Tan_pytorch_segmentation/pytorch_segmentation/Activation_Function/Activate.py

141 lines
4.5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import matplotlib.pyplot as plt
import numpy as np
class ActivateFunc():
def __init__(self, x, b=1, lamb=2, alpha=1, a=2):
super(ActivateFunc, self).__init__()
self.x = x
self.b = b
self.lamb = lamb
self.alpha = alpha
self.a = a
def __init__(self, x, b=1, lamb=2, alpha=1, a=2):
super(ActivateFunc, self).__init__()
self.x = x
self.b = b
self.lamb = lamb
self.alpha = alpha
self.a = a
def Sigmoid(self):
y = np.exp(self.x) / (np.exp(self.x) + 1)
y_grad = y*(1-y)
return [y, y_grad]
def Tanh(self):
y = np.tanh(self.x)
y_grad = 1 - y * y
return [y, y_grad]
def Swish(self): #b是一个常数指定b
y = self.x * (np.exp(self.b*self.x) / (np.exp(self.b*self.x) + 1))
y_grad = np.exp(self.b*self.x)/(1+np.exp(self.b*self.x)) + self.x * (self.b*np.exp(self.b*self.x) / ((1+np.exp(self.b*self.x))*(1+np.exp(self.b*self.x))))
return [y, y_grad]
def ELU(self): # alpha是个常数指定alpha
y = np.where(self.x > 0, self.x, self.alpha * (np.exp(self.x) - 1))
y_grad = np.where(self.x > 0, 1, self.alpha * np.exp(self.x))
return [y, y_grad]
def SELU(self): # lamb大于1指定lamb和alpha
y = np.where(self.x > 0, self.lamb * self.x, self.lamb * self.alpha * (np.exp(self.x) - 1))
y_grad = np.where(self.x > 0, self.lamb*1, self.lamb * self.alpha * np.exp(self.x))
return [y, y_grad]
def ReLU(self):
y = np.where(self.x < 0, 0, self.x)
y_grad = np.where(self.x < 0, 0, 1)
return [y, y_grad]
def PReLU(self): # a大于1指定a
y = np.where(self.x < 0, self.x / self.a, self.x)
y_grad = np.where(self.x < 0, 1 / self.a, 1)
return [y, y_grad]
def LeakyReLU(self): # a大于1指定a
y = np.where(self.x < 0, self.x / self.a, self.x)
y_grad = np.where(self.x < 0, 1 / self.a, 1)
return [y, y_grad]
def Mish(self):
f = 1 + np.exp(x)
y = self.x * ((f*f-1) / (f*f+1))
y_grad = (f*f-1) / (f*f+1) + self.x*(4*f*(f-1)) / ((f*f+1)*(f*f+1))
return [y, y_grad]
def ReLU6(self):
y = np.where(np.where(self.x < 0, 0, self.x) > 6, 6, np.where(self.x < 0, 0, self.x))
y_grad = np.where(self.x > 6, 0, np.where(self.x < 0, 0, 1))
return [y, y_grad]
def Hard_Swish(self):
f = self.x + 3
relu6 = np.where(np.where(f < 0, 0, f) > 6, 6, np.where(f < 0, 0, f))
relu6_grad = np.where(f > 6, 0, np.where(f < 0, 0, 1))
y = self.x * relu6 / 6
y_grad = relu6 / 6 + self.x * relu6_grad / 6
return [y, y_grad]
def Hard_Sigmoid(self):
f = (2 * self.x + 5) / 10
y = np.where(np.where(f > 1, 1, f) < 0, 0, np.where(f > 1, 1, f))
y_grad = np.where(f > 0, np.where(f >= 1, 0, 1 / 5), 0)
return [y, y_grad]
def PlotActiFunc(x, y, title):
plt.grid(which='minor', alpha=0.2)
plt.grid(which='major', alpha=0.5)
plt.plot(x, y)
plt.title(title)
plt.show()
def PlotMultiFunc(x, y):
plt.grid(which='minor', alpha=0.2)
plt.grid(which='major', alpha=0.5)
plt.plot(x, y)
if __name__ == '__main__':
x = np.arange(-10, 10, 0.01)
activateFunc = ActivateFunc(x)
activateFunc.b = 1
PlotActiFunc(x, activateFunc.Sigmoid()[0], title='Sigmoid')
PlotActiFunc(x, activateFunc.Tanh()[0], title='Tanh')
PlotActiFunc(x, activateFunc.ReLU()[0], title='ReLU')
PlotActiFunc(x, activateFunc.LeakyReLU()[0], title='LeakyReLU')
PlotActiFunc(x, activateFunc.ReLU6()[0], title='ReLU6')
PlotActiFunc(x, activateFunc.Swish()[0], title='Swish')
PlotActiFunc(x, activateFunc.Mish()[0], title='Mish')
PlotActiFunc(x, activateFunc.ELU()[0], title='ELU')
PlotActiFunc(x, activateFunc.Hard_Swish()[0], title='Hard_Swish')
PlotActiFunc(x, activateFunc.Hard_Sigmoid()[0], title='Hard_Sigmoid')
plt.figure(1)
PlotMultiFunc(x, activateFunc.Swish()[0])
PlotMultiFunc(x, activateFunc.Mish()[0])
plt.legend(['Swish', 'Mish'])
plt.figure(2)
PlotMultiFunc(x, activateFunc.Swish()[0])
PlotMultiFunc(x, activateFunc.Hard_Swish()[0])
plt.legend(['Swish', 'Hard-Swish'])
plt.figure(3)
PlotMultiFunc(x, activateFunc.Sigmoid()[0])
PlotMultiFunc(x, activateFunc.Hard_Sigmoid()[0])
plt.legend(['Sigmoid', 'Hard-Sigmoid'])
plt.figure(4)
PlotMultiFunc(x, activateFunc.ReLU()[0])
PlotMultiFunc(x, activateFunc.ReLU6()[0])
plt.legend(['ReLU', 'ReLU6'])
plt.show()