renewable_eva/get_miou.py

62 lines
3.1 KiB
Python
Raw Normal View History

2024-06-18 10:59:34 +08:00
import os
from PIL import Image
from tqdm import tqdm
from deeplab import DeeplabV3
from utils.utils_metrics import compute_mIoU, show_results
'''
进行指标评估需要注意以下几点
1该文件生成的图为灰度图因为值比较小按照PNG形式的图看是没有显示效果的所以看到近似全黑的图是正常的
2该文件计算的是验证集的miou当前该库将测试集当作验证集使用不单独划分测试集
'''
if __name__ == "__main__":
#---------------------------------------------------------------------------#
# miou_mode用于指定该文件运行时计算的内容
# miou_mode为0代表整个miou计算流程包括获得预测结果、计算miou。
# miou_mode为1代表仅仅获得预测结果。
# miou_mode为2代表仅仅计算miou。
#---------------------------------------------------------------------------#
miou_mode = 0
#------------------------------#
# 分类个数+1、如2+1
#------------------------------#
num_classes = 47
#--------------------------------------------#
# 区分的种类和json_to_dataset里面的一样
#--------------------------------------------#
name_classes = ["_background_", "pl5", "pl20", "pl30", "pl40", "pl50", "pl60", "pl70", "pl80", "pl100", "pl120", "pm20", "pm55","pr40","p11", "pn", "pne", "p26", "i2", "i4", "i5", "ip", "il60", "il80", "il100", "p5", "p10", "p23", "p3", "pg", "p19", "p12", "p6", "p27", "ph4", "ph4.5", "ph5", "pm30", "w55", "w59", "w13", "w57", "w32", "wo", "io", "po", "indicative"]
# name_classes = ["_background_","cat","dog"]
#-------------------------------------------------------#
# 指向VOC数据集所在的文件夹
# 默认指向根目录下的VOC数据集
#-------------------------------------------------------#
VOCdevkit_path = 'VOCdevkit'
image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Segmentation/val.txt"),'r').read().splitlines()
gt_dir = os.path.join(VOCdevkit_path, "VOC2007/SegmentationClass/")
miou_out_path = "miou_out"
pred_dir = os.path.join(miou_out_path, 'detection-results')
if miou_mode == 0 or miou_mode == 1:
if not os.path.exists(pred_dir):
os.makedirs(pred_dir)
print("Load model.")
deeplab = DeeplabV3()
print("Load model done.")
print("Get predict result.")
for image_id in tqdm(image_ids):
image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/"+image_id+".jpg")
image = Image.open(image_path)
image = deeplab.get_miou_png(image)
image.save(os.path.join(pred_dir, image_id + ".png"))
print("Get predict result done.")
if miou_mode == 0 or miou_mode == 2:
print("Get miou.")
hist, IoUs, PA_Recall, Precision = compute_mIoU(gt_dir, pred_dir, image_ids, num_classes, name_classes) # 执行计算mIoU的函数
print("Get miou done.")
show_results(miou_out_path, hist, IoUs, PA_Recall, Precision, name_classes)