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Abstract. While image classification models have recently continued
to advance, most downstream applications such as object detection and
semantic segmentation still employ ResNet variants as the backbone net-
work due to their simple and modular structure. We present a modular
Split-Attention block that enables attention across feature-map groups.
By stacking these Split-Attention blocks ResNet-style, we obtain a new
ResNet variant which we call ResNeSt. Our network preserves the over-
all ResNet structure to be used in downstream tasks straightforwardly
without introducing additional computational costs.
ResNeSt models outperform other networks with similar model com-
plexities. For example, ResNeSt-50 achieves 81.13% top-1 accuracy on
ImageNet using a single crop-size of 224 × 224, outperforming previ-
ous best ResNet variant by more than 1% accuracy. This improvement
also helps downstream tasks including object detection, instance segmen-
tation and semantic segmentation. For example, by simply replace the
ResNet-50 backbone with ResNeSt-50, we improve the mAP of Faster-
RCNN on MS-COCO from 39.3% to 42.3% and the mIoU for DeeplabV3
on ADE20K from 42.1% to 45.1%1.

Keywords: ResNeSt, Image Classification, Transfer Learning, Object
Detection, Semantic Segmentation, Instance Segmentation

1 Introduction

Image classification is a fundamental task in computer vision research. Networks
trained for image classification often serve as the backbone of the neural net-
works designed for other applications, such as object detection [22,46], semantic
segmentation [6, 43, 73] and pose estimation [14, 58]. Recent work has signifi-
cantly boosted image classification accuracy through large scale neural archi-
tecture search (NAS) [45, 55]. Despite their state-of-the-art performance, these
NAS-derived models are usually not optimized for training efficiency or mem-
ory usage on general/commercial processing hardware (CPU/GPU) [36]. Due to
excessive memory consumption, some of the larger versions of these models are

?
Work done during an internship at Amazon.

1
The source code is available at https://github.com/zhanghang1989/ResNeSt.

ar
X

iv
:s

ub
m

it/
31

29
19

4 
 [

cs
.C

V
] 

 1
9 

A
pr

 2
02

0

https://github.com/zhanghang1989/ResNeSt


2 Hang Zhang et al.

0 5 10 15 20 25 30
80

81

82

83

84

50

101

200

269

b2

b3

b4

b5
b6

b7

ResNeXt-64x4d

SENet-154

avg latency (ms)

ac
c

%

ResNeSt
EfficientNet
ResNeXt
SENet

Crop #P Acc%
ResNeSt-50 (ours) 224 27.5M 81.1
ResNeSt-101 (ours) 256 48.3M 82.8
ResNeSt-200 (ours) 320 70.2M 83.9
ResNeSt-269 (ours) 416 111M 84.5

Backbone #Params Score%

FasterRCNN [46]
ResNet-50 [57] 34.9M 39.25

ResNeSt-50 (ours) 36.8M 42.33

DeeplabV3 [7]
ResNet-50 [57] 42.2M 42.10

ResNeSt-50 (ours) 44.0M 45.12

Table 1: (Left) Accuracy and latency trade-off on GPU using official code im-
plementation (details in Section 5). (Right-Top) Top-1 accuracy on ImageNet
using ResNeSt. (Right-Bottom) Transfer learning results: object detection mAP
on MS-COCO [42] and semantic segmentation mIoU on ADE20K [71].

not even trainable on a GPU with an appropriate per-device batch-size2 [55].
This has limited the adoption of NAS-derived models for other applications,
especially tasks involving dense predictions such as segmentation.

Most recent work on downstream applications still uses the ResNet [23] or
one of its variants as the backbone CNN. Its simple and modular design can be
easily adapted to various tasks. However, since ResNet models are originally de-
signed for image classification, they may not be suitable for various downstream
applications because of the limited receptive-field size and lack of cross-channel
interaction. This means that boosting performance on a given computer vision
task requires “network surgery” to modify the ResNet to be more effective for
that particular task. For example, some methods add a pyramid module [8, 69]
or introduce long-range connections [56] or use cross-channel feature-map at-
tention [15, 65]. While these approaches do improve the transfer learning per-
formance for certain tasks, they raise the question: Can we create a versatile
backbone with universally improved feature representations, thereby improving
performance across multiple tasks at the same time? Cross-channel information
has demonstrated success in downstream applications [56, 64, 65], while recent
image classification networks have focused more on group or depth-wise convo-
lution [27, 28, 54, 60]. Despite their superior computation and accuracy trade-
off in classification tasks, these models do not transfer well to other tasks as
their isolated representations cannot capture cross-channel relationships [27,28].
Therefore, a network with cross-channel representations is desirable.

As the first contribution of this paper, we explore a simple architectural
modification of the ResNet [23], incorporating feature-map split attention within
the individual network blocks. More specifically, each of our blocks divides the
feature-map into several groups (along the channel dimension) and finer-grained
subgroups or splits, where the feature representation of each group is determined
via a weighted combination of the representations of its splits (with weights cho-

2
Note that the performance of batch normalization degrades for small batch-sizes as feature statis-
tics can no longer be estimated reliably.
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sen based on global contextual information). We refer to the resulting unit as
a Split-Attention block, which remains simple and modular. By stacking sev-
eral Split-Attention blocks, we create a ResNet-like network called ResNeSt (S
stands for “split”). Our architecture requires no more computation than existing
ResNet-variants, and is easy to be adopted as a backbone for other vision tasks.

The second contributions of this paper are large scale benchmarks on image
classification and transfer learning applications. We find that models utilizing a
ResNeSt backbone are able to achieve state of the art performance on several
tasks, namely: image classification, object detection, instance segmentation and
semantic segmentation. The proposed ResNeSt outperforms all existing ResNet
variants and has the same computational efficiency and even achieves better
speed-accuracy trade-offs than state-of-the-art CNN models produced via neural
architecture search [55] as shown in Table 1. Our single Cascade-RCNN [3] model
using a ResNeSt-101 backbone achieves 48.3% box mAP and 41.56% mask mAP
on MS-COCO instance segmentation. Our single DeepLabV3 [7] model, again
using a ResNeSt-101 backbone, achieves mIoU of 46.9% on the ADE20K scene
parsing validation set, which surpasses the previous best result by more than 1%
mIoU. Additional results can be found in Sections 5 and 6.

2 Related Work

Modern CNN Architectures. Since AlexNet [34], deep convolutional neural
networks [35] have dominated image classification. With this trend, research has
shifted from engineering handcrafted features to engineering network architec-
tures. NIN [40] first uses a global average pooling layer to replace the heavy
fully connected layers, and adopts 1× 1 convolutional layers to learn non-linear
combination of the featuremap channels, which is the first kind of featuremap
attention mechanism. VGG-Net [47] proposes a modular network design strat-
egy, stacking the same type of network blocks repeatedly, which simplifies the
workflow of network design and transfer learning for downstream applications.
Highway network [50] introduces highway connections which makes the infor-
mation flow across several layers without attenuation and helps the network
convergence. Built on the success of the pioneering work, ResNet [23] introduces
an identity skip connection which alleviates the difficulty of vanishing gradient
in deep neural network and allows network learning deeper feature representa-
tions. ResNet has become one of the most successful CNN architectures which
has been adopted in various computer vision applications.

Multi-path and Feature-map Attention. Multi-path representation has
shown success in GoogleNet [52], in which each network block consists of dif-
ferent convolutional kernels. ResNeXt [61] adopts group convolution [34] in the
ResNet bottle block, which converts the multi-path structure into a unified op-
eration. SE-Net [29] introduces a channel-attention mechanism by adaptively
recalibrating the channel feature responses. SK-Net [38] brings the feature-map
attention across two network branches. Inspired by the previous methods, our
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Fig. 1: Comparing our ResNeSt block with SE-Net [30] and SK-Net [38]. A de-
tailed view of Split-Attention unit is shown in Figure 2. For simplicity, we show
ResNeSt block in cardinality-major view (the featuremap groups with same car-
dinal group index reside next to each other). We use radix-major in the real
implementation, which can be modularized and accelerated by group convolu-
tion and standard CNN layers (see supplementary material).

network generalizes the channel-wise attention into feature-map group represen-
tation, which can be modularized and accelerated using unified CNN operators.

Neural Architecture Search. With increasing computational power, inter-
est has begun shifting from manually designed architectures to systematically
searched architectures which are adaptively tailored to a particular task. Recent
neural architecture search algorithms have adaptively produced CNN architec-
tures that achieved state-of-the-art classification performance, such as: Amoe-
baNet [45], MNASNet [54], and EfficientNet [55]. Despite their great success in
image classification, the meta network structures are distinct from each other,
which makes it hard for downstream models to build upon. Instead, our model
preserves ResNet meta structure, which can be directly applied on many ex-
isting downstream models [22, 41, 46, 69]. Our approach can also augment the
search spaces for neural architecture search and potentially improve the overall
performance, which can be studied in the future work.

3 Split-Attention Networks

We now introduce the Split-Attention block, which enables feature-map atten-
tion across different feature-map groups. Later, we describe our network instan-
tiation and how to accelerate this architecture via standard CNN operators.
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3.1 Split-Attention Block

Our Split-Attention block is a computational unit, consisting feature-map group
and split attention operations. Figure 1 (Right) depicts an overview of a Split-
Attention Block.
Feature-map Group. As in ResNeXt blocks [61], the feature can be divided
into several groups, and the number of feature-map groups is given by a car-
dinality hyperparameter K. We refer to the resulting feature-map groups as
cardinal groups. We introduce a new radix hyperparameter R that indicates
the number of splits within a cardinal group, so the total number of feature
groups is G = KR. We may apply a series of transformations {F1,F2, ...FG}
to each individual group, then the intermediate representation of each group is
Ui = Fi(X), for i ∈ {1, 2, ...G}.

Input 1 Input r…

+

Input 2

Global pooling

Dense c’ + BN + ReLU

Dense c Dense c

r-Softmax

x

Dense c 

x x

+

(h, w, c)
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(c, )
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Fig. 2: Split-Attention within a
cardinal group. For easy visu-
alization in the figure, we use
c = C/K in this figure.

Split Attention in Cardinal Groups. Fol-
lowing [30, 38], a combined representation for
each cardinal group can be obtained by fusing
via an element-wise summation across mul-
tiple splits. The representation for k-th car-
dinal group is Ûk =

∑Rk
j=R(k−1)+1 Uj , where

Ûk ∈ RH×W×C/K for k ∈ 1, 2, ...K, and H, W
and C are the block output feature-map sizes.
Global contextual information with embedded
channel-wise statistics can be gathered with
global average pooling across spatial dimen-
sions sk ∈ RC/K [29, 38]. Here the c-th com-
ponent is calculated as:

skc =
1

H ×W

H∑
i=1

W∑
j=1

Ûk
c (i, j). (1)

A weighted fusion of the cardinal group
representation V k ∈ RH×W×C/K is aggre-
gated using channel-wise soft attention, where
each feature-map channel is produced using a weighted combination over splits.
The c-th channel is calculated as:

V k
c =

R∑
i=1

aki (c)UR(k−1)+i, (2)

where aki (c) denotes a (soft) assignment weight given by:

aki (c) =


exp(Gc

i (s
k))∑R

j=0 exp(Gc
j (s

k))
if R > 1,

1
1+exp(−Gc

i (s
k))

if R = 1,
(3)

and mapping Gci determines the weight of each split for the c-th channel based
on the global context representation sk.
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ResNeSt Block. The cardinal group representations are then concatenated
along the channel dimension: V = Concat{V 1, V 2, ...V K}. As in standard resid-
ual blocks, the final output Y of our Split-Attention block is produced using a
shortcut connection: Y = V +X, if the input and output feature-map share the
same shape. For blocks with a stride, an appropriate transformation T is ap-
plied to the shortcut connection to align the output shapes: Y = V +T (X). For
example, T can be strided convolution or combined convolution-with-pooling.

Instantiation, Acceleration, and Computational Costs. Figure 1 (right)
shows an instantiation of our Split-Attention block, in which the group transfor-
mation Fi is a 1×1 convolution followed by a 3×3 convolution, and the attention
weight function G is parameterized using two fully connected layers with ReLU
activation. We draw this figure in a cardinality-major view (the featuremap
groups with same cardinality index reside next to each other) for easily describ-
ing the overall logic. By switching the layout to a radix-major view, this block
can be easily accelerated using standard CNN layers (such as group convolution,
group fully connected layer and softmax operation), which we will describe in
details in the supplementary material. The number of parameters and FLOPS
of a Split-Attention block are roughly the same as a residual block [23,60] with
the same cardinality and number of channels.

Relation to Existing Attention Methods. First introduced in SE-Net [29],
the idea of squeeze-and-attention (called excitation in the original paper) is to
employ a global context to predict channel-wise attention factors. With radix =
1, our Split-Attention block is applying a squeeze-and-attention operation to each
cardinal group, while the SE-Net operates on top of the entire block regardless of
multiple groups. Previous models like SK-Net [38] introduced feature attention
between two network branches, but their operation is not optimized for training
efficiency and scaling to large neural networks. Our method generalizes prior
work on feature-map attention [29,38] within a cardinal group setting [60], and
its implementation remains computationally efficient. Figure 1 shows an overall
comparison with SE-Net and SK-Net blocks.

4 Network and Training

We now describe the network design and training strategies used in our exper-
iments. First, we detail a couple of tweaks that further improve performance,
some of which have been empirically validated in [25].

4.1 Network Tweaks

Average Downsampling. When downstream applications of transfer learning
are dense prediction tasks such as detection or segmentation, it becomes essential
to preserve spatial information. Recent ResNet implementations usually apply
the strided convolution at the 3 × 3 layer instead of the 1 × 1 layer to better
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preserve such information [26,30]. Convolutional layers require handling feature-
map boundaries with zero-padding strategies, which is often suboptimal when
transferring to other dense prediction tasks. Instead of using strided convolution
at the transitioning block (in which the spatial resolution is downsampled), we
use an average pooling layer with a kernel size of 3× 3 .

Tweaks from ResNet-D. We also adopt two simple yet effective ResNet mod-
ifications introduced by [26]: (1) The first 7 × 7 convolutional layer is replaced
with three consecutive 3× 3 convolutional layers, which have the same receptive
field size with a similar computation cost as the original design. (2) A 2 × 2
average pooling layer is added to the shortcut connection prior to the 1 × 1
convolutional layer for the transitioning blocks with stride of two.

4.2 Training Strategy

Large Mini-batch Distributed Training. Following prior work [19,37], we
train our models using 8 servers (64 GPUs in total) in parallel. Our learning
rates are adjusted according to a cosine schedule [26,31]. We follow the common
practice using linearly scaling-up the initial learning rate based on the mini-
batch size. The initial learning rate is given by η = B

256ηbase, where B is the
mini-batch size and we use ηbase = 0.1 as the base learning rate. This warm-up
strategy is applied over the first 5 epochs, gradually increasing the learning rate
linearly from 0 to the initial value for the cosine schedule [19, 39]. The batch
normalization (BN) parameter γ is initialized to zero in the final BN operation
of each block, as has been suggested for large batch training [19].

Label Smoothing Label smoothing was first used to improve the training
of Inception-V2 [53]. Recall the cross entropy loss incurred by our network’s
predicted class probabilities q is computed against ground-truth p as:

`(p, q) = −
K∑
i=1

pi log qi, (4)

where K is total number of classes, pi is the ground truth probability of the
i-th class, and qi is the network’s predicted probability for the i-th class. As

in standard image classification, we define: qi = exp(zi)∑K
j=1 exp(zj)

where zi are the

logits produced by our network’s ouput layer. When the provided labels are
classes rather than class-probabilities (hard labels), pi = 1 if i equals the ground
truth class c, and is otherwise = 0. Thus in this setting: `hard(p, q) = − log qc =

−zc + log(
∑K

j=1 exp(zj)). During the final phase of training, the logits zj tend
to be very small for j 6= c, while zc is being pushed to its optimal value ∞, and
this can induce overfitting [26,53]. Rather than assigning hard labels as targets,
label smoothing uses a smoothed ground truth probability:

pi =

{
1− ε if i = c,

ε/(K − 1) otherwise
(5)

with small constant ε > 0. This mitigates network overconfidence and overfitting.
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Auto Augmentation. Auto-Augment [11] is a strategy that augments the
training data with transformed images, where the transformations are learned
adaptively. 16 different types of image jittering transformations are introduced,
and from these, one augments the data based on 24 different combinations of two
consecutive transformations such as shift, rotation, and color jittering. The mag-
nitude of each transformation can be controlled with a relative parameter (e.g.
rotation angle), and transformations may be probabilistically skipped. A search
which tries various candidate augmentation policies returns the best 24 best
combinations. One of these 24 policies is then randomly chosen and applied to
each sample image during training. The original Auto-Augment implementation
uses reinforcement learning to search over these hyperparameters, treating them
as categorical values in a discrete search space. For continuous search spaces, it
first discretizes the possible values before searching for the best.

Mixup Training. Mixup is another data augmentation strategy that gener-
ates a weighted combinations of random image pairs from the training data [67].
Given two images and their ground truth labels: (x(i), y(i)), (x(j), y(j)), a syn-
thetic training example (x̂, ŷ) is generated as:

x̂ = λxi + (1− λ)xj , (6)

ŷ = λyi + (1− λ)yj , (7)

where λ ∼ Beta(α = 0.2) is independently sampled for each augmented example.

Large Crop Size. Image classification research typically compares the perfor-
mance of different networks operating on images that share the same crop size.
ResNet variants [23,26,29,60] usually use a fixed training crop size of 224, while
the Inception-Net family [51–53] uses a training crop size of 299. Recently, the
EfficientNet method [55] has demonstrated that increasing the input image size
for a deeper and wider network may better trade off accuracy vs. FLOPS. For
fair comparison, we use a crop size of 224 when comparing our ResNeSt with
ResNet variants, and a crop size of 256 when comparing with other approaches.

Regularization. Very deep neural networks tend to overfit even for large
datasets [68]. To prevent this, dropout regularization randomly masks out some
neurons during training (but not during inference) to form an implicit network
ensemble [29, 49, 68]. A dropout layer with the dropout probability of 0.2 is
applied before the final fully-connected layer to the networks with more than
200 layers. We also apply DropBlock layers to the convolutional layers at the
last two stages of the network. As a structured variant of dropout, DropBlock [18]
randomly masks out local block regions, and is more effective than dropout for
specifically regularizing convolutional layers.

Finally, we also apply weight decay (i.e. L2 regularization) which additionally
helps stabilize training. Prior work on large mini-batch training suggests weight
decay should only be applied to the weights of convolutional and fully connected
layers [19,26]. We do not subject any of the other network parameters to weight
decay, including bias units, γ and β in the batch normalization layers.
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#P GFLOPs acc(%)
ResNetD-50 [26] 25.6M 4.34 78.31
+ mixup 25.6M 4.34 79.15
+ autoaug 25.6M 4.34 79.41
ResNeSt-50-fast 27.5M 4.34 80.64
ResNeSt-50 27.5M 5.39 81.13

Variant #P GFLOPs img/sec acc(%)
0s1x64d 25.6M 4.34 688.2 79.41
1s1x64d 26.3M 4.34 617.6 80.35
2s1x64d 27.5M 4.34 533.0 80.64
4s1x64d 31.9M 4.35 458.3 80.90
2s2x40d 26.9M 4.38 481.8 81.00

Table 2: Ablation study for ImageNet image classification. (Left) breakdown
of improvements. (Right) radix vs. cardinality under ResNeSt-fast setting. For
example 2s2x40d denotes radix=2, cardinality=2 and width=40. Note that even
radix=1 does not degrade any existing approach (see Equation 3).

5 Image Classification Results

Our first experiments study the image classification performance of ResNeSt on
the ImageNet 2012 dataset [13] with 1.28M training images and 50K validation
images (from 1000 different classes). As is standard, networks are trained on the
training set and we report their top-1 accuracy on the validation set.

5.1 Implementation Details

We use data sharding for distributed training on ImageNet, evenly partitioning
the data across GPUs. At each training iteration, a mini-batch of training data
is sampled from the corresponding shard (without replacement). We apply the
transformations from the learned Auto Augmentation policy to each individual
image. Then we further apply standard transformations including: random size
crop, random horizontal flip, color jittering, and changing the lighting. Finally,
the image data are RGB-normalized via mean/standard-deviation rescaling. For
mixup training, we simply mix each sample from the current mini-batch with its
reversed order sample [26]. Batch Normalization [32] is used after each convo-
lutional layer before ReLU activation [44]. Network weights are initialized using
Kaiming Initialization [24]. A drop layer is inserted before the final classification
layer with dropout ratio = 0.2. Training is done for 270 epochs with a weight
decay of 0.0001 and momentum of 0.9, using a cosine learning rate schedule
with the first 5 epochs reserved for warm-up. We use a mini-batch of size 8192
for ResNeSt-50, 4096 for ResNeSt 101, and 2048 for ResNeSt-{200, 269}. For
evaluation, we first resize each image to 1/0.875 of the crop size along the short
edge and apply a center crop. Our code implementation for ImageNet training
uses GluonCV [21] with MXNet [9].

5.2 Ablation Study

ResNeSt is based on the ResNet-D model [26]. Mixup training improves the
accuracy of ResNetD-50 from 78.31% to 79.15%. Auto augmentation further
improves the accuracy by 0.26%. When employing our Split-Attention block to
form a ResNeSt-50-fast model, accuracy is further boosted to 80.64%. In this
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#P GFLOPs
top-1 acc (%)

224× 320×
ResNet-50 [23] 25.5M 4.14 76.15 76.86

ResNeXt-50 [60] 25.0M 4.24 77.77 78.95

SENet-50 [29] 27.7M 4.25 78.88 80.29

ResNetD-50 [26] 25.6M 4.34 79.15 79.70

SKNet-50 [38] 27.5M 4.47 79.21 80.68

ResNeSt-50-fast(ours) 27.5M 4.34 80.64 81.43

ResNeSt-50(ours) 27.5M 5.39 81.13 81.82

ResNet-101 [23] 44.5M 7.87 77.37 78.17

ResNeXt-101 [60] 44.3M 7.99 78.89 80.14

SENet-101 [29] 49.2M 8.00 79.42 81.39

ResNetD-101 [26] 44.6M 8.06 80.54 81.26

SKNet-101 [38] 48.9M 8.46 79.81 81.60

ResNeSt-101-fast(ours) 48.2M 8.07 81.97 82.76

ResNeSt-101(ours) 48.3M 10.2 82.27 83.00

Table 3: Image classification results on ImageNet, comparing our proposed
ResNeSt with other ResNet variants of similar complexity in 50-layer and 101-
layer configurations. We report top-1 accuracy using crop sizes 224 and 320.

ResNeSt-fast setting, the effective average downsampling is applied prior to the
3× 3 convolution to avoid introducing extra computational costs in the model.
With the downsampling operation moved after the convolutional layer, ResNeSt-
50 achieves 81.13% accuracy.

Radix vs. Cardinality. We conduct an ablation study on ResNeSt-variants
with different radix/cardinality. In each variant, we adjust the network’s width
appropriately so that its overall computational cost remains similar to the ResNet
variants. The results are shown in Table 2, where s denotes the radix, x the car-
dinality, and d the network width (0s represents the use of a standard residual
block as in ResNet-D [26]). We empirically find that increasing the radix from 0
to 4 continuously improves the top-1 accuracy, while also increasing latency and
memory usage. Although we expect further accuracy improvements with even
greater radix/cardinality, we employ Split-Attention with the 2s1x64d setting in
subsequent experiments, to ensure these blocks scale to deeper networks with a
good trade-off between speed, accuracy and memory usage.

5.3 Comparing against the State-of-the-Art

ResNet Variants. For comparison with ResNet variants [23,26,29,38,60], all
networks (including ResNeSt) are trained using a crop size size of 224 × 224,
and then evaluated using center crop with sizes 224× 224 as well as 320× 320.
Following prior practice, we consider 50-layer and 101-layer networks in this
benchmark. The use of average pooling instead of strided convolution as the
down-sampling strategy increases computation by an extra 1 GFLOPS. For fair
comparison with matched computational costs, we move the average pooling
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ResNeSt-101(ours) 48M 256 291.3 83.0

EfficientNet-B4 [55] 19M 380 149.3 83.0

SENet-154 [29] 146M 320 133.8 82.7

NASNet-A [74] 89M 331 103.3 82.7

AmoebaNet-A [45] 87M 299 - 82.8

ResNeSt-200 (ours) 70M 320 105.3 83.9

EfficientNet-B5 [55] 30M 456 84.3 83.7

AmoebaNet-C [45] 155M 299 - 83.5

ResNeSt-269 (ours) 111M 416 51.2 84.5

GPipe 557M - - 84.3

EfficientNet-B7 [55] 66M 600 34.9 84.4

Table 4: Accuracy vs. Latency for SoTA CNN models on ImageNet with large
crop sizes. Our ResNeSt model displays the best trade-off (additional de-
tails/results in Appendix). EfficientNet variants b2-b7 are described in [55].
ResNeSt variants use a different number of layers listed in red. Average In-
ference latency is measured on a NVIDIA V100 GPU using the original code
implementation of each model with a mini-batch of size 16.

operation before the 3 × 3 convolutional layer to build a ResNeSt-fast model,
where the convolutional layer operates on a downsampled feature-map. We use
2s1x64d (see Table 2) as the ResNeSt setting as it has better training and in-
ference speed and less memory usage. Table 3 shows that our proposed ResNeSt
outperforms all ResNet variants with a similar number of network parameters
and FLOPS, including: ResNet [23], ResNeXt [60], SENet [29], ResNet-D [26]
and SKNet [38]. Remarkably, our ResNeSt-50 achieves 80.64 top-1 accuracy,
which is the first 50-layer ResNet variant that surpasses 80% on ImageNet.

Other CNN Models. To compare with CNN models trained using different
crop size settings, we increase the training crop size for deeper models. We use a
crop size of 256× 256 for ResNeSt-200 and 320× 320 for ResNeSt-269. Bicubic
upsampling strategy is employed for input-size greater than 256. The results
are shown in Table 4, where we compare the inference speed in addition to the
number of parameters. We find that despite its advantage in parameters with
accuracy trade-off, the widely used depth-wise convolution is not optimized for
inference speed. In this benchmark, all inference speeds are measured using a
mini-batch of 16 using the implementation [1] from the original author on a
single NVIDIA V100 GPU. The proposed ResNeSt has better accuracy and
latency trade-off than models found via neural architecture search.

6 Transfer Learning Results

6.1 Object Detection

We report our detection result on MS-COCO [42] in Table 10. All models are
trained on COCO-2017 training set with 118k images, and evaluated on COCO-
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Method Backbone mAP%

P
ri

o
r

W
o
rk

Faster-RCNN [46]
ResNet101 [22] 37.3

ResNeXt101 [5, 60] 40.1
SE-ResNet101 [29] 41.9

Faster-RCNN+DCN [12] ResNet101 [5] 42.1
Cascade-RCNN [2] ResNet101 42.8

O
u
r

R
es

u
lt

s Faster-RCNN [46]

ResNet50 [57] 39.25
ResNet101 [57] 41.37

ResNeSt50 (ours) 42.33
ResNeSt101 (ours) 44.72

Cascade-RCNN [2]

ResNet50 [57] 42.52
ResNet101 [57] 44.03

ResNeSt50 (ours) 45.41
ResNeSt101 (ours) 47.50

Cascade-RCNN [2] ResNeSt200 (ours) 49.03

Table 5: Object detection results on the MS-COCO validation set. Both Faster-
RCNN and Cascade-RCNN are significantly improved by our ResNeSt backbone.

2017 validation set with 5k images (aka. minival) using the standard COCO AP
metric of single scale. We train all models with FPN [41], synchronized batch
normalization [65] and image scale augmentation (short size of a image is picked
randomly from 640 to 800). 1x learning rate schedule is used. We conduct Faster-
RCNNs and Cascade-RCNNs experiments using Detectron2 [57]. For compari-
son, we simply replaced the vanilla ResNet backbones with our ResNeSt, while
using the default settings for the hyper-parameters and detection heads [20,57].

Compared to the baselines using standard ResNet, Our backbone is able to
boost mean average precision by around 3% on both Faster-RCNNs and Cascade-
RCNNs. The result demonstrates our backbone has good generalization ability
and can be easily transferred to the downstream task. Notably, our ResNeSt50
outperforms ResNet101 on both Faster-RCNN and Cascade-RCNN detection
models, using significantly fewer parameters. Detailed results in Table 10. We
evaluate our Cascade-RCNN with ResNeSt101 deformable, that is trained using
1x learning rate schedule on COCO test-dev set as well. It yields a box mAP of
49.2 using single scale inference.

6.2 Instance Segmentation

To explore the generalization ability of our novel backbone, we also apply it to
instance segmentation tasks. Besides the bounding box and category probability,
instance segmentation also predicts object masks, for which a more accurate
dense image representation is desirable.

We evaluate the Mask-RCNN [22] and Cascade-Mask-RCNN [2] models with
ResNeSt-50 and ResNeSt-101 as their backbones. All models are trained along
with FPN [41] and synchronized batch normalization. For data augmentation,
input images’ shorter side are randomly scaled to one of (640, 672, 704, 736, 768,
800). To fairly compare it with other methods, 1x learning rate schedule policy is
applied, and other hyper-parameters remain the same. We re-train the baseline
with the same setting described above, but with the standard ResNet. All our
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P
ri

o
r

W
o
rk Method Backbone box mAP% mask mAP%

DCV-V2 [72] ResNet50 42.7 37.0
HTC [4] ResNet50 43.2 38.0
Mask-RCNN [22] ResNet101 [5] 39.9 36.1
Cascade-RCNN [3] ResNet101 44.8 38.0

O
u

r
R

es
u
lt

s Mask-RCNN [22]

ResNet50 [57] 39.97 36.05
ResNet101 [57] 41.78 37.51

ResNeSt50 (ours) 42.81 38.14
ResNeSt101 (ours) 45.75 40.65

Cascade-RCNN [2]

ResNet50 [57] 43.06 37.19
ResNet101 [57] 44.79 38.52

ResNeSt50 (ours) 46.19 39.55
ResNeSt101 (ours) 48.30 41.56

Table 6: Instance Segmentation results on the MS-COCO validation set. Both
Mask-RCNN and Cascade-RCNN models are improved by our ResNeSt back-
bone. Models with our ResNeSt-101 outperform all prior work using ResNet-101.

experiments are trained on COCO-2017 dataset and using Detectron2 [57]. For
the baseline experiments, the backbone we used by default is the MSRA version
of ResNet, having stride-2 on the 1x1 conv layer. Both bounding box and mask
mAP are reported on COCO-2017 validation dataset.

As shown in Table 6, our new backbone achieves better performance. For
Mask-RCNN, ResNeSt50 outperforms the baseline with a gain of 2.85%/2.09%
for box/mask performance, and ResNeSt101 exhibits even better improvement
of 4.03%/3.14%. For Cascade-Mask-RCNN, the gains produced by switching to
ResNeSt50 or ResNeSt101 are 3.13%/2.36% or 3.51%/3.04%, respectively. This
suggests a model will be better if it consists of more Split-Attention modules.
As observed in the detection results, the mAP of our ResNeSt50 exceeds the
result of the standard ResNet101 backbone, which indicates a higher capacity
of the small model with our proposed module. Finally, we also train a Cascade-
Mask-RCNN with ResNeSt101-deformable using a 1x learning rate schedule. We
evaluate it on the COCO test-dev set, yielding 50.0 box mAP, and 43.1 mask
mAP respectively. Additional experiments under different settings are included
in the supplementary material.

6.3 Semantic Segmentation

In transfer learning for the downstream task of semantic segmentation, we use the
GluonCV [21] implementation of DeepLabV3 [7] as a baseline approach. Here a
dilated network strategy [6,62] is applied to the backbone network, resulting in a
stride-8 model. Synchronized Batch Normalization [65] is used during training,
along with a polynomial-like learning rate schedule (with initial learning rate
= 0.1). For evaluation, the network prediction logits are upsampled 8 times to
calculate the per-pixel cross entropy loss against the ground truth labels. We use
multi-scale evaluation with flipping [65,69,73].

We first consider the Cityscapes [10] dataset, which consists of 5K high-
quality labeled images. We train each model on 2,975 images from the training
set and report its mIoU on 500 validation images. Following prior work, we only
consider 19 object/stuff categories in this benchmark. We have not used any
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Method Backbone pixAcc% mIoU%

P
ri

o
r

W
o
rk

UperNet [59] ResNet101 81.01 42.66
PSPNet [69] ResNet101 81.39 43.29
EncNet [65] ResNet101 81.69 44.65
CFNet [66] ResNet101 81.57 44.89
OCNet [63] ResNet101 - 45.45
ACNet [17] ResNet101 81.96 45.90

O
u

rs

DeeplabV3 [7]

ResNet50 [21] 80.39 42.1
ResNet101 [21] 81.11 44.14

ResNeSt-50 (ours) 81.17 45.12
ResNeSt-101 (ours) 82.07 46.91

Method Backbone mIoU%

P
ri

o
r

W
o
rk

DANet [16] ResNet101 77.6
PSANet [70] ResNet101 77.9
PSPNet [69] ResNet101 78.4
AAF [33] ResNet101 79.2
DeeplabV3 [7] ResNet101 79.3
OCNet [63] ResNet101 80.1

O
u

rs

DeeplabV3 [7]

ResNet50 [21] 78.72
ResNet101 [21] 79.42

ResNeSt-50 (ours) 79.87
ResNeSt-101 (ours) 80.42

Table 7: Semantic segmentation results on validation set of: ADE20K (Left),
Citscapes (Right). Models are trained without coarse labels or extra data.

coarse labeled images or any extra data in this benchmark. Our ResNeSt back-
bone boosts the mIoU achieved by DeepLabV3 models by around 1% while main-
taining a similar overall model complexity. Notably, the DeepLabV3 model using
our ResNeSt-50 backbone already achieves better performance than DeepLabV3
with a much larger ResNet-101 backbone.

ADE20K [71] is a large scene parsing dataset with 150 object and stuff
classes containing 20K training, 2K validation, and 3K test images. All net-
works are trained on the training set for 120 epochs and evaluated on the
validation set. Table 7 shows the resulting pixel accuracy (pixAcc) and mean
intersection-of-union (mIoU). The performance of the DeepLabV3 models are
dramatically improved by employing our ResNeSt backbone. Analogous to pre-
vious results, the DeepLabv3 model using our ResNeSt-50 backbone already
outperforms DeepLabv3 using a deeper ResNet-101 backbone. DeepLabV3 with
a ResNeSt-101 backbone achieves 82.07% pixAcc and 46.91% mIoU, which to
our knowledge, is the best single model that has been presented for ADE20K.

7 Conclusion

This work proposed the ResNeSt architecture with a novel Split-Attention block
that universally improves the learned feature representations to boost perfor-
mance across image classification, object detection, instance segmentation and
semantic segmentation. In the latter downstream tasks, the empirical improve-
ment produced by simply switching the backbone network to our ResNeSt is
substantially better than task-specific modifications applied to a standard back-
bone such as ResNet. Our Split-Attention block is easy to work with and com-
putationally efficient, and thus should be broadly applicable across vision tasks.
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Appendix

A Radix-major Split-Attention Block
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Fig. 3: Radix-major implementation of
ResNeSt block, where the featuremap
groups with same radix index but dif-
ferent cardinality are next to each other
physically. This implementation can be
easily accelerated, because the 1×1 con-
volutional layers can be unified into a
layer and the 3×3 convolutional layers
can be implemented using group convo-
lution with the number of groups equal
to RK.

For easily visualizing the concept
of Split-Attention, we employ cardinality-
major implementation in the methods
description of the main paper, where
the groups with the same cardinal in-
dex reside next to each other phys-
ically. The cardinality-major imple-
mentation is straightforward and in-
tuitive, but is difficult to modularize
and accelerate using standard CNN
operators. Therefore, we adopt the
radix-major implementation in our
experiments.

Figure 3 gives an overview of the
Split-Attention block in radix-major
layout. The input feature-map is first
divided into RK groups, in which
each group has a cardinality-index
and radix-index. In this layout, the
groups with same radix-index reside
next to each other in the memory.
Then, we can conduct a summation
across different splits, so that the
feature-map groups with the same
cardinality-index but different radix-
index are fused together. This opera-
tion is identical to fuse across splits
within each cardinal groups in the
cardinality-major implementation de-
scribed in the main paper. Similarly,
a global pooling layer aggregates over the spatial dimension, while keeps the
channel dimension separated, which is the same as conducting global pooling to
each individual cardinal groups then concatenate the results. Then two consec-
utive fully connected (FC) layers with number of groups equal to cardinality are
added after pooling layer to predict the attention weights for each splits. The
use of grouped FC layers makes it identical to apply each pair of FCs separately
on top each cardinal groups.

With this implementation, the first 1× 1 convolutional layers can be unified
into one layer and the 3×3 convolutional layers can be implemented using a single
grouped convolution with the number of groups of RK. Therefore, the Split-
Attention block is modularized and implemented using standard CNN operators.
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Method Backbone OKS AP% w/o flip OKS AP% w/ flip

SimplePose [58]

ResNet50 [21] 71.0/91.2/78.6 72.2/92.2/79.9
ResNet101 [21] 72.6/91.3/80.8 73.6/92.3/81.1

ResNeSt50 (ours) 72.3/92.3/80.0 73.4/92.4/81.2
ResNeSt101 (ours) 73.6/92.3/80.9 74.6/92.4/82.1

Table 8: Pose estimation results on MS-COCO dataset in terms of OKS AP.

Method Backbone Deformable mAP%

P
ri

o
r

W
o
rk

DCNv2 [72]
ResNet101 [23] v2 44.8

ResNeXt101 [60] v2 45.3

TridentNet [12]
ResNet101 [23] v1 46.8
ResNet101* [12] v1 48.4

SNIPER [48] ResNet101* [12] v1 46.1
Cascade-RCNN [3] ResNet101 [23] n/a 42.8

Cascade-RCNN [3] ResNeSt101 (ours) v2 49.2

Table 9: Object detection results on the MS-COCO test-dev set. The single
model of Cascade-RCNN with ResNeSt backbone using deformable convolu-
tion [12] achieves 49.2% mAP, which outperforms all previous methods. (* means
using multi-scale evaluation.)

B Additional Experiments

B.1 Pose Estimation

We investigate the effect of backbone on pose estimation task. The baseline
model is SimplePose [58] with ResNet50 and ResNet101 implemented in Glu-
onCV [21]. As comparison we replace the backbone with ResNeSt50 and ResNeSt101
respectively while keeping other settings unchanged. The input image size is fixed
to 256x192 for all runs. We use Adam optimizer with batch size 32 and initial
learning rate 0.001 with no weight decay. The learning rate is divided by 10 at
the 90th and 120th epoch. The experiments are conducted on COCO Keypoints
dataset, and we report the OKS AP for results without and with flip test. Flip
test first makes prediction on both original and horizontally flipped images, and
then averages the predicted keypoint coordinates as the final output.

From Table 8, we see that models backboned with ResNeSt50/ResNeSt101
significantly outperform their ResNet counterparts. Besides, with ResNeSt50
backbone the model achieves performance similar with ResNet101 backbone.

B.2 Object Detection and Instance Segmentation

For object detection, we add deformable convolution to our Cascade-RCNN
model with ResNeSt-101 backbone and train the model on the MS-COCO train-
ing set for 1x schedule. The resulting model achieves 49.2% mAP on COCO
test-dev set, which surpass all previous methods including these employing multi-
scale evaluation. Detailed results are shown in Table 10.

We include more results of instance segmentation, shown in Table 11, from
the models trained with 1x/3x learning rate schedules and with/without SyncBN.
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Method Backbone Deformable box mAP% mask mAP%

P
ri

o
r

W
o
rk

DCNv2 [72]
ResNet101 [23] v2 45.8 39.7

ResNeXt101 [60] v2 46.7 40.5
SNIPER [48] ResNet101* [12] v1 47.1 41.3
Cascade-RCNN [3] ResNext101 [60] n/a 45.8 38.6

Cascade-RCNN [3] ResNeSt101 (ours) v2 50.0 43.0

Table 10: Instance Segmentation results on the MS-COCO test-dev set. * denote
multi-scale inference.

Method lr schedule SyncBN Backbone box mAP% mask mAP%

Mask-RCNN [22]

1×

ResNet50 [57] 38.60 35.20
ResNet101 [57] 40.79 36.93

ResNeSt50 (ours) 40.85 36.99
ResNeSt101 (ours) 43.98 39.33

X

ResNet50 [57] 39.97 36.05
ResNet101 [57] 41.78 37.51

ResNeSt50 (ours) 42.81 38.14
ResNeSt101 (ours) 45.75 40.65

3×

ResNet50 [57] 41.00 37.20
ResNet101 [57] 42.90 38.60

ResNeSt50 (ours) 43.32 38.91
ResNeSt101 (ours) 45.37 40.56

Cascade-RCNN [2]

1×

ResNet50 [57] 42.10 36.40
ResNet101 [57] 44.00 38.08

ResNeSt50 (ours) 44.56 38.27
ResNeSt101 (ours) 46.86 40.23

X

ResNet50 [57] 43.06 37.19
ResNet101 [57] 44.79 38.52

ResNeSt50 (ours) 46.19 39.55
ResNeSt101 (ours) 48.30 41.56

3×

ResNet50 [57] 44.3 38.5
ResNet101 [57] 45.57 39.54

ResNeSt50 (ours) 46.39 39.99
ResNeSt101 (ours) 47.70 41.16

Table 11: Instance Segmentation results on the MS-COCO validation set. Com-
paring models trained w/ and w/o SyncBN, and using 1× and 3× learning rate
schedules.

All of resutls are reported on COCO val dataset. For both 50/101-layer settings,
our ResNeSt backbones still outperform the corresponding baselines with dif-
ferent lr schedules. Same as the Table. 6 in the main text, our ResNeSt50 also
exceeds the result of the standard ResNet101.

We also evaluate our ResNeSt with and without deformable convolution
v2 [72]. With its help, we are able to obtain a higher performance, shown in
Table 12. It indicates our designed module is compatible with deformable con-
volution.

C Future Work and Conclusions

With Split-Attention block, we introduce a new hyperparameter radix to the
ResNet series. We conduct a brief ablation study on a few combinations of radix,
cardinality and width. However, a comprehensive study on the hyper-parameter
combinations can further boost the performance of the ResNeSt model, especially
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Method Deformable [72] (v2) box mAP% mask mAP%

Cascade-RCNN [2]
48.30 41.56

X 49.39 42.56

Table 12: The results of Cascade-Mask-RCNN on COCO val set. The ResNeSt-
101 is applied with and without deformable convolution v2 [72]. It shows that
our split-attention module is compatible with other existing modules.

on specific applications. One interesting topic is finding low latency models on
different hardwares through neural architecture search.

Beyond the paper contributions, we empirically find several minor conclusions
which may be helpful for peers:

– depth-wise convolution is not optimal for training and inference efficiency
on GPU,

– model accuracy get saturated on ImageNet with a fixed input image size,
– increasing input image size can get better accuracy and FLOPS trade-off.
– bicubic upsampling strategy is needed for large crop-size (≥ 320).
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