import numpy as np import torch from torch import nn from torch.nn import init class EMSA(nn.Module): def __init__(self, d_model, d_k, d_v, h, dropout=.1, H=7, W=7, ratio=3, apply_transform=True): super(EMSA, self).__init__() self.H = H self.W = W self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.ratio = ratio if (self.ratio > 1): self.sr = nn.Sequential() self.sr_conv = nn.Conv2d(d_model, d_model, kernel_size=ratio + 1, stride=ratio, padding=ratio // 2, groups=d_model) self.sr_ln = nn.LayerNorm(d_model) self.apply_transform = apply_transform and h > 1 if (self.apply_transform): self.transform = nn.Sequential() self.transform.add_module('conv', nn.Conv2d(h, h, kernel_size=1, stride=1)) self.transform.add_module('softmax', nn.Softmax(-1)) self.transform.add_module('in', nn.InstanceNorm2d(h)) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): b_s, nq, c = queries.shape nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k) if (self.ratio > 1): x = queries.permute(0, 2, 1).view(b_s, c, self.H, self.W) # bs,c,H,W x = self.sr_conv(x) # bs,c,h,w x = x.contiguous().view(b_s, c, -1).permute(0, 2, 1) # bs,n',c x = self.sr_ln(x) k = self.fc_k(x).view(b_s, -1, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, n') v = self.fc_v(x).view(b_s, -1, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, n', d_v) else: k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v) if (self.apply_transform): att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n') att = self.transform(att) # (b_s, h, nq, n') else: att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, n') att = torch.softmax(att, -1) # (b_s, h, nq, n') if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v) out = self.fc_o(out) # (b_s, nq, d_model) return out if __name__ == '__main__': block = EMSA(d_model=512, d_k=512, d_v=512, h=8, H=8, W=8, ratio=2, apply_transform=True).cuda() input = torch.rand(64, 64, 512).cuda() output = block(input, input, input) print(input.size(), output.size())