377 lines
19 KiB
Python
377 lines
19 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
from einops import rearrange, repeat
|
||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||
import timm
|
||
from timm.models import MobileNetV3
|
||
|
||
class ConvBNReLU(nn.Sequential):
|
||
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d,
|
||
bias=False):
|
||
super(ConvBNReLU, self).__init__(
|
||
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
|
||
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
|
||
norm_layer(out_channels),
|
||
nn.ReLU6()
|
||
)
|
||
|
||
|
||
|
||
class ConvBN(nn.Sequential):
|
||
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d,
|
||
bias=False):
|
||
super(ConvBN, self).__init__(
|
||
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
|
||
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
|
||
norm_layer(out_channels)
|
||
)
|
||
|
||
|
||
|
||
class Conv(nn.Sequential):
|
||
def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):
|
||
super(Conv, self).__init__(
|
||
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
|
||
dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
|
||
)
|
||
|
||
|
||
class SeparableConvBNReLU(nn.Sequential):
|
||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
|
||
norm_layer=nn.BatchNorm2d):
|
||
super(SeparableConvBNReLU, self).__init__(
|
||
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
|
||
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
|
||
groups=in_channels, bias=False),
|
||
norm_layer(out_channels),
|
||
# 逐点卷积
|
||
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
|
||
nn.ReLU6()
|
||
)
|
||
|
||
|
||
class SeparableConvBN(nn.Sequential):
|
||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1,
|
||
norm_layer=nn.BatchNorm2d):
|
||
super(SeparableConvBN, self).__init__(
|
||
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
|
||
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
|
||
groups=in_channels, bias=False),
|
||
norm_layer(out_channels),
|
||
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
||
)
|
||
|
||
|
||
class SeparableConv(nn.Sequential):
|
||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
||
super(SeparableConv, self).__init__(
|
||
nn.Conv2d(in_channels, in_channels, kernel_size, stride=stride, dilation=dilation,
|
||
padding=((stride - 1) + dilation * (kernel_size - 1)) // 2,
|
||
groups=in_channels, bias=False),
|
||
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
||
)
|
||
|
||
|
||
|
||
class Mlp(nn.Module):
|
||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):
|
||
super().__init__()
|
||
out_features = out_features or in_features
|
||
# 这行代码的意思是,如果out_features已经被提供了一个值,那么out_features就等于这个提供的值。如果没有为out_features提供值(即out_features为None),
|
||
# 那么out_features将被设置为in_features的值。
|
||
|
||
hidden_features = hidden_features or in_features
|
||
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True)
|
||
|
||
self.act = act_layer()
|
||
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True)
|
||
self.drop = nn.Dropout(drop, inplace=True)
|
||
|
||
|
||
def forward(self, x):
|
||
x = self.fc1(x)
|
||
x = self.act(x)
|
||
x = self.drop(x)
|
||
x = self.fc2(x)
|
||
x = self.drop(x)
|
||
return x
|
||
|
||
class GlobalLocalAttention(nn.Module):
|
||
def __init__(self,
|
||
dim=256,
|
||
num_heads=16,
|
||
qkv_bias=False,
|
||
window_size=8,
|
||
relative_pos_embedding=True
|
||
):
|
||
|
||
super().__init__()
|
||
self.num_heads = num_heads # 初始化注意力头的数量
|
||
head_dim = dim // self.num_heads # 计算每个注意力头的特征维度
|
||
self.scale = head_dim ** -0.5 # 计算缩放因子,用于注意力计算中的点积。
|
||
self.ws = window_size # 初始化局部窗口的大小。
|
||
|
||
self.qkv = Conv(dim, 3 * dim, kernel_size=1, bias=qkv_bias) # 初始化一个卷积层,用于生成Query、Key和Value。
|
||
self.local1 = ConvBN(dim, dim, kernel_size=3) # 初始化第一个卷积层和批量归一化层,用于处理局部特征。
|
||
self.local2 = ConvBN(dim, dim, kernel_size=1) # 初始化第二个卷积层和批量归一化层,用于处理局部特征。
|
||
self.proj = SeparableConvBN(dim, dim, kernel_size=window_size) # 初始化一个可分离卷积层,用于投影输出。
|
||
|
||
self.attn_x = nn.AvgPool2d(kernel_size=(window_size, 1), stride=1,
|
||
padding=(window_size // 2 - 1, 0)) # 初始化水平方向的平均池化层,用于整合全局信息。
|
||
self.attn_y = nn.AvgPool2d(kernel_size=(1, window_size), stride=1,
|
||
padding=(0, window_size // 2 - 1)) # 初始化垂直方向的平均池化层,用于整合全局信息。
|
||
self.relative_pos_embedding = relative_pos_embedding
|
||
# 初始化是否使用相对位置嵌入的标志。
|
||
if self.relative_pos_embedding: # 如果使用了相对位置嵌入,会定义一个相对位置偏置表
|
||
# define a parameter table of relative position bias
|
||
self.relative_position_bias_table = nn.Parameter(
|
||
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
||
|
||
coords_h = torch.arange(self.ws) # 创建一个包含窗口大小ws内所有水平坐标的张量。
|
||
coords_w = torch.arange(self.ws) # 创建一个包含窗口大小ws内所有垂直坐标的张量。
|
||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww #使用meshgrid函数创建一个包含所有水平和垂直坐标的张量。
|
||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww将三维坐标张量展平为一维张量。
|
||
|
||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
||
# 2, Wh*Ww, Wh*Ww 计算所有坐标对之间的相对位置,即每个坐标相对于其他所有坐标的差
|
||
|
||
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
||
|
||
relative_coords[:, :, 0] += self.ws - 1 # shift to start from 0将相对坐标的第一个维度增加ws - 1,以确保坐标从0开始。
|
||
relative_coords[:, :, 1] += self.ws - 1 # 将相对坐标的第二个维度增加ws - 1,以确保坐标从0开始。
|
||
relative_coords[:, :, 0] *= 2 * self.ws - 1 # 调整相对坐标的第一个维度,使其范围变为[-2*ws+1, 2*ws-1]。
|
||
|
||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww将相对坐标的两个维度合并为一个单一的索引,用于访问相对位置偏置表。
|
||
self.register_buffer("relative_position_index", relative_position_index) # 将相对位置索引注册为一个缓冲区,以便在模型训练过程中重复使用。
|
||
|
||
trunc_normal_(self.relative_position_bias_table, std=.02)
|
||
# 使用trunc_normal_函数初始化相对位置偏置表,这是一种常用的初始化技术,用于生成服从截断正态分布的参数。
|
||
|
||
def pad(self, x, ps): # 定义一个函数,接受一个特征图x和一个填充大小ps作为参数。
|
||
_, _, H, W = x.size() # 获取特征图x的形状,并提取高度H和宽度W。
|
||
if W % ps != 0: # 如果特征图的宽度W不能被填充大小ps整除,则需要进行填充。
|
||
x = F.pad(x, (0, ps - W % ps),
|
||
mode='reflect') # 使用F.pad函数在特征图的右侧添加填充,填充大小为ps - W % ps,填充模式为'reflect',这意味着新的像素值将反映原始像素值。
|
||
if H % ps != 0: # 如果特征图的高度H不能被填充大小ps整除,则需要进行额外的填充。
|
||
x = F.pad(x, (0, 0, 0, ps - H % ps),
|
||
mode='reflect') # 使用F.pad函数在特征图的下方添加填充,填充大小为ps - H % ps,填充模式为'reflect'。
|
||
return x # 返回填充后的特征图。
|
||
|
||
def pad_out(self, x): # 定义一个函数,接受一个特征图x作为参数。
|
||
x = F.pad(x, pad=(0, 1, 0, 1), mode='reflect') # 使用F.pad函数在特征图的右侧和下方添加填充,填充大小为1,填充模式为'reflect'。
|
||
return x
|
||
|
||
def forward(self, x):
|
||
B, C, H, W = x.shape
|
||
local = self.local2(x) + self.local1(x) # 计算局部特征,通过两个卷积层。
|
||
x = self.pad(x, self.ws) # 填充输入特征图以适应窗口大小。
|
||
B, C, Hp, Wp = x.shape # 获取填充后的特征图的形状。
|
||
qkv = self.qkv(x) # 生成Query、Key和Value。
|
||
q, k, v = rearrange(qkv, 'b (qkv h d) (hh ws1) (ww ws2) -> qkv (b hh ww) h (ws1 ws2) d', h=self.num_heads,
|
||
d=C // self.num_heads, hh=Hp // self.ws, ww=Wp // self.ws, qkv=3, ws1=self.ws,
|
||
ws2=self.ws) # 重新排列Query、Key和Value以适应注意力机制的计算。
|
||
dots = (q @ k.transpose(-2, -1)) * self.scale # 计算点积,并应用缩放因子。
|
||
# 如果使用了相对位置嵌入,将相对位置偏置加到点积上。
|
||
if self.relative_pos_embedding: # 如果启用了相对位置嵌入
|
||
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||
self.ws * self.ws, self.ws * self.ws, -1) # Wh*Ww,Wh*Ww,nH获取相对位置偏置表,并根据相对位置索引进行调整。
|
||
relative_position_bias = relative_position_bias.permute(2, 0,
|
||
1).contiguous() # nH, Wh*Ww, Wh*Ww重新排列相对位置偏置,以便与点积的形状匹配
|
||
dots += relative_position_bias.unsqueeze(0) # 将相对位置偏置加到点积上。
|
||
|
||
attn = dots.softmax(dim=-1) # 应用softmax函数计算注意力权重。
|
||
attn = attn @ v # 注意力权重应用于Value。
|
||
|
||
attn = rearrange(attn, '(b hh ww) h (ws1 ws2) d -> b (h d) (hh ws1) (ww ws2)', h=self.num_heads,
|
||
d=C // self.num_heads, hh=Hp // self.ws, ww=Wp // self.ws, ws1=self.ws, ws2=self.ws)
|
||
attn = attn[:, :, :H, :W] # 裁剪注意力权重,使其与原始输入特征图的形状匹配。
|
||
|
||
out = self.attn_x(F.pad(attn, pad=(0, 0, 0, 1), mode='reflect')) + \
|
||
self.attn_y(F.pad(attn, pad=(0, 1, 0, 0), mode='reflect'))
|
||
out = out + local # 将局部特征与全局特征相加。
|
||
out = self.pad_out(out) # 添加额外的填充,以适应输出特征图的尺寸。
|
||
out = self.proj(out)
|
||
# print(out.size())
|
||
out = out[:, :, :H, :W]
|
||
return out
|
||
|
||
|
||
class Block(nn.Module):
|
||
def __init__(self, dim=256, num_heads=16, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
|
||
drop_path=0., act_layer=nn.ReLU6, norm_layer=nn.BatchNorm2d, window_size=8):
|
||
super().__init__()
|
||
self.norm1 = norm_layer(dim)
|
||
self.attn = GlobalLocalAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, window_size=window_size)
|
||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, act_layer=act_layer,
|
||
drop=drop)
|
||
self.norm2 = norm_layer(dim)
|
||
def forward(self, x):
|
||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||
return x
|
||
|
||
class WF(nn.Module):
|
||
def __init__(self, in_channels=128, decode_channels=128, eps=1e-8):
|
||
super(WF, self).__init__()
|
||
self.pre_conv = Conv(in_channels, decode_channels, kernel_size=1)
|
||
|
||
self.weights = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
|
||
self.eps = eps
|
||
self.post_conv = ConvBNReLU(decode_channels, decode_channels, kernel_size=3)
|
||
|
||
def forward(self, x, res):
|
||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
||
weights = nn.ReLU()(
|
||
self.weights)
|
||
fuse_weights = weights / (torch.sum(weights, dim=0) + self.eps)
|
||
x = fuse_weights[0] * self.pre_conv(res) + fuse_weights[1] * x
|
||
x = self.post_conv(x)
|
||
return x
|
||
|
||
|
||
class FeatureRefinementHead(nn.Module):
|
||
def __init__(self, in_channels=64, decode_channels=64):
|
||
super().__init__()
|
||
self.pre_conv = Conv(in_channels, decode_channels, kernel_size=1)
|
||
|
||
self.weights = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
|
||
self.eps = 1e-8
|
||
|
||
self.post_conv = ConvBNReLU(decode_channels, decode_channels, kernel_size=3)
|
||
self.pa = nn.Sequential(
|
||
nn.Conv2d(decode_channels, decode_channels, kernel_size=3, padding=1, groups=decode_channels),
|
||
nn.Sigmoid())
|
||
self.ca = nn.Sequential(nn.AdaptiveAvgPool2d(1),
|
||
Conv(decode_channels, decode_channels // 16, kernel_size=1),
|
||
nn.ReLU6(),
|
||
Conv(decode_channels // 16, decode_channels, kernel_size=1),
|
||
nn.Sigmoid())
|
||
|
||
self.shortcut = ConvBN(decode_channels, decode_channels, kernel_size=1)
|
||
self.proj = SeparableConvBN(decode_channels, decode_channels, kernel_size=3)
|
||
self.act = nn.ReLU6()
|
||
|
||
def forward(self, x, res):
|
||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
|
||
weights = nn.ReLU()(self.weights)
|
||
fuse_weights = weights / (torch.sum(weights, dim=0) + self.eps)
|
||
x = fuse_weights[0] * self.pre_conv(res) + fuse_weights[1] * x
|
||
x = self.post_conv(x)
|
||
shortcut = self.shortcut(x)
|
||
pa = self.pa(x) * x
|
||
ca = self.ca(x) * x
|
||
x = pa + ca
|
||
x = self.proj(x) + shortcut
|
||
x = self.act(x)
|
||
return x
|
||
|
||
class AuxHead(nn.Module):
|
||
def __init__(self, in_channels=64, num_classes=8):
|
||
super().__init__()
|
||
self.conv = ConvBNReLU(in_channels, in_channels)
|
||
self.drop = nn.Dropout(0.1)
|
||
self.conv_out = Conv(in_channels, num_classes, kernel_size=1)
|
||
|
||
def forward(self, x, h, w):
|
||
feat = self.conv(x)
|
||
feat = self.drop(feat)
|
||
feat = self.conv_out(feat)
|
||
feat = F.interpolate(feat, size=(h, w), mode='bilinear', align_corners=False)
|
||
return feat
|
||
|
||
class Decoder(nn.Module):
|
||
def __init__(self,
|
||
encoder_channels=(64, 128, 256, 512),
|
||
decode_channels=64,
|
||
dropout=0.1,
|
||
window_size=8,
|
||
num_classes=6):
|
||
super(Decoder, self).__init__()
|
||
self.pre_conv = ConvBN(encoder_channels[-1], decode_channels, kernel_size=1)
|
||
self.b4 = Block(dim=decode_channels, num_heads=8, window_size=window_size)
|
||
self.b3 = Block(dim=decode_channels, num_heads=8, window_size=window_size)
|
||
self.p3 = WF(encoder_channels[-2], decode_channels) # 三个WS模块
|
||
self.b2 = Block(dim=decode_channels, num_heads=8, window_size=window_size)
|
||
self.p2 = WF(encoder_channels[-3], decode_channels)
|
||
|
||
if self.training:
|
||
self.up4 = nn.UpsamplingBilinear2d(scale_factor=4)
|
||
self.up3 = nn.UpsamplingBilinear2d(scale_factor=2)
|
||
self.aux_head = AuxHead(decode_channels, num_classes)
|
||
self.p1 = FeatureRefinementHead(encoder_channels[-4], decode_channels)
|
||
self.segmentation_head = nn.Sequential(ConvBNReLU(decode_channels, decode_channels),
|
||
nn.Dropout2d(p=dropout, inplace=True),
|
||
Conv(decode_channels, num_classes, kernel_size=1))
|
||
self.init_weight()
|
||
|
||
def forward(self, res1, res2, res3, res4, h, w):
|
||
if self.training == True:
|
||
x = self.b4(self.pre_conv(res4))
|
||
h4 = self.up4(x)
|
||
x = self.p3(x, res3)
|
||
x = self.b3(x)
|
||
h3 = self.up3(x)
|
||
x = self.p2(x, res2)
|
||
x = self.b2(x)
|
||
h2 = x
|
||
x = self.p1(x, res1)
|
||
x = self.segmentation_head(x)
|
||
x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=False)
|
||
ah = h4 + h3 + h2
|
||
ah = self.aux_head(ah, h, w)
|
||
return x, ah
|
||
else:
|
||
x = self.b4(self.pre_conv(res4))
|
||
x = self.p3(x, res3)
|
||
x = self.b3(x)
|
||
|
||
x = self.p2(x, res2)
|
||
x = self.b2(x)
|
||
|
||
x = self.p1(x, res1)
|
||
|
||
x = self.segmentation_head(x)
|
||
x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=False)
|
||
|
||
return x
|
||
|
||
def init_weight(self):
|
||
for m in self.children():
|
||
if isinstance(m, nn.Conv2d):
|
||
nn.init.kaiming_normal_(m.weight, a=1)
|
||
if m.bias is not None:
|
||
nn.init.constant_(m.bias, 0)
|
||
|
||
|
||
class FuseDisNet(nn.Module):
|
||
def __init__(self,
|
||
decode_channels=64,
|
||
dropout=0.1,
|
||
backbone_name='swsl_resnet18',
|
||
pretrained=True,
|
||
window_size=8,
|
||
num_classes=6
|
||
):
|
||
super().__init__()
|
||
|
||
self.backbone = timm.create_model(backbone_name, features_only=True, output_stride=32,
|
||
out_indices=(1, 2, 3, 4), pretrained=pretrained)
|
||
|
||
encoder_channels = self.backbone.feature_info.channels()
|
||
|
||
self.decoder = Decoder(encoder_channels, decode_channels, dropout, window_size, num_classes)
|
||
# 定义了一个解码器Decoder,传入了主干网络提取的特征通道数、解码器的参数等。
|
||
|
||
def forward(self, x):
|
||
h, w = x.size()[-2:]
|
||
|
||
res1, res2, res3, res4 = self.backbone(x)
|
||
if self.training:
|
||
x, ah = self.decoder(res1, res2, res3, res4, h, w)
|
||
return x, ah
|
||
else:
|
||
x = self.decoder(res1, res2, res3, res4, h, w)
|
||
return x |