunc_normal_ class ConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False): super(ConvBNReLU, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2), norm_layer(out_channels), nn.ReLU6() ) class ConvBN(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False): super(ConvBN, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2), norm_layer(out_channels) ) class Conv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False): super(Conv, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2) ) class SelfAttention(nn.Module): def __init__(self, dim, num_heads): super(SelfAttention, self).__init__() self.num_heads = num_heads head_dim = dim // self.num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, 3 * dim) self.o_proj = nn.Linear(dim, dim) def forward(self, x): B, C, H, W = x.shape qkv = self.qkv(x).view(B, -1, self.num_heads, 3, H * W).permute(3, 0, 2, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] dots = torch.matmul(q.transpose(-2, -1), k) * self.scale attn = dots.softmax(dim=-1) out = torch.matmul(attn, v).transpose(1, 2).reshape(B, C, H, W) return self.o_proj(out) class SeparableConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableConvBNReLU, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), norm_layer(out_channels), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), nn.ReLU6() ) class SeparableConvBN(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableConvBN, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), norm_layer(out_channels), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) ) class SeparableConv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1): super(SeparableConv, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) ) class SEBlock(nn.Module): def __init__(self, in_channels, reduction=16): super(SEBlock, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(in_channels, in_channels // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(in_channels // reduction, in_channels, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) class ImprovedLocalAttention(nn.Module): def __init__(self, dim): super(ImprovedLocalAttention, self).__init__() self.conv1x1 = nn.Conv2d(dim, dim, kernel_size=1, bias=False) self.conv3x3 = nn.Conv2d(dim, dim, kernel_size=3, padding=1, bias=False) self.conv5x5 = nn.Conv2d(dim, dim, kernel_size=5, padding=2, bias=False) self.bn = nn.BatchNorm2d(dim) self.se = SEBlock(dim) def forward(self, x): # Applying different convolutions and combining results out1 = self.conv1x1(x) out2 = self.conv3x3(x) out3 = self.conv5x5(x) out = out1 + out2 + out3 out = self.bn(out) out = self.se(out) out = out + out1 + out3 return out class AgentAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., agent_num=49, window=14, **kwargs): super().__init__() self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) self.agent_num = agent_num self.window = window self.dwc = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=(3, 3), padding=1, groups=dim) self.an_bias = nn.Parameter(torch.zeros(num_heads, agent_num, 7, 7)) self.na_bias = nn.Parameter(torch.zeros(num_heads, agent_num, 7, 7)) self.ah_bias = nn.Parameter(torch.zeros(1, num_heads, agent_num, window, 1)) self.aw_bias = nn.Parameter(torch.zeros(1, num_heads, agent_num, 1, window)) self.ha_bias = nn.Parameter(torch.zeros(1, num_heads, window, 1, agent_num)) self.wa_bias = nn.Parameter(torch.zeros(1, num_heads, 1, window, agent_num)) self.ac_bias = nn.Parameter(torch.zeros(1, num_heads, agent_num, 1)) self.ca_bias = nn.Parameter(torch.zeros(1, num_heads, 1, agent_num)) trunc_normal_(self.an_bias, std=.02) trunc_normal_(self.na_bias, std=.02) trunc_normal_(self.ah_bias, std=.02) trunc_normal_(self.aw_bias, std=.02) trunc_normal_(self.ha_bias, std=.02) trunc_normal_(self.wa_bias, std=.02) trunc_normal_(self.ac_bias, std=.02) trunc_normal_(self.ca_bias, std=.02) pool_size = int(agent_num ** 0.5) self.pool = nn.AdaptiveAvgPool2d(output_size=(pool_size, pool_size)) def forward(self, x): b, n, c = x.shape h = int(n ** 0.5) w = int(n ** 0.5) if h * w != n: raise ValueError("Input feature map size must be a square.") num_heads = self.num_heads head_dim = c // num_heads qkv = self.qkv(x).reshape(b, n, 3, c).permute(2, 0, 1, 3) q, k, v = qkv[0], qkv[1], qkv[2] agent_tokens = self.pool(q.reshape(b, h, w, c).permute(0, 3, 1, 2)).reshape(b, c, -1).permute(0, 2, 1) q = q.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3) k = k.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3) v = v.reshape(b, n, num_heads, head_dim).permute(0, 2, 1, 3) agent_tokens = agent_tokens.reshape(b, self.agent_num, num_heads, head_dim).permute(0, 2, 1, 3) # Adjust position_bias shape to match the shape of (agent_tokens * self.scale) @ k.transpose(-2, -1) position_bias1 = nn.functional.interpolate(self.an_bias, size=(self.window, self.window), mode='bilinear') position_bias1 = position_bias1.reshape(1, num_heads, self.agent_num, -1).repeat(b, 1, 1, 1) position_bias2 = (self.ah_bias + self.aw_bias).reshape(1, num_heads, self.agent_num, -1).repeat(b, 1, 1, 1) position_bias = position_bias1 + position_bias2 position_bias = torch.cat([self.ac_bias.repeat(b, 1, 1, 1), position_bias], dim=-1) k_transposed = k.transpose(-2, -1) k_transposed = k_transposed.reshape(b, num_heads, n, head_dim) # Ensure shape compatibility agent_attn = self.softmax((agent_tokens * self.scale) @ k_transposed + position_bias) agent_attn = self.attn_drop(agent_attn) agent_v = agent_attn @ v agent_bias1 = nn.functional.interpolate(self.na_bias, size=(self.window, self.window), mode='bilinear') agent_bias1 = agent_bias1.reshape(1, num_heads, self.agent_num, -1).permute(0, 1, 3, 2).repeat(b, 1, 1, 1) agent_bias2 = (self.ha_bias + self.wa_bias).reshape(1, num_heads, -1, self.agent_num).repeat(b, 1, 1, 1) agent_bias = agent_bias1 + agent_bias2 agent_bias = torch.cat([self.ca_bias.repeat(b, 1, 1, 1), agent_bias], dim=-2) agent_tokens_transposed = agent_tokens.transpose(-2, -1) agent_tokens_transposed = agent_tokens_transposed.reshape(b, num_heads, head_dim, self.agent_num) # Ensure shape compatibility q_attn = self.softmax((q * self.scale) @ agent_tokens_transposed + agent_bias) q_attn = self.attn_drop(q_attn) x = q_attn @ agent_v x = x.transpose(1, 2).reshape(b, n, c) v_ = v[:, :, 1:, :].transpose(1, 2).reshape(b, h, w, c).permute(0, 3, 1, 2) x[:, 1:, :] = x[:, 1:, :] + self.dwc(v_).permute(0, 2, 3, 1).reshape(b, n - 1, c) x = self.proj(x) x = self.proj_drop(x) return x class GlobalLocalAttention(nn.Module): def __init__(self, dim=256, num_heads=16, qkv_bias=False, window_size=8, relative_pos_embedding=True, agent_num=49, window=14): super(GlobalLocalAttention, self).__init__() self.local1 = ImprovedLocalAttention(dim) self.global_attention = AgentAttention(dim, num_heads, qkv_bias, window_size=window_size, agent_num=agent_num, window=window) def forward(self, x): B, C, H, W = x.shape x_flat = x.view(B, H * W, C) # reshape to (B, N, C) local = self.local1(x) global_attn = self.global_attention(x_flat) global_attn = global_attn.view(B, H, W, C).permute(0, 3, 1, 2) # reshape back to (B, C, H, W) return local + global_attn # Testing the model with a random tensor gl_attention = GlobalLocalAttention(dim=256, num_heads=16, qkv_bias=False, window_size=8, relative_pos_embedding=True, agent_num=49, window=14) x = torch.randn(1, 256, 64, 64) output = gl_attention(x) print(output.shape) # Output should be (1, 256, 64, 64)