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ABSTRACT

In this paper, we present Vision Permutator, a conceptually simple and data effi-
cient MLP-like architecture for visual recognition. By realizing the importance
of the positional information carried by 2D feature representations, unlike re-
cent MLP-like models that encode the spatial information along the flattened
spatial dimensions, Vision Permutator separately encodes the feature represen-
tations along the height and width dimensions with linear projections. This al-
lows Vision Permutator to capture long-range dependencies along one spatial di-
rection and meanwhile preserve precise positional information along the other
direction. The resulting position-sensitive outputs are then aggregated in a mu-
tually complementing manner to form expressive representations of the objects
of interest. We show that our Vision Permutators are formidable competitors
to convolutional neural networks (CNNs) and vision transformers. Without the
dependence on spatial convolutions or attention mechanisms, Vision Permutator
achieves 81.5% top-1 accuracy on ImageNet without extra large-scale training
data (e.g., ImageNet-22k) using only 25M learnable parameters, which is much
better than most CNNs and vision transformers under the same model size con-
straint. When scaling up to 88M, it attains 83.2% top-1 accuracy. We hope this
work could encourage research on rethinking the way of encoding spatial infor-
mation and facilitate the development of MLP-like models. Code is available at
https://github.com/Andrew-Qibin/VisionPermutator.

1 INTRODUCTION

Recent studies (Tolstikhin et al., 2021; Touvron et al., 2021a) have shown that pure multi-layer
perceptron based networks perform well in ImageNet classification (Deng et al., 2009). Compared
to convolutional neural networks (CNNs) and vision transformers that employ spatial convolutions
or self-attention layers to encode spatial information, MLP-like networks (a.k.a., MLPs) make use
of pure fully-connected layers (or called 1 × 1 convolutions) and hence are more efficient in both
training and inference (Tolstikhin et al., 2021). However, the good performance of MLPs in image
classification largely benefits from training on large-scale datasets (e.g., ImageNet-22K and JFT-
300M). Without the support of sufficiently large amount of training data, their performance still
lags largely behind CNNs (Tan & Le, 2019; Brock et al., 2021; Zhang et al., 2020) and vision
transformers (Jiang et al., 2021; Touvron et al., 2021b; Liu et al., 2021b).

In this work, we are interested in exploiting the potential of MLPs with using merely the ImageNet-
1k data for training and target data-efficient MLPs. To this end, we propose the Vision Permutator
architecture. Specially, Vision Permutator innovates the existing MLP architectures by presenting a
new layer structure that can more effectively encode spatial information based on the basic matrix
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Figure 1: Basic architecture of the proposed Vision Permutator. The evenly divided image patches
are tokenized with linear projection first and then fed into a sequence of Permutators for feature
encoding. A global average pooling layer followed by a fully-connected layer is finally used to
predict the class.

multiplication routine. Unlike current MLP-like models, such as Mixer (Tolstikhin et al., 2021) and
ResMLP (Touvron et al., 2021a), that encode spatial information by flattening the spatial dimensions
first and then conducting linear projection along the spatial dimension (i.e., operating on tokens
with shape “tokens×channels”), leading to the loss of positional information carried by 2D feature
representations, Vision Permutator maintains the original spatial dimensions of the input tokens and
separately encode spatial information along the height and width dimensions to preserve positional
information.

To be specific, our Vision Permutator begins with a similar tokenization operation to vision trans-
formers, which uniformly splits the input image into small patches and then maps them to token
embeddings with linear projections, as depicted in Figure 1. The resulting token embeddings with
shape “height×width×channels” are then fed into a sequence of Permutator blocks, each of which
consists of a Permute-MLP for spatial information encoding and a Channel-MLP for channel in-
formation mixing. The Permute-MLP layer, as depicted in Figure 2, consists of three independent
branches, each of which encodes features along a specific dimension, i.e., the height, width or chan-
nel dimension. Compared to existing MLP-like models that mix the two spatial dimensions into
one, our Vision Permutator separately processes the token representations along these dimensions,
resulting in tokens with direction-specific information, which has been demonstrated essential for
visual recognition (Hou et al., 2021; Wang et al., 2020).

Experiments show that our Vision Permutator can largely improve the classification performance of
existing MLP-like models. Taking the small-sized Vision Permutator as an example, it attains 81.5%
top-1 accuracy on ImageNet without any extra training data. Scaling up the model to 55M and 88M,
we can further achieve 82.7% and 83.2% accuracy, respectively.

2 RELATED WORK

Modern deep neural networks for image classification can be mainly categorized into three different
classes: convolutional neural networks (CNNs), vision transformers (ViTs), and multi-layer percep-
tron based models (MLPs). In the following, we will briefly describe the development trend of each
type of networks and state the differences of the proposed Vision Permutator from previous work.

CNNs, as the de-facto standard networks in computer vision for years, have been deeply studied.
Early CNN models, such as AlexNet (Krizhevsky et al., 2012) and VGGNet (Simonyan & Zisser-
man, 2014), mostly adopt structures with a stack of spatial convolutions (with kernel size ≥ 3) and
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Figure 2: Basic structure of the proposed Permute-MLP layer. The proposed Permute-MLP layer
contains three branches that are responsible for encoding features along the height, width, and chan-
nel dimensions, respectively. The outputs from the three branches are then combined using element-
wise addition, followed by a fully-connected layer for feature fusion.

pooling operations. Later, ResNets and their variants (He et al., 2016; Xie et al., 2017; Zagoruyko
& Komodakis, 2016) introduce skip connection and building blocks with bottleneck structure into
CNNs, enabling training very deep networks possible. Inceptions (Szegedy et al., 2015; 2016) ren-
ovate the design of traditional building block structure and utilize multiple parallel paths of sets of
specialized filters. Attention mechanisms (Hu et al., 2018; 2019; Wang et al., 2018; Bello et al.,
2019; Liu et al., 2020; Chen et al., 2018) break through the limitations of convolutions in capturing
local features and further promote the development of CNNs. Our work can also be regarded as a
special CNN. Different from previous CNNs that globally aggregate the locally captured features
with spatial convolutions, our Vision Permutator is composed of pure 1 × 1 convolutions but can
encode global information.

Our work is also related to vision transformers (Dosovitskiy et al., 2020). Unlike CNNs that ex-
ploit local convolutions to encode spatial information, vision transformers takes advantage of the
self-attention mechanism to capture global information and have been the prevailing research direc-
tion in image classification recently. Since then, a great number of transformer-based classification
models appear, aiming at advancing the original vision transformer by either introducing locality
(Zhou et al., 2021b; Vaswani et al., 2021; Wu et al., 2021; Liu et al., 2021b; Han et al., 2021; Yuan
et al., 2021), or scaling the depth (Zhou et al., 2021a; Touvron et al., 2021b), or tailoring powerful
optimization strategies (Jiang et al., 2021). Different from the aforementioned methods, our Vision
Permutator eliminates the dependence on self-attention and hence is more efficient.

Very recently, there are also some work (Tolstikhin et al., 2021; Touvron et al., 2021a; Liu et al.,
2021a; Guo et al., 2021) targeting at developing pure MLP-like models for ImageNet classification.
To encode rich spatial information with MLPs, these methods flatten the spatial dimensions and treat
the three-dimensional (height, width, and channel) token representations as a two-dimensional input
table. Differently, our Vision Permutator operates on three-dimensional feature representations and
encodes spatial information separately along the height and width dimensions. We will show the
advantages of the proposed Vision Permutator over existing MLP-like models in our experiment
section.

3 VISION PERMUTATOR

The basic architecture of the proposed Vision Permutator can be found in Figure 1. Our network
takes an image of size 224 × 224 as input and uniformly splits it into a sequence of image patches
(14 × 14 or 7 × 7). All the patches are then mapped into linear embeddings (or called tokens)
using a shared linear layer as (Tolstikhin et al., 2021). We next feed all the tokens into a sequence
of Permutators to encode both spatial and channel information. The resulting tokens are finally
averaged along the spatial dimensions, followed by a fully-connected layer for class prediction. In
the following, we will detail the proposed Permutator block and the network settings.

3



Algorithm 1 Code for Permute-MLP (PyTorch-like)

# H: height, W: width, C: channel, S: number of segments
# x: input tensor of shape (H, W, C)

################### initialization ####################################################
proj_h = nn.Linear(C, C) # Encoding spatial information along the height dimension
proj_w = nn.Linear(C, C) # Encoding spatial information along the width dimension
proj_c = nn.Linear(C, C) # Encoding channel information
proj = nn.Linear(C, C) # For information fusion

#################### code in forward ##################################################
def permute_mlp(x):

N = C // S
x_h = x.reshape(H, W, N, S).permute(2, 1, 0, 3).reshape(N, W, H*S)
x_h = self.proj_h(x_h).reshape(N, W, H, S).permute(2, 1, 0, 3).reshape(H, W, C)

x_w = x.reshape(H, W, N, S).permute(0, 2, 1, 3).reshape(H, N, W*S)
x_w = self.proj_w(x_w).reshape(H, N, W, S).permute(0, 2, 1, 3).reshape(H, W, C)

x_c = self.proj_c(x)

x = x_h + x_w + x_c
x = self.proj(x)
return x

3.1 PERMUTATOR

A diagrammatic illustration of the proposed Permutator block can be found at top-left corner of
Figure 1. As can be seen, regardless of the LayerNorms and the skip connections, our Permutator
consists of two components: Permute-MLP and Channel-MLP, which are responsible for encoding
spatial information and channel information, respectively. The Channel-MLP module shares a sim-
ilar structure to the feed forward layer in Transformers (Vaswani et al., 2017) that comprises two
fully-connected layers with a GELU activation in the middle. For spatial information encoding,
unlike the recent Mixer (Tolstikhin et al., 2021) that conducts linear projection along the spatial
dimension with respect to all the tokens, we propose to separately processing the tokens along the
height and width dimensions. Mathematically, given an input C-dim tokens X ∈ RH×W×C , the
formulation of Permutator can be written as follows:

Y = Permute-MLP(LN(X)) +X, (1)
Z = Channel-MLP(LN(Y)) +Y, (2)

where, LN refers to LayerNorm. The output Z will serve as the input to the next Permutator block
until the last one.

Permute-MLP: The visual illustration of the proposed Permute-MLP can be found in Figure 2.
Unlike vision transformers (Dosovitskiy et al., 2020; Jiang et al., 2021; Touvron et al., 2020) and
Mixer (Tolstikhin et al., 2021) that receive an input of two dimensions (“tokens×channels,” i.e.,
HW × C), Permute-MLP accepts 3-dimensional token representations. As shown in Figure 2, our
Permute-MLP consists of three branches, each of which is in charge of encoding information along
the either height, or width, or channel dimension. The channel information encoding is simple as
we only need a fully-connected layer with weights WC ∈ RC×C to perform a linear projection
with respect to the input X, yielding XC . In the following, we will describe how to encode spatial
information by introducing a head-wise permutation operation between dimensions.

Suppose the hidden dimension C is 384 and the input image is with resolution 224×224. To encode
the spatial information along the height dimension, we first conduct a height-channel permutation
operation. Given the input X ∈ RH×W×C , we first split it into S segments along the channel
dimension, yielding [XH1 ,XH2 , · · · ,XHS

], satisfying C = N ∗ S1. In case where the patch size
is set to 14 × 14, the value of N is identical to 16 and XHi ∈ RH×W×N , (i ∈ {1, · · · , S}). We
then perform a height-channel permutation operation2 with respect to each segment XHi

, yielding
[X>H1

,X>H2
, · · · ,X>HS

], which are then concatenated along the channel dimension as the output
the permutation operation. Next, a fully-connected layer with weight WH ∈ RC×C is connected
to mix the height information. To recover the original dimensional information to X, we only

1In our case, N is identical to H or W .
2Transpose the first (Height) dimension and the third (Channel) dimension: (H,W,C)→ (C,W,H).
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Table 1: Configurations of different Vision Permutator models. We present three different models
(Small, Medium, and Large) according to the different model sizes. Notation “Small/16” means the
model with patch size 16× 16 in the starting patch embedding module.

Specification ViP-Small/16 ViP-Small/14 ViP-Small/7 ViP-Medium/7 ViP-Large/7

Patch size 16× 16 14× 14 7× 7 7× 7 7× 7
Hidden size - - 192 256 256
#Tokens 14× 14 16× 16 32× 32 32× 32 32× 32
#Permutators - - 4 7 9

Patch size - - 2× 2 2× 2 2× 2
Hidden size 336 384 384 512 512
#Tokens 14× 14 16× 16 16× 16 16× 16 16× 16
#Permutators 18 18 14 17 27

Number of layers 18 18 18 24 36
MLP Ratio 3 3 3 3 3
Stoch. Dep. 0.1 0.1 0.1 0.2 0.3
Parameters (M) 23M 30M 25M 55M 88M

need to perform the height-channel permutation operation once again, outputting XH . Similarly,
in the second branch, we conduct the same operations as above to permute the width dimension
and the channel dimension for X and yield XW . Finally, we feed the summation of all the token
representations from the three branches into a new fully-connected layer to attain the output of the
Permute-MLP layer, which can be formulated as follows:

X̂ = FC(XH +XW +XC), (3)

where FC(·) denotes a fully-connected layer with weight WP ∈ RC×C . A PyTorch-like pseudo
code can be found in Alg. 1.

Weighted Permute-MLP: In Eqn. 3, we simply fuse the outputs from all three branches with
element-wise addition. Here, we further improve the above Permute-MLP by recalibrating the im-
portance of different branches and present Weighted Permute-MLP. This can be easily implemented
by exploiting the split attention (Zhang et al., 2020). What is different is that the split attention is
applied to XH , XW , and XC instead of a group of tensors generated by a grouped convolution. In
the following, we use the weighted Permute-MLP in Permutator by default.

3.2 VARIOUS CONFIGURATIONS OF VISION PERMUTATOR

We summarize various configurations of the proposed Vision Permutator in Table 1. We present
three different versions of Vision Permutator (ViP), denoted as ‘ViP-Small’, ‘ViP-Medium’, and
‘ViP-Large’ respectively, according to their model size. Notation ‘ViP-Small/14’ denotes the small-
sized model with patch size 14× 14 in the starting patch embedding module. In ‘ViP-Small/16’ and
‘ViP-Small/14’, there is only one patch embedding module, which is then folloed by a sequence of
Permutators. The total number of Permutators for them are 16.

Our ‘ViP-Small/7,’ ‘ViP-Medium/7,’ and ‘ViP-Large/7’ have two stages, each of which starts with
a patch embedding module. For these models, we add a few Permutators targeting at encoding fine-
level token representations which we found beneficial to the model performance. In our experiment
section, we will show the advantage of encoding fine-level token representations.

4 EXPERIMENTS

We report of the results of our proposed Vision Permutator on the widely-used ImageNet-1k (Deng
et al., 2009) dataset. The code is implemented based on PyTorch (Paszke et al., 2019) and the
timm (Wightman, 2019) toolbox. Note that in training, we do not use any extra training data.
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Table 2: Top-1 accuracy comparison with recent MLP-like models on ImageNet (Deng et al., 2009).
All models are trained without external data. With the same computation and parameter constraint,
our model consistently outperforms other methods. Following (Touvron et al., 2021a), the through-
put is measured on a single machine with V100 GPU (32GB) with batch size set to 32. † Implemen-
tation with our training recipe, which we found works better than the one reported in the paper.

Networks Parameters Throughput Train size Test size Top-1 Acc. (%)

EAMLP-14 (Guo et al., 2021) 30M 711 img/s 224 224 78.9
gMLP-S (Liu et al., 2021a) 20M - 224 224 79.6
ResMLP-S24 (Touvron et al., 2021a) 30M 715 img/s 224 224 79.4
ViP-Small/14 (ours) 30M 789 img/s 224 224 80.5
ViP-Small/7 (ours) 25M 719 img/s 224 224 81.5
EAMLP-19 (Guo et al., 2021) 55M 464 img/s 224 224 79.4
Mixer-B/16 (Tolstikhin et al., 2021)† 59M - 224 224 78.5
ViP-Medium/7 (ours) 55M 418 img/s 224 224 82.7
gMLP-B (Liu et al., 2021a) 73M - 224 224 81.6
ResMLP-B24 (Touvron et al., 2021a) 116M 231 img/s 224 224 81.0
ViP-Large/7 (ours) 88M 298 img/s 224 224 83.2

4.1 EXPERIMENT SETUP

We adopt the AdamW optimizer (Loshchilov & Hutter, 2017) with a linear learning rate scaling
strategy lr = 10−3 × batch size

1024 and 5 × 10−2 weight decay rate to optimize all the models as sug-
gested by previous work (Touvron et al., 2020; Jiang et al., 2021). The batch size is set to 2048 which
we found works better than 1024 in our Vision Permutator. Stochastic Depth (Huang et al., 2016) is
used. Detailed drop rates can be found in Table 1. We train our models on the ImageNet dataset for
300 epochs. For data augmentation methods, we use CutOut (Zhong et al., 2020), RandAug (Cubuk
et al., 2020), MixUp (Zhang et al., 2017), and CutMix (Yun et al., 2019). Note that we do not
use positional encoding in our Vision Permutator as we found it hurts the performance. Training
small-sized Vision Permutator models requires a machine node with 8 NVIDIA V100 GPUs (32G
memory). Two nodes are needed for medium-sized and large-sized Vision Permutator models.

4.2 MAIN RESULTS ON IMAGENET

In this subsection, we compare our proposed Vision Permutator with previous CNN-based,
Transformer-based, and MLP-like models. We first compare our proposed Vision Permutator with
recent MLP-like models in Table 2. The ‘Train size’ and ‘Test Size’ refer to the training resolu-
tion and test resolution, respectively. Our ViP-Small/7 model with 25M parameters achieves top-1
accuracy of 81.5%. This result is already better than most of the existing MLP-like models and
comparable to the best one gMLP-B (Liu et al., 2021a) with 73M parameters. Scaling up the model
to 55M allows our ViP-Medium/7 to attain 82.7% accuracy, which is better than all other MLP-like
models as shown in Table 2. Further increasing the model size to 88M leads to a better result 83.2%.

We argue that the main factor leading to the improvement for our Vision Permutator is the way of
encoding spatial information as described in Sec. 3. Different from concurrent popular MLP-like
models listed in Table 2, we separately encoding the token representations along the height and
width dimensions, generating position-sensitive outputs that are crucial for locating and identifying
objects of interest (Hou et al., 2021; Wang et al., 2020). In addition, our Vision Permutator encodes
not only coarse-level token representations (with 16×16 tokens) but also features at fine-level (with
32× 32 tokens). We will detail this in next subsection.

In Table 3, we show the comparison with classic CNN-based and transformer-based models. Com-
pared with classic CNNs, like ResNets (He et al., 2016), SE-ResNeXt (Xie et al., 2017; Hu et al.,
2018), and RegNet (Radosavovic et al., 2020), our Vision Permutator with similar model size con-
straint receives better results. Taking the ViP-Small/7 model as an example, the performance is
81.5%, which is even better than ResNeSt-50 (81.5% v.s. 81.1%). Compared to some transformer-
based models, such as DeiT (Touvron et al., 2020), T2T-ViT (Yuan et al., 2021), and Swin Trans-
formers (Liu et al., 2021b), our results are also better. However, there is still a large gap between
our Vision Permutator and recent state-of-the-art CNN- and transformer-based models, such as
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Table 3: Top-1 accuracy comparison with classic CNNs and Vision Transformers on ImageNet
(Deng et al., 2009). All models are trained without external data. With the same computation and
parameter constraint, our models are competitive to some powerful CNN-based and transformer-
based counterparts.

Network Parameters Train size Test size Top-1 Acc. (%)

ResNet-50d (He et al., 2016; 2019) 25.6M 224 224 79.5
SE-ResNeXt-50 (Xie et al., 2017; Hu et al., 2018) 27.6M 224 224 79.9
RegNet-6.4GF (Radosavovic et al., 2020) 30.6M 224 224 79.9
ResNeSt-50 (Zhang et al., 2020) 27.5M 224 224 81.1
DeiT-S (Touvron et al., 2020) 22M 224 224 79.9
T2T-ViT-14 (Yuan et al., 2021) 22M 224 224 81.5
Swin-T (Liu et al., 2021b) 29M 224 224 81.3
ViP-Small/7 25M 224 224 81.5

ResNet-101d (He et al., 2016; 2019) 44.6M 224 224 80.4
SE-ResNeXt-101 (Xie et al., 2017; Hu et al., 2018) 49.0M 224 224 80.9
RegNet-12GF (He et al., 2016; 2019) 51.8M 224 224 80.3
ResNeSt-101 (Zhang et al., 2020) 48.3M 256 256 82.9
DeepViT (Zhou et al., 2021a) 55M 224 224 83.1
ViP-Medium/7 55M 224 224 82.7

RegNet-16GF (Radosavovic et al., 2020) 83.6M 224 224 80.4
DeiT-B (Touvron et al., 2020) 86M 224 224 81.8
T2T-ViT-24 (Yuan et al., 2021) 64M 224 224 82.3
TNT-B (Han et al., 2021) 66M 224 224 82.8
ViP-Large/7 88M 224 224 83.2

NFNet (Brock et al., 2021) (86.5%), LV-ViT (Jiang et al., 2021) (86.4%), and CaiT (Touvron et al.,
2021b) (86.5%). We believe there is still a large room for improving MLP-like models, just like
what happened in the research field of vision transformers.

4.3 ABLATION ANALYSIS

In this subsection, we conduct a series of ablation experiments on fine-level information encoding,
model scaling, data augmentation, and the proposed Permutator. We take the ViP-Small/14 model
as baseline.

Table 4: Role of fine-level token representation encoding. ‘Initial Patch Size’ denotes the patch size
in the starting patch embedding module and ‘Fine Tokens’ refers to models encoding fine-level token
representations. Larger patch size means that the number of tokens fed into Permutators would be
lower as specified in Table 1. We can see that the model efficiency in speed does not change too
much when changing the initial patch size.

Models Initial Patch Size Fine Tokens Layers Parameters Throughput Top-1 Acc. (%)

ViP-Small/16 16× 16 No 18 23M 803 img/s 79.8
ViP-Small/14 14× 14 No 18 30M 789 img/s 80.6
ViP-Small/7 7× 7 Yes 18 25M 719 img/s 81.5

Importance of Fine-level Token Representation Encoding: We first show that encoding finer-
level token representations is important for MLP-like models. We demonstrate this argument in
two ways: I) Adjusting the patch size in the initial patch embedding layer and keep the backbone
unchanged; II) Halving the patch size for each patch side and introducing a few Permutators to
encode fine-level token representations. Table 4 summaries the performance for ViP-Small/16, ViP-
Small/14, and ViP-Small/7. Compared to ViP-Small/16, ViP-Small/14 has smaller initial patch size
and more input tokens to the Permutators. According to the results, ViP-Small/14 yields better
performance than ViP-Small/16 (80.5% v.s. 79.8%). Despite more tokens and more parameters
used in ViP-Small/14, the efficiency (throughput) does not change much. This indicates that we can
appropriately use smaller initial patch size to improve the model performance.
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We further reduce the initial patch size from 14 × 14 to 7 × 7. Compared to ViP-Small/14, ViP-
Small/7 adopts 4 Permutators to encode fine-level token representations (with 32 × 32 tokens). As
shown in Table 4, such a slight modification can largely boost the performance and reduce the num-
ber of learnable parameters. The top-1 accuracy is improved from 80.5% to 81.5%. This demon-
strates that encoding fine-level token representations does help in improving our model performance
but a disadvantage is that the efficiency goes down a little.

Table 5: Role of the model scale. We scale the models by increasing the model size (including
number of layers, hidden dimension). ‘Hidden Dim.’ refers to the hidden dimension in the second
stage, which is halved in the first stage. Clearly, increasing the model size can consistently improve
the model performance.

Models Layers Hidden Dim. Fine Tokens Parameters Throughput Top-1 Acc. (%)

ViP-Small/7 18 384 Yes 25M 719 img/s 81.5
ViP-Medium/7 24 512 Yes 55M 418 img/s 82.7
ViP-Large/7 36 512 Yes 88M 298 img/s 83.2

Role of the model scale: Scaling up models for deep neural networks is always an effective way
to improve model performance. Here, we show the influence of model scaling on the proposed
Vision Permutator by increasing the number of layers and hidden dimension. Table 5 lists the results
for three different versions of the proposed Vision Permutator: ViP-Small/7, ViP-Medium/7, and
ViP-Large/7. We can see that increasing the number of layers and hidden dimension yields better
results for our Vision Permutator. The ViP-Medium/7 can raise the performance of ViP-Small/7 to
82.7% with a performance gain of more than 1%. Further increasing the model size results in better
performance 83.2%.

Effect of Data Augmentations: Data augmentation has been demonstrated an effective and efficient
way to lift the model performance in deep learning (He et al., 2019; Touvron et al., 2020; Jiang et al.,
2021). Four commonly-used data augmentation methods should be Random Augmentation (Cubuk
et al., 2020), CutOut (Zhong et al., 2020), MixUp (Zhang et al., 2017), and CutMix (Yun et al., 2019).
Here, we show how each method influences the model performance. The results have been shown
in Table 6. Without any data augmentation, we achieve 75.3% top-1 accuracy for our ViP-Small/14
model. Using Random Augmentation improves the performance to 77.7% (+2.4%). Adding CutOut
lifts the result to 78.0% (+2.7%). Adding MixUp yields 80.2% top-1 accuracy (+4.9%) and the
result is further improved to 80.6% (+5.3%) by using CutMix. These experiments indicate that
data augmentation is extremely important in training Vision Permutator as happened in training
CNNs (He et al., 2019) and vision transformers (Touvron et al., 2020; Jiang et al., 2021).

Table 6: Ablation on data augmentation methods. We ablate four widely used data augmentation
methods in both CNN- and transformer-based models, including Random Augmentation (Cubuk
et al., 2020), CutOut (Zhong et al., 2020), MixUp (Zhang et al., 2017), and CutMix (Yun et al.,
2019). We can see that all 4 methods contribute to the model performance.

Data augmentation methods in training Layers Parameters Top-1 Acc. (%)

Baseline (ViP-Small/14) 16 30M 75.3
+ Random Augmentation (Cubuk et al., 2020) 18 30M 77.7 (+2.4)
+ CutOut (Zhong et al., 2020) 18 30M 78.0 (+2.7)
+ MixUp (Zhang et al., 2017) 18 30M 80.2 (+4.9)
+ CutMix (Yun et al., 2019) 18 30M 80.6 (+5.3)

Ablation on Permutator: In this paragraph, we demonstrate the importance of encoding spatial
information along the height and width dimensions separately and show how weighted Permuta-
tor helps in improving model performance. In Table 7, we summarize the results under different
Permutator settings. Detailed description on each setting can be found in the caption. We can see
that discarding either height information encoding or width information encoding leads to worse
performance (80.2% v.s. 72.8% or 72.7%). This demonstrates that encoding both height and width
information is important. In addition, we can also observe that replacing the vanilla Permute-MLP
with the Weighted Permute-MLP can further improve the performance from 80.2% to 80.6%.
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Table 7: Ablation on Vision Permutator. ‘ViP-Small/14 w/o Height’ means a ViP-Small/14 model
with the height information encoding part replaced by channel encoding (the bottom branch in Fig-
ure 2). A similar meaning holds for ‘ViP-Small/14 w/o Width.’ ‘ViP-Small/14 w/ Permute-MLP’
refers to model with the vanilla Permute-MLP.

Model Specification Layers Parameters Throughput Top-1 Acc. (%)

ViP-Small/14 w/o Height Information 18 29M 844 img/s 72.8 (-7.8)
ViP-Small/14 w/o Width Information 18 29M 843 img/s 72.7 (-7.9)
ViP-Small/14 w/ Permute-MLP 18 29M 847 img/s 80.2 (-0.4)
ViP-Small/14 w/ Weighted Permute-MLP 18 30M 789 img/s 80.6

CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel MLP-like network architecture for visual recognition, termed Vision
Permutator. We demonstrate that separately encoding the height and width information can largely
improve the model performance compared to recent MLP-like models that deem the two spatial
dimensions as one. Our experiments also give full support of this.

Despite the large improvement over concurrent popular MLP-like models, a clear downside of the
proposed Permutator is the scaling problem in spatial dimensions, which also exists in other MLP-
like models. As the shapes of the parameters in fully-connected layers are fixed, it is impossible
to process input images with arbitrary shapes. This makes MLP-like models difficult to be used in
down-stream tasks with various-sized input images.

Our future work will be continuously put on the development of MLP-like models considering the
high efficacy in parallelization. Specifically, we will continue to conquer the limitations of MLP-
like models in processing input images with arbitrary shapes and their applications in down-stream
tasks, such as object detection and semantic segmentation.
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