import numpy as np import torch from torch import nn from torch.nn import init class Depth_Pointwise_Conv1d(nn.Module): def __init__(self, in_ch, out_ch, k): super().__init__() if (k == 1): self.depth_conv = nn.Identity() else: self.depth_conv = nn.Conv1d( in_channels=in_ch, out_channels=in_ch, kernel_size=k, groups=in_ch, padding=k // 2 ) self.pointwise_conv = nn.Conv1d( in_channels=in_ch, out_channels=out_ch, kernel_size=1, groups=1 ) def forward(self, x): out = self.pointwise_conv(self.depth_conv(x)) return out class MUSEAttention(nn.Module): def __init__(self, d_model, d_k, d_v, h, dropout=.1): super(MUSEAttention, self).__init__() self.fc_q = nn.Linear(d_model, h * d_k) self.fc_k = nn.Linear(d_model, h * d_k) self.fc_v = nn.Linear(d_model, h * d_v) self.fc_o = nn.Linear(h * d_v, d_model) self.dropout = nn.Dropout(dropout) self.conv1 = Depth_Pointwise_Conv1d(h * d_v, d_model, 1) self.conv3 = Depth_Pointwise_Conv1d(h * d_v, d_model, 3) self.conv5 = Depth_Pointwise_Conv1d(h * d_v, d_model, 5) self.dy_paras = nn.Parameter(torch.ones(3)) self.softmax = nn.Softmax(-1) self.d_model = d_model self.d_k = d_k self.d_v = d_v self.h = h self.init_weights() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, queries, keys, values, attention_mask=None, attention_weights=None): # Self Attention b_s, nq = queries.shape[:2] nk = keys.shape[1] q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k) k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk) v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v) att = torch.matmul(q, k) / np.sqrt(self.d_k) # (b_s, h, nq, nk) if attention_weights is not None: att = att * attention_weights if attention_mask is not None: att = att.masked_fill(attention_mask, -np.inf) att = torch.softmax(att, -1) att = self.dropout(att) out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v) # (b_s, nq, h*d_v) out = self.fc_o(out) # (b_s, nq, d_model) v2 = v.permute(0, 1, 3, 2).contiguous().view(b_s, -1, nk) # bs,dim,n self.dy_paras = nn.Parameter(self.softmax(self.dy_paras)) out2 = self.dy_paras[0] * self.conv1(v2) + self.dy_paras[1] * self.conv3(v2) + self.dy_paras[2] * self.conv5(v2) out2 = out2.permute(0, 2, 1) # bs.n.dim out = out + out2 return out if __name__ == '__main__': block = MUSEAttention(d_model=512, d_k=512, d_v=512, h=8).cuda() input = torch.rand(64, 64, 512).cuda() output = block(input, input, input) print(input.size(), output.size())