63 lines
2.2 KiB
Python
63 lines
2.2 KiB
Python
# A2-Nets: Double Attention Networks
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import init
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class DoubleAttention(nn.Module):
|
|
|
|
def __init__(self, in_channels, c_m, c_n, reconstruct=True):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.reconstruct = reconstruct
|
|
self.c_m = c_m
|
|
self.c_n = c_n
|
|
self.convA = nn.Conv2d(in_channels, c_m, 1)
|
|
self.convB = nn.Conv2d(in_channels, c_n, 1)
|
|
self.convV = nn.Conv2d(in_channels, c_n, 1)
|
|
if self.reconstruct:
|
|
self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1)
|
|
self.init_weights()
|
|
|
|
def init_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
init.kaiming_normal_(m.weight, mode='fan_out')
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
init.constant_(m.weight, 1)
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
init.normal_(m.weight, std=0.001)
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
|
|
def forward(self, x):
|
|
b, c, h, w = x.shape
|
|
assert c == self.in_channels
|
|
A = self.convA(x) # b,c_m,h,w
|
|
B = self.convB(x) # b,c_n,h,w
|
|
V = self.convV(x) # b,c_n,h,w
|
|
tmpA = A.view(b, self.c_m, -1)
|
|
attention_maps = F.softmax(B.view(b, self.c_n, -1))
|
|
attention_vectors = F.softmax(V.view(b, self.c_n, -1))
|
|
# step 1: feature gating
|
|
global_descriptors = torch.bmm(tmpA, attention_maps.permute(0, 2, 1)) # b.c_m,c_n
|
|
# step 2: feature distribution
|
|
tmpZ = global_descriptors.matmul(attention_vectors) # b,c_m,h*w
|
|
tmpZ = tmpZ.view(b, self.c_m, h, w) # b,c_m,h,w
|
|
if self.reconstruct:
|
|
tmpZ = self.conv_reconstruct(tmpZ)
|
|
|
|
return tmpZ
|
|
|
|
|
|
# 输入 N C H W, 输出 N C H W
|
|
if __name__ == '__main__':
|
|
block = DoubleAttention(64, 128, 128)
|
|
input = torch.rand(1, 64, 64, 64)
|
|
output = block(input)
|
|
print(input.size(), output.size())
|