166 lines
8.9 KiB
Python
166 lines
8.9 KiB
Python
#----------------------------------------------------#
|
||
# 将单张图片预测、摄像头检测和FPS测试功能
|
||
# 整合到了一个py文件中,通过指定mode进行模式的修改。
|
||
#----------------------------------------------------#
|
||
import time
|
||
|
||
import cv2
|
||
import numpy as np
|
||
from PIL import Image
|
||
|
||
from deeplab import DeeplabV3
|
||
|
||
if __name__ == "__main__":
|
||
#-------------------------------------------------------------------------#
|
||
# 如果想要修改对应种类的颜色,到__init__函数里修改self.colors即可
|
||
#-------------------------------------------------------------------------#
|
||
deeplab = DeeplabV3()
|
||
#----------------------------------------------------------------------------------------------------------#
|
||
# mode用于指定测试的模式:
|
||
# 'predict' 表示单张图片预测,如果想对预测过程进行修改,如保存图片,截取对象等,可以先看下方详细的注释
|
||
# 'video' 表示视频检测,可调用摄像头或者视频进行检测,详情查看下方注释。
|
||
# 'fps' 表示测试fps,使用的图片是img里面的street.jpg,详情查看下方注释。
|
||
# 'dir_predict' 表示遍历文件夹进行检测并保存。默认遍历img文件夹,保存img_out文件夹,详情查看下方注释。
|
||
# 'export_onnx' 表示将模型导出为onnx,需要pytorch1.7.1以上。
|
||
#----------------------------------------------------------------------------------------------------------#
|
||
mode = "predict"
|
||
#-------------------------------------------------------------------------#
|
||
# count 指定了是否进行目标的像素点计数(即面积)与比例计算
|
||
# name_classes 区分的种类,和json_to_dataset里面的一样,用于打印种类和数量
|
||
#
|
||
# count、name_classes仅在mode='predict'时有效
|
||
#-------------------------------------------------------------------------#
|
||
count = False
|
||
name_classes = ["background", "pl5", "pl20", "pl30", "pl40", "pl50", "pl60", "pl70", "pl80", "pl100", "pl120", "pm20", "pm55","pr40","p11", "pn", "pne", "p26", "i2", "i4", "i5", "ip", "il60", "il80", "il100", "p5", "p10", "p23", "p3", "pg", "p19", "p12", "p6", "p27", "ph4", "ph4.5", "ph5", "pm30", "w55", "w59", "w13", "w57", "w32", "wo", "io", "po", "indicative"]
|
||
# name_classes = ["background","cat","dog"]
|
||
#----------------------------------------------------------------------------------------------------------#
|
||
# video_path 用于指定视频的路径,当video_path=0时表示检测摄像头
|
||
# 想要检测视频,则设置如video_path = "xxx.mp4"即可,代表读取出根目录下的xxx.mp4文件。
|
||
# video_save_path 表示视频保存的路径,当video_save_path=""时表示不保存
|
||
# 想要保存视频,则设置如video_save_path = "yyy.mp4"即可,代表保存为根目录下的yyy.mp4文件。
|
||
# video_fps 用于保存的视频的fps
|
||
#
|
||
# video_path、video_save_path和video_fps仅在mode='video'时有效
|
||
# 保存视频时需要ctrl+c退出或者运行到最后一帧才会完成完整的保存步骤。
|
||
#----------------------------------------------------------------------------------------------------------#
|
||
video_path = 0
|
||
video_save_path = ""
|
||
video_fps = 25.0
|
||
#----------------------------------------------------------------------------------------------------------#
|
||
# test_interval 用于指定测量fps的时候,图片检测的次数。理论上test_interval越大,fps越准确。
|
||
# fps_image_path 用于指定测试的fps图片
|
||
#
|
||
# test_interval和fps_image_path仅在mode='fps'有效
|
||
#----------------------------------------------------------------------------------------------------------#
|
||
test_interval = 100
|
||
fps_image_path = "img/73473.jpg"
|
||
#-------------------------------------------------------------------------#
|
||
# dir_origin_path 指定了用于检测的图片的文件夹路径
|
||
# dir_save_path 指定了检测完图片的保存路径
|
||
#
|
||
# dir_origin_path和dir_save_path仅在mode='dir_predict'时有效
|
||
#-------------------------------------------------------------------------#
|
||
dir_origin_path = "imgs/"
|
||
dir_save_path = "img_out/"
|
||
#-------------------------------------------------------------------------#
|
||
# simplify 使用Simplify onnx
|
||
# onnx_save_path 指定了onnx的保存路径
|
||
#-------------------------------------------------------------------------#
|
||
simplify = True
|
||
onnx_save_path = "model_data/models.onnx"
|
||
|
||
if mode == "predict":
|
||
'''
|
||
predict.py有几个注意点
|
||
1、该代码无法直接进行批量预测,如果想要批量预测,可以利用os.listdir()遍历文件夹,利用Image.open打开图片文件进行预测。
|
||
具体流程可以参考get_miou_prediction.py,在get_miou_prediction.py即实现了遍历。
|
||
2、如果想要保存,利用r_image.save("img.jpg")即可保存。
|
||
3、如果想要原图和分割图不混合,可以把blend参数设置成False。
|
||
4、如果想根据mask获取对应的区域,可以参考detect_image函数中,利用预测结果绘图的部分,判断每一个像素点的种类,然后根据种类获取对应的部分。
|
||
seg_img = np.zeros((np.shape(pr)[0],np.shape(pr)[1],3))
|
||
for c in range(self.num_classes):
|
||
seg_img[:, :, 0] += ((pr == c)*( self.colors[c][0] )).astype('uint8')
|
||
seg_img[:, :, 1] += ((pr == c)*( self.colors[c][1] )).astype('uint8')
|
||
seg_img[:, :, 2] += ((pr == c)*( self.colors[c][2] )).astype('uint8')
|
||
'''
|
||
while True:
|
||
img = input('Input image filename:')
|
||
try:
|
||
image = Image.open(img)
|
||
except:
|
||
print('Open Error! Try again!')
|
||
continue
|
||
else:
|
||
r_image = deeplab.detect_image(image, count=count, name_classes=name_classes)
|
||
r_image.show()
|
||
|
||
elif mode == "video":
|
||
capture=cv2.VideoCapture(video_path)
|
||
if video_save_path!="":
|
||
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
||
size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
||
out = cv2.VideoWriter(video_save_path, fourcc, video_fps, size)
|
||
|
||
ref, frame = capture.read()
|
||
if not ref:
|
||
raise ValueError("未能正确读取摄像头(视频),请注意是否正确安装摄像头(是否正确填写视频路径)。")
|
||
|
||
fps = 0.0
|
||
while(True):
|
||
t1 = time.time()
|
||
# 读取某一帧
|
||
ref, frame = capture.read()
|
||
if not ref:
|
||
break
|
||
# 格式转变,BGRtoRGB
|
||
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)
|
||
# 转变成Image
|
||
frame = Image.fromarray(np.uint8(frame))
|
||
# 进行检测
|
||
frame = np.array(deeplab.detect_image(frame))
|
||
# RGBtoBGR满足opencv显示格式
|
||
frame = cv2.cvtColor(frame,cv2.COLOR_RGB2BGR)
|
||
|
||
fps = ( fps + (1./(time.time()-t1)) ) / 2
|
||
print("fps= %.2f"%(fps))
|
||
frame = cv2.putText(frame, "fps= %.2f"%(fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
||
|
||
cv2.imshow("video",frame)
|
||
c= cv2.waitKey(1) & 0xff
|
||
if video_save_path!="":
|
||
out.write(frame)
|
||
|
||
if c==27:
|
||
capture.release()
|
||
break
|
||
print("Video Detection Done!")
|
||
capture.release()
|
||
if video_save_path!="":
|
||
print("Save processed video to the path :" + video_save_path)
|
||
out.release()
|
||
cv2.destroyAllWindows()
|
||
|
||
elif mode == "fps":
|
||
img = Image.open(fps_image_path)
|
||
tact_time = deeplab.get_FPS(img, test_interval)
|
||
print(str(tact_time) + ' seconds, ' + str(1/tact_time) + 'FPS, @batch_size 1')
|
||
|
||
elif mode == "dir_predict":
|
||
import os
|
||
from tqdm import tqdm
|
||
|
||
img_names = os.listdir(dir_origin_path)
|
||
for img_name in tqdm(img_names):
|
||
if img_name.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
|
||
image_path = os.path.join(dir_origin_path, img_name)
|
||
image = Image.open(image_path)
|
||
r_image = deeplab.detect_image(image)
|
||
if not os.path.exists(dir_save_path):
|
||
os.makedirs(dir_save_path)
|
||
r_image.save(os.path.join(dir_save_path, img_name))
|
||
elif mode == "export_onnx":
|
||
deeplab.convert_to_onnx(simplify, onnx_save_path)
|
||
|
||
else:
|
||
raise AssertionError("Please specify the correct mode: 'predict', 'video', 'fps' or 'dir_predict'.")
|