import argparse import logging import os import random import numpy as np import torch import torch.backends.cudnn as cudnn from networks.vision_transformer import SwinUnet as ViT_seg from trainer import trainer_synapse from config import get_config parser = argparse.ArgumentParser() parser.add_argument('--root_path', type=str, default='../data/Synapse/train_npz', help='root dir for data') parser.add_argument('--dataset', type=str, default='Synapse', help='experiment_name') parser.add_argument('--list_dir', type=str, default='./lists/lists_Synapse', help='list dir') parser.add_argument('--num_classes', type=int, default=9, help='output channel of network') parser.add_argument('--output_dir', type=str, help='output dir') parser.add_argument('--max_iterations', type=int, default=30000, help='maximum epoch number to train') parser.add_argument('--max_epochs', type=int, default=150, help='maximum epoch number to train') parser.add_argument('--batch_size', type=int, default=24, help='batch_size per gpu') parser.add_argument('--n_gpu', type=int, default=1, help='total gpu') parser.add_argument('--deterministic', type=int, default=1, help='whether use deterministic training') parser.add_argument('--base_lr', type=float, default=0.01, help='segmentation network learning rate') parser.add_argument('--img_size', type=int, default=224, help='input patch size of network input') parser.add_argument('--seed', type=int, default=1234, help='random seed') parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', ) parser.add_argument( "--opts", help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+', ) parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], help='no: no cache, ' 'full: cache all data, ' 'part: sharding the dataset into nonoverlapping pieces and only cache one piece') parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') args = parser.parse_args() if args.dataset == "Synapse": args.root_path = os.path.join(args.root_path, "train_npz") config = get_config(args) if __name__ == "__main__": if not args.deterministic: cudnn.benchmark = True cudnn.deterministic = False else: cudnn.benchmark = False cudnn.deterministic = True random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) dataset_name = args.dataset dataset_config = { 'Synapse': { 'root_path': args.root_path, 'list_dir': './lists/lists_Synapse', 'num_classes': 9, }, } if args.batch_size != 24 and args.batch_size % 6 == 0: args.base_lr *= args.batch_size / 24 args.num_classes = dataset_config[dataset_name]['num_classes'] args.root_path = dataset_config[dataset_name]['root_path'] args.list_dir = dataset_config[dataset_name]['list_dir'] if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) net = ViT_seg(config, img_size=args.img_size, num_classes=args.num_classes).cuda() net.load_from(config) trainer = {'Synapse': trainer_synapse,} trainer[dataset_name](args, net, args.output_dir)