1 line
12 KiB
Plaintext
1 line
12 KiB
Plaintext
关键词 | 化工 流态化 微型流化床共 1269 字 | 预计阅读时间 5分钟流态化科学技术已有百年发展历史,流化床是不可或缺的颗粒处理装备与颗粒转化加工反应器,广泛应用于能源、化工等重要工业领域。长按识别扫码购书即可优惠购买本书2005年,荷兰学者提出微型液固流化床、本书著者提出微型气固流化床作为流态化微型反应器,学术界形成了“微型流化”或“微型流化床”的科学概念,并在世界范围内带动相关科研人员深入研究其流动及传递特性。本书著者编制了“颗粒反应测试微型流化床法”国家标准,提出并研发“基于微型流化床的气固反应分析方法和仪器”,实现了100余台/套的推广应用,成功产业化了多项重要应用技术。本书在全面总结作者团队成果的同时,系统概括了国内外微型流化领域自2005年以来的主要基础研究及应用成果,全面展示了流态化科学技术新的发展方向。本专著为化学工业出版社与Elsevier(爱思唯尔)出版集团合作出版项目,是国内、国外同步出版的专著。经专家评审、国家科学技术学术著作出版基金委员会批准,本专著入选2022年度国家科学技术学术著作出版基金资助项目。本专著可供从事流态化和颗粒技术,尤其是对微型流化床基础研究及应用技术感兴趣的学生、研究人员、工程师或其他读者参考,同时也可作为化学工程专业的研究生教材或参考书。Microfluidization: Fundamentals and Applications(微型流化床:基础与应用)图书信息简介「流态化科学与技术前沿」许光文、白丁荣、刘明言 等著责任编辑:张艳书号:978-7-122-42049-7定价:198.00元本专著内容涵盖微型流态化科学和技术研究的背景历史和重要成果,总结微型流态化基本原理、流体力学特性、流态化典型流型及其转变、流体和颗粒混合、基于双流体及离散元模型的微型流化床数值模拟、工程热化学领域研究中常用的热分析微型反应器、微型流化床反应分析系统、微型流化床反应分析仪特征、微型流化床反应分析应用以及微型流化床反应器在工业技术开发中的前景等内容。专著也概括了液固两相和气液固三相微型流化床的发展、流体力学及传递特性、在化学及生物化工中的应用等内容。#作者简介 # 沈阳化工大学校长许光文许光文,博士,沈阳化工大学校长,英国皇家工程院院士,国家“973”计划项目首席科学家。致力于热化学反应科学研究与技术开发,创立学科交叉“工程热化学”方向,发表学术论文400余篇、获授权专利130余项、获科技奖一等奖10项和侯德榜化工科技奖成就奖,研发的燃料燃烧气化新工艺及宽温脱硝催化剂等成果在我国15省市及多个国家应用,服务年产值5000亿元工业生产的显著节能和减排。沈阳化工大学教授白丁荣白丁荣,博士,沈阳化工大学教授,国家级专家。主要研究流态化多相流反应器基础及其应用、多相流动与传递现象,热化学反应过程、煤炭清洁转化及煤基固废规模化利用技术等。发表科技论文100多篇,发明专利60余项。天津大学教授刘明言刘明言,博士,天津大学教授,博士生导师,中国颗粒学会理事。主要从事高效绿色多相反应工程学及传递过程强化等方面的研发和教学工作。发表学术论文100余篇,授权国家发明专利20余项。#目录预览 #Chapter 1 Introduction 0011.1 Fluidization and fluidized bed 0011.2Typical ΔPB-Ug relationship 0031.3 Geldart powder classification 0061.4 Gas-solid fluidization regimes 0071.5 Fluidization applications 0101.6Miniaturization of fluidized beds 0131.7 Micro fluidized bed applications0171.8 Sources of information on micro fluidization 018Abbreviation019Nomenclature 019References 020Chapter 2 Fundamentals of Gas-Solid MicroFluidization 0272.1 Bed pressure drops in micro fluidized beds 0272.1.1 Thebed pressure drop overshoot 0282.1.2 The bed pressure drop offset 0302.1.3Deviation from the Ergun equation 0332.2 Mechanistic analysis of the walleffects 0362.2.1 The wall frictional force 0382.2.2 Increase in bed voidage0432.2.3 Inhomogeneous flow 0452.3 Discussions on the wall effects 0502.4Other influencing factors 0532.4.1 Influence of particle diameter 0532.4.2Influence of gas properties 0552.4.3 Influence of temperature 056Abbreviation057Nomenclature 057References 059Chapter 3 Gas and Solid Mixing 0623.1Experimental and analytic techniques 0623.1.1 Gas residence time distribution0633.1.2 Axial dispersion model 0653.2 Gas mixing 0693.2.1 Gas residence timedistribution 0693.2.2 Axial gas dispersion coefficient 0713.2.3 Two-phasemodel analysis 0723.2.4 The criteria for plug flow of gas in micro fluidizedbeds 0773.3 Solid mixing 0813.3.1 Solid mixing simulation 0813.3.2 Particlefeeding simulation 082Abbreviation 086Nomenclature 086References 088Chapter 4Micro Fluidization Regimes 0904.1 Experimental observations 0904.2 Fixed bed0924.3 Minimum fluidization velocity 0964.3.1 Factors influencing Umf 0964.3.2Prediction of minimum fluidization velocity 0994.4 Particulate fluidization1024.5 Bubbling fluidized bed 1044.5.1 The onset of bubbling fluidization1044.5.2 Prediction of minimum bubbling velocity 1074.5.3 Bubble size 1084.6Slugging fluidized bed 1094.6.1 The onset of slugging fluidization 1094.6.2Prediction of slugging velocity 1114.7 Turbulent fluidized bed 1134.7.1 Theonset of turbulent fluidization 1134.7.2 Prediction of transition velocity Uc1154.8 Distinction between micro and macro fluidized beds 1164.9 Fluidizationregime map for micro fluidized beds 119Nomenclature 125References 127Chapter 5Hydrodynamic Modeling of Micro Fluidized Beds 1295.1 CFD modeling approaches1295.2 Two-fluid method 1325.2.1 TFM formulation 1325.2.2 TFM simulations andvalidations 1365.2.3 TFM-predicted MFB hydrodynamics 1405.3 The discreteelement method 1445.3.1 Model formulation 1455.3.2 DEM simulations andvalidations 1465.3.3 DEM-predicted MFB hydrodynamics 1475.4 A brief discussionand future perspective 152Abbreviation 153Nomenclature 153References154Chapter 6 Microreactors for Thermal Analysis of Gas-Solid ThermochemicalReactions 1586.1 Thermal analysis approaches 1586.1.1 Thermochemical reactionpathways 1586.1.2 General requirements for thermal analysis approaches 1596.2Microreactors for thermal analysis 1636.2.1 General approaches andrequirements 1636.2.2 Classification of microreactors 1636.3 Furnace heatingmicro reactors 1666.3.1 Micro fixed bed reactor 1666.3.2 Gas pulsedmicroreactor 1676.3.3 Thermogravimetric analyzer 1686.3.4 The single andtandem ?-reactors 1706.3.5 Drop-tube reactor 1726.3.6 Catalyst cell fluidizedbed reactor 1736.4 Resistively heated micro reactors 1746.4.1 Wire meshreactor 1746.4.2 Curie point reactor 1766.4.3 Pulse-heated analysis of solidreaction reactor 1776.4.4 Microprobe reactor 1786.5 Particle bed heating microreactors 1786.5.1 Micro spouted bed reactor 1786.5.2 Micro fluidized bedreactor 1796.6 Other non-resistively heating micro reactors 1806.6.1 Microwavemicroreactor 1806.6.2 Laser ablation reactor 1806.6.3 Thermal plasma reactor1816.7 Remarks 182Abbreviation 184References 184Chapter 7 System of MicroFluidized Bed Reaction Analysis 1887.1 System configurations 1897.1.1 Systemconfigurations of micro fluidized bed reaction analyzer 1897.1.2 Microfluidized bed reactor design 1927.1.3 Solid sample feeding method 1947.1.4Liquid sample feeding method 1957.1.5 Online gas sampling and analysis1967.1.6 Online particle sampling 1977.1.7 Change of reaction atmosphere1987.2 Kinetic data analysis 2007.2.1 Data acquisition 2007.2.2 Dataprocessing 2017.2.3 Kinetic modeling 2027.3 New developments in MFBRA 2037.3.1MFB thermogravimetric analyzer 2037.3.2 Induction heating MFB 2057.3.3External force assistance 2067.3.4 Micro spouted bed reaction analyzer2087.3.5 Membrane-assisted micro fluidized beds 2087.3.6 Other developments209Abbreviation 209Nomenclature 210References 211Chapter 8 Characteristics ofMicro Fluidized Bed Reaction Analyzers 2158.1 Approaching intrinsic kinetics2158.1.1 High heating and cooling rates 2168.1.2 Effective suppression ofdiffusion 2178.1.3 Close-to-plug flow of gas 2208.1.4 Bed homogeneity 2228.1.5Applied kinetics 2228.2 Understanding reaction mechanism 2268.2.1 Revealingthe true character of fast reactions 2268.2.2 Detecting intermediary reactions2288.2.3 Decoding the reaction mechanism 2298.2.4 Reactions with in/ex-situsolid particles 2308.2.5 Non-isothermal differential applications 2328.3Reactions under water vapor atmosphere 2338.3.1 High moisture contentfeedstocks 2338.3.2 Reactions with steam as reactants 2348.4 Sampling andcharacterization of solid particles during a reaction process 2358.5Multistage gas-solid reaction processes 2368.6 Reaction kinetics under productgas inhibitory atmospheres 2388.6.1 Isotope tagging method 2388.6.2Comparisons between the micro fluidized bed and thermogravimeter239Abbreviation 240Nomenclature 241References 241Chapter 9 Applications ofMicro Fluidized Beds 2449.1 Drying 2449.2 Adsorption 2459.2.1 CO2 captureusing capsulated liquid sorbents 2469.2.2 CO2 capture using solid adsorbents2479.2.3 CO2 capture by gas-solid reactions 2479.3 Catalytic reaction 2499.3.1Catalytic gas reaction 2499.3.2 Catalytic gas-solid reaction 2509.4 Thermaldecomposition 2559.4.1 Liquid decomposition 2559.4.2 Solid decomposition2569.5 Pyrolysis 2579.5.1 Biomass pyrolysis 2589.5.2 Coal and oil shalepyrolysis 2599.5.3 Blended material pyrolysis 2599.6 Thermal cracking 2629.7Gasification 2649.7.1 Biomass gasification 2649.7.2 Coal gasification 2659.7.3In/ex-situ char gasification 2659.8 Combustion 2679.8.1 Decoupling combustion2679.8.2 Oxy-fuel combustion 2689.8.3 Chemical looping combustion 2699.8.4In/ex-situ chart combustion 2709.9 Reduction 2729.9.1 Iron ore reduction2729.9.2 Nitrogen oxide reduction by tar 2739.9.3 WO3 reduction-sulfurization2739.10 Other reactions 274References 274Chapter 10 Applications of MFBR inIndustrial Process Development 28110.1 Advanced combustion with low-NOxemissions 28110.1.1 Low-NOx combustion technology 28110.1.2 NOx reduction bypyrolysis products 28310.1.3 Pilot experiments and commercial application28710.2 Reaction characteristics tested by MFBRA for biomass stagedgasification 29010.2.1 Staged gasification process analysis using MFBRA29010.2.2 Characteristics of gasification sub-processes by MFBRA 29110.2.3Design of an industrial FBTS gasification process 29910.3 Light calcination ofmagnesite using transported bed 30110.3.1 Existing technology and equipment30210.3.2 Kinetic analysis of magnesite calcination 30210.3.3 Advancedtransport bed calcination process 30410.3.4 Engineering commissioning of a 400kt/a industrial process 306Abbreviation 307Nomenclature 308References308Chapter 11 Characterization of Liquid-Solid Micro Fluidized Beds 31111.1Introduction 31111.2 Hydrodynamics properties 31211.2.1 Manufacturing methods31211.2.2 Minimum fluidization velocity 31311.2.3 Mixing 31811.2.4 Masstransfer 31911.3 Applications 32211.3.1 Chemical conversions 32211.3.2Bioprocessing and bioproduction 32211.3.3 Other applications 32911.3.4Challenges and prospects for MFB scaling-up 32911.4 Conclusion 330Abbreviation330Nomenclature 331References 331Chapter 12 Characterization of Gas-Liquid-Solid Micro Fluidized Beds 33812.1 Hydrodynamics 33812.1.1 Pressure drop andminimum fluidization velocity 33812.1.2 Flow regimes, expanded behavior, solidholdup, and multi-bubble behavior 34912.2 Applications 36612.2.1 Chemicalreactions 36612.2.2 Photocatalytic degradation of methylene blue (MB)36712.2.3 Catalytic oxidation of crotonaldehyde to crotonic acid 37212.3Summary 375Nomenclature 375References 377Future Prospects 378 <上下滑动预览全部目录>流态化科学与技术前沿 国家科学技术学术著作出版基金资助项目 ELSEVIER爱思唯尔 合作出版项目 ▲长按识别 即可优惠购买本书编辑 | 小帮内容来源 |本书内容节选👇点击阅读原文进入官方商城,购书有优惠哦~ |