Tan_pytorch_segmentation/pytorch_segmentation/PV_Model/Efficient Attention.py

65 lines
2.1 KiB
Python

import torch
import torch.nn as nn
class Attention(nn.Module):
def __init__(self,
dim,
num_heads=8,
sr_ratio=1):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.dim = dim
self.q = nn.Conv2d(dim, dim, kernel_size=1, bias=True)
self.kv = nn.Conv2d(dim, dim * 2, kernel_size=1, bias=True)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio + 1, stride=sr_ratio, padding=sr_ratio // 2, groups=dim)
self.sr_norm = nn.LayerNorm(dim, eps=1e-6)
self.up = nn.Sequential(
nn.Conv2d(dim, sr_ratio * sr_ratio * dim, kernel_size=3, stride=1, padding=1, groups=dim),
nn.PixelShuffle(upscale_factor=sr_ratio)
)
self.up_norm = nn.LayerNorm(dim, eps=1e-6)
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
def forward(self, x):
B, C, H, W = x.shape
N = H * W
q = self.q(x).reshape(B, self.num_heads, C // self.num_heads, N).permute(0, 1, 3, 2)
if self.sr_ratio > 1:
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
x = self.sr_norm(x)
x = x.permute(0, 2, 1).reshape(B, C, H // self.sr_ratio, W // self.sr_ratio)
else:
x = x.reshape(B, C, N).permute(0, 2, 1)
kv = self.kv(x).reshape(B, 2, self.num_heads, C // self.num_heads, -1).permute(1, 0, 2, 4, 3)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, C, H, W)
identity = v.transpose(-1, -2).reshape(B, C, H // self.sr_ratio, W // self.sr_ratio)
identity = self.up(identity)
identity = identity.flatten(2).transpose(1, 2).reshape(B, C, H, W)
x = self.proj(x + identity)
return x
# 使用示例
model = Attention(dim=256, num_heads=16, sr_ratio=2)
input_tensor = torch.randn(1, 256, 64, 64) # 假设输入形状为(B, C, H, W)
output = model(input_tensor)
print(output.shape)