76 lines
2.5 KiB
Python
76 lines
2.5 KiB
Python
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.functional import norm
|
|
from torch.nn import init
|
|
|
|
|
|
def XNorm(x, gamma):
|
|
norm_tensor = torch.norm(x, 2, -1, True)
|
|
return x * gamma / norm_tensor
|
|
|
|
|
|
class UFOAttention(nn.Module):
|
|
'''
|
|
Scaled dot-product attention
|
|
'''
|
|
|
|
def __init__(self, d_model, d_k, d_v, h, dropout=.1):
|
|
'''
|
|
:param d_model: Output dimensionality of the model
|
|
:param d_k: Dimensionality of queries and keys
|
|
:param d_v: Dimensionality of values
|
|
:param h: Number of heads
|
|
'''
|
|
super(UFOAttention, self).__init__()
|
|
self.fc_q = nn.Linear(d_model, h * d_k)
|
|
self.fc_k = nn.Linear(d_model, h * d_k)
|
|
self.fc_v = nn.Linear(d_model, h * d_v)
|
|
self.fc_o = nn.Linear(h * d_v, d_model)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.gamma = nn.Parameter(torch.randn((1, h, 1, 1)))
|
|
|
|
self.d_model = d_model
|
|
self.d_k = d_k
|
|
self.d_v = d_v
|
|
self.h = h
|
|
|
|
self.init_weights()
|
|
|
|
def init_weights(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
init.kaiming_normal_(m.weight, mode='fan_out')
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
init.constant_(m.weight, 1)
|
|
init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.Linear):
|
|
init.normal_(m.weight, std=0.001)
|
|
if m.bias is not None:
|
|
init.constant_(m.bias, 0)
|
|
|
|
def forward(self, queries, keys, values):
|
|
b_s, nq = queries.shape[:2]
|
|
nk = keys.shape[1]
|
|
|
|
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3) # (b_s, h, nq, d_k)
|
|
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1) # (b_s, h, d_k, nk)
|
|
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3) # (b_s, h, nk, d_v)
|
|
|
|
kv = torch.matmul(k, v) # bs,h,c,c
|
|
kv_norm = XNorm(kv, self.gamma) # bs,h,c,c
|
|
q_norm = XNorm(q, self.gamma) # bs,h,n,c
|
|
out = torch.matmul(q_norm, kv_norm).permute(0, 2, 1, 3).contiguous().view(b_s, nq, self.h * self.d_v)
|
|
out = self.fc_o(out) # (b_s, nq, d_model)
|
|
|
|
return out
|
|
|
|
|
|
if __name__ == '__main__':
|
|
block = UFOAttention(d_model=512, d_k=512, d_v=512, h=8).cuda()
|
|
input = torch.rand(64, 64, 512).cuda()
|
|
output = block(input, input, input)
|
|
print(input.size(), output.size())
|