78 lines
2.4 KiB
Python
78 lines
2.4 KiB
Python
import os
|
|
import time
|
|
|
|
import torch
|
|
from torchvision import transforms
|
|
import numpy as np
|
|
from PIL import Image
|
|
|
|
from src import UNet
|
|
|
|
|
|
def time_synchronized():
|
|
torch.cuda.synchronize() if torch.cuda.is_available() else None
|
|
return time.time()
|
|
|
|
|
|
def main():
|
|
classes = 1 # exclude background
|
|
weights_path = "./save_weights/best_model.pth"
|
|
img_path = "./DRIVE/test/images/01_test.tif"
|
|
roi_mask_path = "./DRIVE/test/mask/01_test_mask.gif"
|
|
assert os.path.exists(weights_path), f"weights {weights_path} not found."
|
|
assert os.path.exists(img_path), f"image {img_path} not found."
|
|
assert os.path.exists(roi_mask_path), f"image {roi_mask_path} not found."
|
|
|
|
mean = (0.709, 0.381, 0.224)
|
|
std = (0.127, 0.079, 0.043)
|
|
|
|
# get devices
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
print("using {} device.".format(device))
|
|
|
|
# create model
|
|
model = UNet(in_channels=3, num_classes=classes+1, base_c=32)
|
|
|
|
# load weights
|
|
model.load_state_dict(torch.load(weights_path, map_location='cpu')['model'])
|
|
model.to(device)
|
|
|
|
# load roi mask
|
|
roi_img = Image.open(roi_mask_path).convert('L')
|
|
roi_img = np.array(roi_img)
|
|
|
|
# load image
|
|
original_img = Image.open(img_path).convert('RGB')
|
|
|
|
# from pil image to tensor and normalize
|
|
data_transform = transforms.Compose([transforms.ToTensor(),
|
|
transforms.Normalize(mean=mean, std=std)])
|
|
img = data_transform(original_img)
|
|
# expand batch dimension
|
|
img = torch.unsqueeze(img, dim=0)
|
|
|
|
model.eval() # 进入验证模式
|
|
with torch.no_grad():
|
|
# init model
|
|
img_height, img_width = img.shape[-2:]
|
|
init_img = torch.zeros((1, 3, img_height, img_width), device=device)
|
|
model(init_img)
|
|
|
|
t_start = time_synchronized()
|
|
output = model(img.to(device))
|
|
t_end = time_synchronized()
|
|
print("inference time: {}".format(t_end - t_start))
|
|
|
|
prediction = output['out'].argmax(1).squeeze(0)
|
|
prediction = prediction.to("cpu").numpy().astype(np.uint8)
|
|
# 将前景对应的像素值改成255(白色)
|
|
prediction[prediction == 1] = 255
|
|
# 将不敢兴趣的区域像素设置成0(黑色)
|
|
prediction[roi_img == 0] = 0
|
|
mask = Image.fromarray(prediction)
|
|
mask.save("test_result.png")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|