A LCA Based Biofuel Supply Chain Analysis Framework^{*}

LIU Zhexuan (刘喆轩), QIU Tong (邱彤) and CHEN Bingzhen (陈丙珍)**

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Abstract This paper presents a life cycle assessment (LCA) based biofuel supply chain (SC) analysis framework which enables the study of economic, energy and environmental (3E) performances by using multi-objective optimization. The economic objective is measured by the total annual profit, the energy objective is measured by the average fossil energy (FE) inputs per MJ biofuel and the environmental objective is measured by greenhouse gas (GHG) emissions per MJ biofuel. A multi-objective linear fractional programming (MOLFP) model with multi-conversion pathways is formulated based on the framework and is solved by using the ε -constraint method. The MOLFP problem is turned into a mixed integer linear programming (MILP) problem by setting up the total annual profit as the optimization objective and the average FE inputs per MJ biofuel and GHG emissions per MJ biofuel as constraints. In the case study, this model is used to design an experimental biofuel supply chain in China. A set of the weekly Pareto optimal solutions is obtained. Each non-inferior solution indicates the optimal locations and the amount of biofuel supplied in final markets and the flow of mass through the supply chain network (SCN). As the model reveals trade-offs among 3E criteria, we think the framework can be a good support tool of decision for the design of biofuel SC. **Keywords** biofuel, life cycle assessment, supply chain, optimization

1 INTRODUCTION

Diminishing fossil fuel resources and increasing concern about greenhouse effect worldwide urge the development of biofuels [1]. Expecting the use of biofuels may reduce the GHG emissions and FE consumptions, many countries have adopted policies to promote the development of biofuels. In 2009, the new European Union Directive set aims at reaching a 10% share of renewable energy by 2020. Also, GHG emissions should be greatly reduced according to this directive. China plans to focus on biofuels converted from energy crops and cooking oil to ensure the food security according to the Renewable Energy Law passed in 2005. Standards have also been established on the fuel mixture of 10% ethanol and 90% gasoline (E10) and the fuel mixture of 10% biodiesel and 90% diesel (D10). Many provinces in China have replaced fossil gasoline for E10 under the requirement of National Development and Reform Commission.

There are abundant resources of biomass in China. The amount of crop residue that can be used for biofuel production is 300 million tons and China also has 7 million ha of potential land for planting energy crops (sweet sorghum, cassava, *etc.*) [2]. While the Middle and Long Term Development Plan of Renewable Energy requires that the annual bioethanol and biodiesel production should reach a minimum of 10 million and 2 million tons by 2020, respectively. The production of them is 1.9 million tons and 0.31 million tons in 2008, respectively [3]. Because of the limited availability of biomass in certain seasons, loss in biomass storage, economic problems and the concern whether biofuel can ease the problem of globe warming, most factories produce much less than the

maximum capacity [4].

LCA is a method to study the impact in the life cycle of a product. It has become an important decision making tool for biofuel because it is very important to study the 3E performance before building factories for a certain biofuel pathway. Many studies have been carried out on biofuels in China [5-13]. Most of them focus on a unique single pathway and have not compared it to other pathways [6-9, 11-13]. The results of these studies are significantly different from each other even for the same biofuel pathway [6, 7, 11-13]. The conclusions of these studies are geographically dependent or national averaged. Thus, they cannot describe the situation of the biofuel industry in China accurately.

To solve these problems, it is necessary to integrate LCA with SC modeling by using geographically dependent LCA results in the model. SC modeling is often used for minimizing cost or maximize profit. Most early studies on biofuel SC use economic objective [14-18] thus ignoring the environmental aspects. Using multi-objective model and LCA to study both the economic and environmental impact in biofuel SC are now attracting the interest of researchers. But to the best of our knowledge, no such study has been done in China. Zamboni et al. [18] carried out an MILP model to minimize the overall operating cost for bioethanol SC in Northern Italy. Later they extended their model to a multi-objective one by using GHG emissions as another objective [19]. Another multi-objective MILP model for biomass-to-liquid SC was formulated and tested on the state of Iowa by You et al [20]. Other evaluation criteria are also reported, such as footprint [21], IMPACT 2002+ [22], Eco-indicator 99 [23], etc. Researchers have also paid much attention to the difference

Received 2013-08-22, accepted 2013-09-30.

^{*} Supported by the Chinese Academy of Engineering (20121667845).

^{**} To whom correspondence should be addressed. E-mail: dcecbz@tsinghua.edu.cn

between centralized and distributed systems [16, 20].

In this paper an LCA based biofuel SC analysis framework is proposed, under which a single-period multi-objective model is formulated. In this framework, a method to integrate LCA with biofuel SC is provided. More complicated SC model can be built (ones that considering multi-period, uncertainty, carbon trading etc.) by adding other supply chain constraints to the basic framework. The study of trade-offs between the 3E goals is enabled in our framework. We also use this model to investigate the difference between the distributed and the centralized systems. In a distributed system, biofuel is firstly transported to pretreatment factories and converted to an intermediate product. The intermediate product is then converted to biofuel in biofuel production factories. In a centralized system, biomass is directly converted to biofuel in integrated factories. The model is solved by using ε -constraint method [24] to see how the FE inputs and GHG emissions limits influence the total economic profit and SCN.

2 PROBLEM STATEMENT

In our problem, a set of biofuel pathways for producing bioethanol and biodiesel are involved. It is necessary assess the 3E performances of the whole SC. LCA is used for calculating the energy and environment performances.

The SCN superstructure like the one in Fig. 1 is shown, in which potential locations of biomass feedstock, pretreatment factories, integrated factories, biofuel production factories and markets are included. Biomass can be firstly transported from biomass feedstock to pretreatment factories to be converted to some high energy density form and then converted to biofuel in biofuel production factories. Also, biomass can be directly converted to biofuel in integrated factories. After being blended with fossil gasoline and diesel, biofuels (E10 and D10) are consumed in markets.

The input parameters for this problems are:

(1) Maximum amount of biomass that can be provided in each biomass feedstock locations;

(2) Maximum and minimum capacities, fixed costs, variable costs of pretreatment factories, biofuel production factories and integrated factories;

(3) Maximum and minimum demand for E10 and D10;

(4) Distance between nodes in the biofuel SC;

(5) Transportation cost per ton-km;

(6) LCA results.

The objectives are minimizing average FE inputs and GHG emissions per MJ biofuel while maximizing total annual profit by making following decisions:

(1) Output of each kind of biomass in biomass feedstock locations;

(2) Sizes, technologies, locations of pretreatment factories, biofuel production factories and integrated factories;

(3) Locations of markets;

(4) Amount of substance being transported between the nodes in the biofuel SC.

3 LCA BASED SC ANALYSIS FRAMEWORK

In our LCA based SC analysis framework, the LCA results are used as inputs for objective functions in the model as the information flows as shown in Fig. 2.

Well-to-wheels (WTW) analysis is used for all biofuel pathways. WTW analysis includes two stages in biofuel life cycle, well-to-pump (WTP) and pump-towheel (PTW). WTP studies all the upstream stages including: biomass cultivation, biomass transportation, fuel production and intermediate product transportation (if any). Fuel production, distribution and consumption are studied in PTW analysis. WTW analysis is used because the biofuel SC to be studied includes both the upstream and downstream of biofuel.

To integrate LCA result with SC modeling, it is necessary divide the life cycle of biofuel according to the stage division of SC. In SC modeling, the FE inputs and GHG emissions of the whole SC can be divided into four parts: biomass production, fuel production, fuel consumption and transportation. The sum of influences led by biomass cultivation and biomass collection is used as the data inputs for the biomass production part. Though E10 or D10 may behave differently when combusted in engines, it can be still assumed that the influence in the fuel consumption stage can be offset by the carbon sink in biomass cultivation without losing much in accuracy. Thus, both parts can be ignored in LCA. All kinds of transportation (biomass, intermediate product and biofuel) are included in the transportation part.

Based on the process data, how much basic fuel (gasoline, diesel, natural gas, electricity, *etc.*) is used

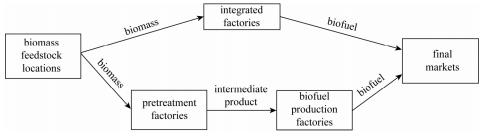


Figure 1 The structure of biofuel supply chain in this paper

LCA Result Calculation •

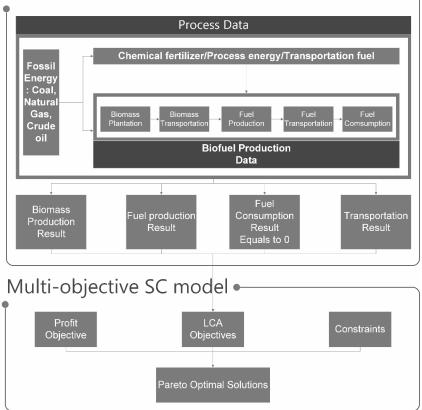


Figure 2 LCA based SC analysis framework

during the life cycle of the other raw materials (fertilizer, methanol *etc.*) used in the SC can be analyzed. By multiplying the FE inputs and GHG emissions data by the amount of basic fuel used, the FE inputs and GHG emissions of all the other raw materials can be known.

$$F_i = \sum_x F_x \times A_{x,i} \tag{1}$$

$$G_i = \sum_{x} G_x \times A_{x,i} \tag{2}$$

Where F_i is the FE inputs for the other raw material *i*; F_x is the FE inputs for the basic fuel *x* and $A_{x,i}$ is the amount of basic fuel *x* used when producing other raw material *i*. Eq. (2) calculates the GHG emissions (G_i) in a similar way.

The LCA result of biofuel can be calculated in the same way. For each stage, EF inputs F_s and GHG emissions G_s can be given by multiplying the FE inputs and GHG emissions of all the raw materials (F_x , F_i , G_x , G_i) by the amount of raw materials used in that stage ($A_{x,s}$, $A_{i,s}$).

$$F_{\rm s} = \sum_{x} F_{x} \times A_{x,\rm s} + \sum_{i} F_{i} \times A_{i,\rm s} \tag{3}$$

$$G_{\rm s} = \sum_{x} G_{x} \times A_{x,\rm s} + \sum_{i} G_{i} \times A_{i,\rm s} \tag{4}$$

4 MODEL FORMULATION

4.1 LCA model

Here we adopt the results of Tsinghua-CA3EM model. Tsinghua-CA3EM model [5] is a model for automotive fuel based on the GREET model (http://greet.es.anl.gov/) and the national conditions for China such as the over use of fertilizer in biomass cultivation and the dominance of coal utilization. Firstly, FE inputs and GHG emissions are calculated for all the basic fuels. When calculating GHG emissions, all the GHG is converted to their CO₂ equivalents according to their global warming potential (GWP) value under the guidance of Intergovernmental Panel on Climate Change (IPCC).

4.2 Supply chain model

To formulate a supply chain model, some subscripts, decision variables and input variables are needed. The detailed information about these subscripts and variables can be found in the nomenclature.

4.2.1 Constraints

The sum of the flow from biomass feedstock locations to biomass factories must not exceed the maximum amount of biomass provided from that location.

$$\forall r,b \quad \sum_{t} \sum_{l} \sum_{c} f_{l,r,b,l,c} + \sum_{T} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} \quad A_{r,b}$$
(5)

If a biomass feedstock location is not selected, no biomass can be transported from that place. If it is selected, the big M will ensure these constraints are redundant.

$$f_{t,r,b,l,c} \quad Y_t M \tag{6}$$

$$f_{T,r,b,l',c'} \quad Y_T M \tag{7}$$

As this model is a static one, all the biomass being transported to factories is required to be converted to products (biofuel or intermediate product) at a certain conversion rate.

$$\forall t, l, c \quad \sum_{r} \sum_{b} y_{t,r,b} f_{t,r,b,l,c} = \sum_{m} f_{t,l,c,m} \tag{8}$$

$$\forall T, l', c' \quad \sum_{r} \sum_{b} y'_{T,r,b} f_{T,r,b,l',c'} = \sum_{l''} \sum_{c''} f_{T,l',c',l',c'} \quad (9)$$

Similar constraints are defined for biofuel production factories to describe the biomass production process.

$$\forall T, l'', c'' \qquad \sum_{l'} \sum_{c'} f_{T, l', c', l'', c''} y_T'' = \sum_m f_{T, l'', c'', m} \quad (10)$$

It is assumed that for each technology and each type of factory, no more than one factory can be built at a potential factory location.

$$\forall t, l \quad \sum_{c} X_{t,l,c} \quad 1 \tag{11}$$

$$\forall T, l' \quad \sum_{c'} X_{T, l', c'} \quad 1 \tag{12}$$

$$\forall T, l'' \sum_{c'} X_{T, l'', c''} = 1$$
 (13)

All the factories must receive an inflow greater than 75% of its capacity to ensure the accuracy because the scale effect is used to extrapolate the cost and LCA data. Besides, if the factory exists, the sum of inflow can't exceed its capacity. When the factory does not exist, nothing is allowed to be transported to it.

$$\forall t,l,c \quad \frac{3}{4}a_{t,c}X_{t,l,c} \qquad \sum_{r}\sum_{b}f_{t,r,b,l,c} \qquad a_{t,c}X_{t,l,c} \quad (14)$$

$$\forall T, l', c' \quad \frac{3}{4} a_{T,c'} X_{T,l',c'} \sum_{r} \sum_{b} f_{T,r,b,l',c'} a_{T,c'} X_{T,l',c'}$$
(15)

$$\forall T, l'', c'' \quad \frac{3}{4} a_{T,c''} X_{T,l'',c''} \qquad \sum_{l'} \sum_{c'} f_{T,l',c',l'',c''} a_{T,c''} X_{T,l'',c''} \qquad (16)$$

For any selected market location, the amount of biofuel consumed should be between the minimum and maximum demand. $\sum_{t \in F}$ and $\sum_{T \in F}$ are used to denote

all types of biofuels that are mixed with fossil gasoline or fossil biodiesel before being used.

$$\forall m, F \ L_{F,m}Y_m \qquad \sum_{t \in F} \sum_{l} \sum_{c} f_{t,l,c,m} + \sum_{T \in F} \sum_{l''} \sum_{c''} f_{T,l',c'',m}$$

$$(17)$$

$$\forall m, F \ L_{F,m}Y_m \qquad \sum_{t \in F} \sum_{l} \sum_{c} f_{t,l,c,m} + \sum_{T \in F} \sum_{l''} \sum_{c''} f_{T,l'',c'',m}$$

To have a bio-fuel supply chain with scale, at least n final markets must be chosen.

$$\sum_{m} Y_{m} \quad n \tag{19}$$

4.2.2 *Objective functions*

The first objective function is the total annual profit (P) which equals income (I) minus cost (C). For this problem, it is assumed that all the revenue comes from selling biofuels and the price will not vary between markets.

$$P = I - C \tag{20}$$

$$I = \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{t,l,c,m} p_t + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{T,l'',c'',m} p_T$$
(21)

The cost (*C*) has three parts, biomass acquisition cost (C_1), fuel production cost (C_2) and transportation cost (C_3).

$$C = C_1 + C_2 + C_3 \tag{22}$$

Eq. (23) expresses the biomass acquisition cost, which is proportional to the biomass transported from biomass locations to all types of factories.

$$C_{1} = \sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{c} f_{t,r,b,l,c} o_{r,b} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} o_{r,b}$$
(23)

Fuel production cost consists of two parts: variable cost and fixed cost. Variable cost is proportional to the amount of raw material processed. If a factory exists, the fixed cost is a constant regardless of the output of that factory.

$$C_2 = C_4 + C_5 \tag{24}$$

$$C_{4} = \sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{c} f_{t,r,b,l,c} o_{t,b,c} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} o_{T,b,c'} + \sum_{T} \sum_{l'} \sum_{c} \sum_{l''} \sum_{c''} f_{T,l',c',l'',c''} o_{T,c''}$$

$$C_{5} = \sum \sum \sum X_{c,l} X_{c,l} O_{c,l} +$$
(25)

It is assumed that all the transportation is done by trucks powered by diesel, and thus the transportation cost can be formulated as:

$$C_{3} = o_{3} \times \left(\sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{l} \sum_{c} f_{t,r,b,l,c} D_{r,l} \right)$$

$$\sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} D_{r,l'} + \sum_{T} \sum_{l'} \sum_{c'} \sum_{l''} \sum_{c''} f_{T,l',c',l'',c''} D_{l',l''} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{t,l,c,m} D_{l,m} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{T,l',c'',m} D_{l'',m} \right)$$
(27)

Total GHG emissions and FE inputs can be calculated by replacing C to E or G except that no fixed term is needed.

$$E = E_1 + E_2 + E_3 \tag{28}$$

$$E_{1} = \sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{c} f_{t,r,b,l,c} e_{r,b} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} e_{r,b}$$
(29)

$$E_{2} = \sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{l} \sum_{c} f_{t,r,b,l,c} e_{t,b,c} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} e_{T,b,c'} + \sum_{T} \sum_{l'} \sum_{c'} \sum_{l'} \sum_{c'} f_{T,l',c',l'',c''} e_{T,c''}$$
(30)

$$E_{3} = e_{3} \times \left(\sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{l} \sum_{c} f_{t,r,b,l,c} D_{r,l} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} D_{r,l'} + \sum_{T} \sum_{l'} \sum_{c'} \sum_{l''} \sum_{c''} f_{T,l',c',l'',c''} D_{l',l''} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{t,l,c,m} D_{l,m} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{T,l'',c'',m} D_{l'',m} \right)$$
(31)

$$G = G_1 + G_2 + G_3 \tag{32}$$

$$E_{1} = \sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{c} f_{t,r,b,l,c} g_{r,b} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} e_{r,b}$$
(33)

$$E_{2} = \sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{c} f_{t,r,b,l,c} g_{t,b,c} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} g_{T,b,c'} + \sum_{T} \sum_{l'} \sum_{c'} \sum_{l''} \sum_{c'} f_{T,l',c',l'',c''} g_{T,c''}$$
(34)

$$E_{3} = g_{3} \times \left(\sum_{t} \sum_{r} \sum_{b} \sum_{l} \sum_{c} f_{t,r,b,l,c} D_{r,l} + \sum_{t} \sum_{r} \sum_{b} \sum_{l'} \sum_{c'} f_{T,r,b,l',c'} D_{r,l'} + \sum_{t} \sum_{r} \sum_{l'} \sum_{c'} \sum_{l''} \sum_{c''} f_{T,l',c',l'',c''} D_{l',l''} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{t,l,c,m} D_{l,m} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{T,l'',c'',m} D_{l'',m} \right)$$
(35)

To get the average FE inputs and GHG emissions per MJ biofuel, it is necessary divide the total term by the lower heating value of all the biofuel being produced.

$$\overline{G} = \frac{G}{\sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{t,l,c,m} L_{t} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{T,l',c',m} L_{T}} (36)$$

$$\overline{E} = \frac{E}{\sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{t,l,c,m} L_{t} + \sum_{t} \sum_{l} \sum_{c} \sum_{m} f_{T,l'',c'',m} L_{T}} (37)$$

This problem is a MOLFP problem. To solve this problem, the weight sum method [25], reference point approach [26] or ε -constraint method [24] can be used. When solving MOLFP problem by using the first two methods, the problem is still in a non-linear form which is hard to solve. If we use ε -constraint method and reformulate Eqs. (36) and (37) as constraints, an MILP problem will be got instead. After dividing the range of \overline{G} , \overline{E} to intervals, the Pareto-optimal solutions can be obtained by solving MILP problems on each grid point.

$$E = \varepsilon_1 \left(\sum_t \sum_l \sum_c \sum_m f_{t,l,c,m} L_t + \sum_t \sum_l \sum_c \sum_m f_{T,l^*,c^*,m} L_T \right)$$
(38)
$$G = \varepsilon_2 \left(\sum_t \sum_l \sum_c \sum_m f_{t,l,c,m} L_t + \sum_t \sum_l \sum_c \sum_m f_{T,l^*,c^*,m} L_T \right)$$
(39)

5 CASE STUDY

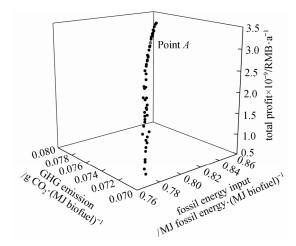
Because of the lack of detailed statistical data for China, the framework and our model are used to design an experimental biofuel SC in which only biodiesel (BD) pathway is considered.

The nation is divided into provinces, and we choose 19 provinces to be potential biomass feedstock locations, 14 capital cities to be potential locations for factories, and 18 capital cities to be potential markets. The highway distance is used as the distance between nodes. Since the distribution of biomass is dispersed, 100 km between biomass feedstock locations and factories is added as a collecting range. Also, it is assumed that all the transportation is done by diesel trucks. Only 1% of the total amount of rapeseed [27] in each

province is used for the production of biodiesel and 10% of potential land [28] for energy crop can be used for the plantation of *jatropha* fruit [29].

Unit emissions, FE inputs and costs will decrease while the fixed cost increases nonlinearly.

The difference led by the choice between centralized and distributed systems can be investigated. In a centralized system, integrated factories have greater capacity than biofuel production factories. Thus, the SC may benefit more from the scale effect. The distributed system may reduce the cost of transporting biomass, which is in a low energy density form by converting biomass to preliminarily processed oil in pretreatment factories.


The maximum demand in the final market is estimated by the number of trucks and cars in each province and the assumption that each truck or car will consume 1.5 t of gasoline or diesel. The minimum demand is set to be 60% of the maximum demand. The price of each product is set to be the price in the Chinese market in 2012.

All the input variables are listed in Table 1-8 in the Appendix [4, 9, 30, 31].

To solve the problem, the value of ε_1 and ε_2 is set large enough to guarantee that the constraints Eqs. (38) and (39) are redundant. By doing this, the actual values of ε_1 and ε_2 can be obtained, and used to be the upper bounds. The lower bounds are obtained by letting the other constrain be redundant and gradually tightening the constraint. The search stops when the model becomes infeasible and the current value of ε_1 or ε_2 is set to be its lower bound.

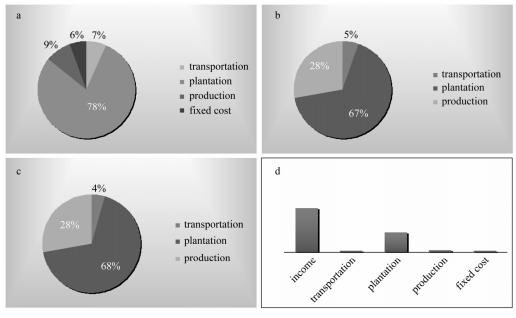
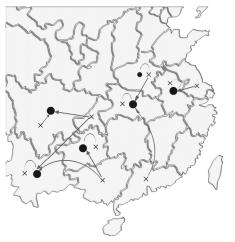
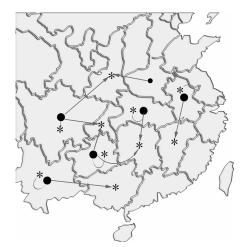
6 RESULT AND DISCUSSION

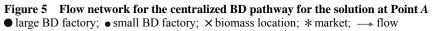
Because constraints Eqs. (38) and (39) do not

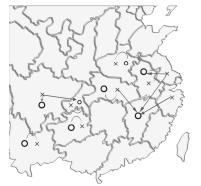
Figure 3 Pareto-optimal solutions (Point *A* indicates a SCN that makes a profit of 2.937×10^9 CNY $\cdot a^{-1}$ while needs 0.83 MJ fossil energy and emits 0.0769 g CO₂ for every MJ biofuel)

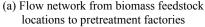
require the actual values equal to ε_1 and ε_2 , it is necessary to calculate the actual value of the objectives after solving the problem. The distribution of Pareto-optimal solutions is not widely distributed because there is only one biofuel pathway in the case. But it can be still seen in Fig. 3 that the optimal solutions are on a convex surface.

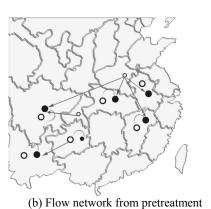
One representative point (Point A) in Fig. 3 is chosen for a detailed analysis. Fig. 4 (a), (b) and (c) show the allocation of GHG emissions, FE inputs and costs for each stage of BD pathway, respectively. Due to the difficulty of biomass planting and the molecular similarity between the preliminarily processed oil obtained from the energy crop and the biodiesel, biomass planting accounts for the largest proportion.

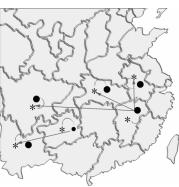





Figure 4 Breakdown analysis for the BD pathway




(a) Flow network from biomass feedstock locations to integrated factories




(b) Flow network from integrated factories to markets

(c) Flow network from biofuel production factories to markets

Figure 6 Flow network for the distributed BD pathway for the solution at Point A O large pretreatment factory; \bullet middle pretreatment factory; \bullet large biofuel production factory; \bullet middle biofuel production factory; \times biomass location; * market; \longrightarrow flow

factories to biofuel production factories

Figure 4 (d) shows the comparison between the income and costs. As the estimated cost from literature is very ideal, income excess costs greatly.

A further check of Pareto-optimal solutions reveals that all the Pareto-optimal solutions adopt the centralized system. The production term in the BD pathway is fairly large, so the scale effect of using conversion factory with greater capacity is more preferable to the lower transportation costs of the distributed system. If a distributed system at point A in the model is chosen in the BD pathway, the total profit decreases from 2.937×10^9 CNY·a⁻¹ to 1.782×10^9 CNY·a⁻¹, and the network structure differs significantly in the two systems.

Figures 5 and 6 show the flow network of the centralized and the distributed systems, respectively. From these two figures, it can be concluded that in the distributed system, biomass is more likely to be converted locally and then be transported to further factories for biofuel production.

7 CONCLUSIONS

In this study, an LCA based biofuel SC analysis framework is proposed. The 3E performance can be analyzed by adding LCA objectives to ordinary SC model under this framework. A static biofuel SC model with multi-conversion pathways is formulated as a MOLFP problem and is solved by using the ε -constraint method. In the case study, this model is used to design an experimental bio-fuel supply chain in China. Two biomass types and one pathway are considered. A set of the Pareto-optimal solutions is obtained. The choice between distributed systems and centralized systems is also taken into account. The result shows that the plantation of the biomass accounts for the biggest part of the cost, FE inputs and GHG emissions. Furthermore, the centralized system performs better than the distributed system because of the great scale effect.

It should be mentioned that though the model proposed is experimental because of the limited data, the model can be greatly extended under the guidance of our framework by using the follows.

(1) Using updated basic LCA data;

(2) Analyzing the combustion behavior of biofu-

els in detail; (3) Adding other criteria such as IMPACT 2002+, Eco-indicator 99, *etc.*;

(4) Using multi-period SC model;

(5) Considering uncertainties in product pricing, demand change, and technology improvement.

NOMENCLATURE

- $A_{r,b}$ maximum amount available for biomass b at biomass location $r, \text{t} \cdot \text{a}^{-1}$
- $a_{T,c'}$ capacity of pretreatment factory with capacity type c' in biofuel pathway T, t·a⁻¹
- a_{T,c^*} capacity of biomass production factory with capacity type c'' in biofuel pathway T, t a^{-1}
- $a_{t,c}$ capacity of integrated factory with capacity type *c* in biofuel pathway *t*, t · a⁻¹
- $D_{l,m}$ distance between potential integrated factory location *l* and potential market at location *m*, km
- $D_{l',l'}$ distance between potential pretreatment factory location l'and potential biofuel production factory location l'', km
- $D_{l',m}$ distance between potential biofuel production factory location l''and potential market at location *m*, km
- $D_{r,l}$ distance between biomass feedstock location *r* and potential integrated factory location *l*, km
- $D_{r,l'}$ distance between biomass feedstock location *r* and potential pretreatment factory location *l'*, km
- e_3 FE input of transportation, MJ·t⁻¹·km⁻¹
- $e_{T,b,c'}$ FE inputs of producing intermediate product using biomass *b* in pretreatment factory with capacity type *c'* in biofuel pathway *T*, MJ·t⁻¹
- e_{T,c^*} FE inputs of producing biofuel using intermediate product in biofuel production factory with capacity type c'' in biofuel pathway T, MJ·t⁻¹
- $e_{r,b}$ FE inputs of producing biomass b at biomass location r, MJ·t⁻¹
- $e_{t,b,c}$ FE inputs of producing biofuel using biomass b in integrated factory with capacity type c in biofuel pathway t, MJ·t⁻¹
- $f_{T,r,b,l',c'}$ flow of biomass *b* from biomass feedstock location *r* to pretreatment factory at location *l'* with capacity type *c'* in biofuel pathway *T*, continuous
- $f_{T,l',c',l',c'}$ flow of intermediate product from pretreatment factory at location l' with capacity type c' to biofuel production factory at location l'' with capacity type c'' in biofuel pathway T, continuous
- $f_{T,I'',c',m}$ flow of biofuel from biofuel production factory at location l'' with capacity type c'' to market at location m in biofuel pathway T, continuous
- $f_{t,l,c,m}$ flow of biomass from integrated factory at location *l* with capacity type *c* to market at location *m* in biofuel pathway *t*, continuous
- $f_{l,r,b,l,c}$ flow of biomass *b* from biomass feedstock location *r* to integrated factory at location *l* with capacity type *c* in biofuel pathway *t*, continuous

- g_3 GHG emissions of transportation, g CO₂·t⁻¹·km⁻¹
- $g_{r,b}$ GHG emissions of producing biomass b at biomass location r, g CO₂·t⁻¹
- $g_{T,b,c'}$ GHG emissions of producing intermediate product using biomass *b* in pretreatment factory with capacity type *c'* in biofuel pathway *T*, g CO₂·t⁻¹
- $g_{T,c"}$ GHG emissions of producing biofuel using intermediate product in biofuel production factory with capacity type c'' in biofuel pathway T, g CO₂·t⁻¹
- $g_{t,b,c}$ GHG emissions of producing biofuel using biomass b in integrated factory with capacity type c in biofuel pathway t, g CO₂ t⁻¹
- $L_{F,m}$ minimum demand for mixed fuel F in market m, t $\cdot a^{-1}$
- L_T lower heating value of bifuel produced by pathway T, MJ t⁻¹
- L_t lower heating value of bifuel produced by pathway t, MJ·t⁻¹
- *M* big *M* to ensure some constraint is redundant when a binary variable equals to 1
- $O_{t,c}$ fixed cost of integrated factory with capacity type *c* in biofuel pathway *t*, CNY·a⁻¹
- $O_{T,c'}$ fixed cost of integrated factory with capacity type c' in biofuel pathway T, CNY $\cdot a^{-1}$
- O_{T,c^*} fixed cost of integrated factory with capacity type c'' in biofuel pathway T, CNY $\cdot a^{-1}$
- o_3 unit cost of transportation CNY $\cdot t^{-1} \cdot km^{-1}$
- $o_{r,b}$ cost of producing biomass b at biomass location r, CNY·t⁻¹
- $o_{T,b,c'}$ cost of producing intermediate product using biomass *b* in pretreatment factory with capacity type *c'* in biofuel pathway *T*, CNY·t⁻¹
- o_{T,c^*} cost of producing biofuel using intermediate product in biofuel production factory with capacity type c'' in biofuel pathway T, CNY $\cdot t^{-1}$
- $o_{t,b,c}$ cost of producing biofuel using biomass b in integrated factory with capacity type c in biofuel pathway t, CNY·t⁻¹
- P_T price of biofuel produced in biofuel pathway T, CNY·t⁻¹
- P_t price of biofuel produced in biofuel pathway t, CNY t⁻¹
- $U_{F,m}$ maximum demand for mixed fuel F in market m, t $\cdot a^{-1}$
- $X_{T,f,c'}$ indicating whether a factory for biofuel pathway *T* at location *l'* with capacity type *c'* exist, binary
- $X_{T,I',c'}$ indicating whether a factory for biofuel pathway *T* at location *l*" with capacity type *c*" exist, binary
- $X_{t,l,c}$ indicating whether a factory for biofuel pathway t at location l with capacity type c exists, binary
- Y_m indicating whether we should choose *m* as a market, binary
- Y_T indicating whether we should choose biofuel pathway *T*, binary
- Y_t indicating whether we should choose biofuel pathway t, binary
- $y_{t,r,b}$ conversion rate from biomass to biofuel in biofuel pathway t for biomass b at biomass location r
- $y'_{T,r,b}$ conversion rate from biomass to intermediate product in biofuel pathway *T* for biomass *b* at biomass location *r*
- y_T'' conversion rate from intermediate product to biofuel in biofuel pathway T

Subscripts

b	biomass type
С	capacity type for integrated factories
c'	capacity type for pretreatment factories
с"	capacity type for biofuel production factories
F	gasoline or diesel
l	potential locations for integrated factories
l'	potential locations for pretreatment factories
<i>l</i> ″	potential locations for biofuel production factories
m	potential markets
r	biomass feedstock locations
Т	biofuel pathway with distributed system
t	biofuel pathway with centralized system

REFERENCES

- Bond, J.Q., Alonso, D.M., Wang, D., West, R., Dumesic, J.A., "Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels", *Science*, **327** (5969), 1110-1114 (2010).
- 2 Yan, L., Zhang, L., Wang, S., Hu, L., "Potential yields of bio-ethanol from energy crops and their regional distribution in China.", *Transactions of the Chinese Society of Agricultural Engineering*, 24 (5), 213-216 (2008). (in Chinese)
- 3 Qiu, H., Sun, L., Huang, J., Rozelle, S., "Liquid biofuels in China: Current status, government policies, and future opportunities and challenges", *Renewable and Sustainable Energy Reviews*, 16 (5), 3095-3104 (2012).
- 4 Zhang, P., Yang, Y., Tian, Y., Yang, X., Zhang, Y., Wang, L., "Bioenergy industries development in China: Dilemma and solution", *Renewable and Sustainable Energy Reviews*, **13** (9), 2571-2579 (2009).
- 5 Ou, X., Zhang, X., Chang, S., Guo, Q., "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China", *Applied Energy*, 86, Supplement 1, S197-S208 (2009).
- 6 Chen, H., Chen, G.Q., "Energy cost of rapeseed-based biodiesel as alternative energy in China", *Renewable Energy*, **36** (5), 1374-1378 (2011).
- 7 Hou, J., Zhang, P., Yuan, X., Zheng, Y., "Life cycle assessment of biodiesel from soybean, *jatropha* and microalgae in China conditions", *Renewable and Sustainable Energy Reviews*, **15** (9), 5081-5091 (2011).
- 8 Shirvani, T., Yan, X., Inderwildi, O.R., Edwards, P.P., King, D.A., "Life cycle energy and greenhouse gas analysis for algae-derived biodiesel", *Energy & Environmental Science*, 4 (10), 3773-3778 (2011).
- 9 Hu, Z., Tan, P., Yan, X., Lou, D., "Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China", *Energy*, **33** (11), 1654-1658 (2008).
- 10 Ou, X., Yan, X., Zhang, X., Liu, Z., "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China", *Applied Energy*, **90** (1), 218-224 (2012).
- 11 Wang, Z., Calderon, M.M., Lu, Y., "Life cycle assessment of the economic, environmental and energy performance of Jatropha curcas L. Biodiesel in China", *Biomass and Bioenergy*, **35** (7), 2893-2902 (2011).
- 12 Guo, R., Hanaki, K., "Potential and life cycle assessment of biodiesel production in China", *Journal of Renewable and Sustainable Energy*, 2, 033107-1-033107-15 (2010).
- 13 Liang, S., Xu, M., Zhang, T., "Life cycle assessment of biodiesel production in China", *Bioresource Technology*, **129**, 72-77 (2013).
- 14 Giarola, S., Shah, N., Bezzo, F., "A comprehensive approach to the design of ethanol supply chains including carbon trading effects", *Bioresource Technology*, **107**, 175-185 (2012).
- 15 Akgul, O., Shah, N., Papageorgiou, L.G., "An optimisation framework for a hybrid first/second generation bioethanol supply chain", *Computers & Chemical Engineering*, 42, 101-114 (2012).

APPENDIX

- 16 Kim, J., Realff, M.J., Lee, J.H., Whittaker, C., Furtner, L., "Design of biomass processing network for biofuel production using an MILP model", *Biomass and Bioenergy*, 35 (2), 853-871 (2011).
- 17 Papapostolou, C., Kondili, E., Kaldellis, J.K., "Development and implementation of an optimisation model for biofuels supply chain", *Energy*, **36** (10), 6019-6026 (2011).
- 18 Zamboni, A., Shah, N., Bezzo, F., "Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization", *Energy & Fuels*, 23 (10), 5121-5133 (2009).
- 19 Zamboni, A., Bezzo, F., Shah, N., "Spatially explicit static model for the strategic design of future bioethanol production systems. 2. Multi-objective environmental optimization", *Energy & Fuels*, 23 (10), 5134-5143 (2009).
- 20 You, F., Wang, B., "Life cycle optimization of biomass-to-liquid supply chains with distributed—Centralized processing networks", *Industrial* & Engineering Chemistry Research, **50** (17), 10102-10127 (2011).
- 21 Čuček, L., Varbanov, P.S., Klemeš, J.J., Kravanja, Z., "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains", *Energy*, 44 (1), 135-145 (2012).
- 22 Bojarski, A.D., Laínez, J.M., Espuña, A., Puigjaner, L., "Incorporating environmental impacts and regulations in a holistic supply chains modeling: An LCA approach", *Computers & Chemical Engineering*, 33 (10), 1747-1759 (2009).
- 23 Kostin, A., Guillén-Gosálbez, G., Mele, F.D., Jim, E.N.L., "Identifying key life cycle assessment metrics in the multiobjective design of bioethanol supply chains using a rigorous mixed-integer linear programming approach", *Industrial & Engineering Chemistry Research*, 51 (14), 5282-5291 (2012).
- 24 Mavrotas, G, "Effective implementation of the ε-constraint method in multi-objective mathematical programming problems", *Applied Mathematics and Computation*, **213** (2), 455-465 (2009).
- 25 Konno, H., Yamashita, H., "Minimizing sums and products of linear fractional functions over a polytope", *Naval Research Logistics* (*NRL*), **46** (5), 583-596 (1999).
- 26 Metev, B., Gueorguieva, D., "A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems", *European Journal of Operational Research*, **126** (2), 386-390 (2000).
- 27 Liu, C.M., "Study on Rape Production and Development of Biodiesel in China", Ph. D. Thesis, Huazhong Agricultural University (2008). (in Chinese)
- 28 Xu, Z., Cheng, S., Xie, G., "The suitable land for sweet sorghum and its potential for ehtanol production in China", *Renewable Energy Resources*, 28 (4), 118-122 (2010).
- 29 Wu, Q., "Energy Utilization Actuality and Potential Evaluation of Jatropha curcas L. in China", Master Thesis, Beijing Forestry University, (2009). (in Chinese)
- 30 National Bureau of Statistics of the People's Republic of China, China statistical yearbook 2010, China Statistics Press, Beijing (2011) (in Chinese)
- 31 Xing, A., Ma, J., Zhang, Y., Wang, Y., Jin, Y., "Life cycle assessment of economy for biodiesel", *Journal of Tsinghua University Science* and Technology, **50** (6), 923-927 (2010). (in Chinese)

					-				
	Anhui	Fujian	Gansu	Guangdong	Guangxi	Guizhou	Hainan	Hebei	Henan
Anhui	0	939	1575	1236	1626	1586	1816	936	579
Fujian	939	0	2312	929	1531	1667	1474	1837	1434
Gansu	1575	2312	0	2327	2266	1706	2737	1207	1113
Guangdong	1236	929	2327	0	604	1124	589	1881	1482
Guangxi	1626	1531	2266	604	0	581	479	2070	1671
Guizhou	1586	1667	1706	1124	581	0	1053	1960	1561
Hainan	1816	1474	2737	589	479	1053	0	2479	2080
Hebei	936	1837	1207	1881	2070	1960	2479	0	425

Table A1 Distance between provinces (km)*

Table A1 (Continued)	
----------------------	--

	Anhui	Fujian	Gansu	Guangdong	Guangxi	Guizhou	Hainan	Hebei	Henan
Henan	579	1434	1113	1482	1671	1561	2080	425	0
Heilongjiang	2228	2993	2741	3395	3559	3507	3970	1530	1926
Hubei	389	923	1381	1031	1220	1193	1629	895	516
Hunan	762	920	1654	731	881	840	1300	1205	806
Jilin	1958	2722	2470	3124	3288	3225	3674	1260	1656
Jiangsu	173	917	1746	1398	1782	1742	1996	915	674
Jiangxi	437	582	1754	803	1197	1155	1401	1229	873
Liaoning	1684	2439	2180	2875	3016	2938	3425	966	1351
Inner Mongolia	1531	2388	1111	2429	2619	2189	3028	820	976
Shandong	646	1562	1584	1850	2039	1929	2448	303	435
Shanxi	1004	1861	1007	1902	2091	1659	2500	245	473
Shaanxi	932	1738	644	1740	1619	1062	2338	865	479
Sichuan	1518	2103	1333	1986	1271	714	1742	1575	1195
Tianjin	958	1785	1531	2164	2328	2300	2737	317	718
Xinjiang	3555	4215	1912	4233	4169	3612	4640	3076	3015
Yunnan	2083	2165	2168	1394	798	510	1258	2422	2068
Zhejiang	423	635	2011	1302	1722	1681	1901	1178	939
Chongqing	1271	1799	1460	1478	934	377	1405	1539	1206
	Heilongjiang	Hubei	Hunan	Jilin	Jiangsu	Jiangxi	Liaoning	Inner Mongolia	Shandor
Anhui	2228	389	762	1958	173	437	1684	1531	646
Fujian	2993	923	920	2722	917	582	2439	2388	1562
Gansu	2741	1381	1654	2470	1746	1754	2180	1111	1584
Guangdong	3395	1031	731	3124	1398	803	2875	2429	1850
Guangxi	3559	1220	881	3288	1782	1197	3016	2619	2039
Guizhou	3507	1193	840	3225	1742	1155	2938	2189	1929
Hainan	3970	1629	1300	3674	1996	1401	3425	3028	2448
Hebei	1530	895	1205	1260	915	1229	966	820	303
Henan	1926	516	806	1656	674	873	1351	976	435
Heilongjiang	0	2360	2672	282	2119	2581	556	1680	1546
Hubei	2360	0	356	2112	548	369	1863	1470	872
Hunan	2672	356	0	2424	918	395	2175	1754	1200
Jilin	282	2112	2424	0	1849		287	1410	1200
Jiangsu	282	548	918	1849	0	2311 598	1600	1518	639
Jiangxi	2581	348 369	395	2311	598	0	2065	1829	1065
C									
Liaoning	556	1863	2175	287	1600	2065	0	1162	1007
Inner Mongolia	1680	1470	1754	1410	1518	1829	1162	0	930
Shandong	1546	872	1200	1276	639	1065	1007	930	0
Shanxi	1759	942	1226	1489	1100	1303	1200	527	528
Shaanxi	2364	808	999	2094	1106	1112	1804	972	893
Sichuan	3086	1143	1195	2816	1669	1498	2519	1685	1603
Tianjin	1226	1175	1464	956	912	1377	666	630	340
Xinjiang	4728	3351	3559	4459	3652	3727	4168	3011	3364
Yunnan	3989	1724	1335	3724	2239	1653	3433	2552	2436
Zhejiang	2359	816	920	2089	278	581	1799	1786	902
Chongqing	3038	897	892	2768	1423	1287	2478	1668	1568

	Shanxi	Shaanxi	Sichuan	Tianjin	Xinjiang	Yunnan	Zhejiang	Chongqing
Anhui	1004	932	1518	958	3555	2083	423	1271
Fujian	1861	1738	2103	1785	4215	2165	635	1799
Gansu	1007	644	1333	1531	1912	2168	2011	1460
Guangdong	1902	1740	1986	2164	4233	1394	1302	1478
Guangxi	2091	1619	1271	2328	4169	798	1722	934
Guizhou	1659	1062	714	2300	3612	510	1681	377
Hainan	2500	2338	1742	2737	4640	1258	1901	1405
Hebei	245	865	1575	317	3076	2422	1178	1539
Henan	473	479	1195	718	3015	2068	939	1206
Heilongjiang	1759	2364	3086	1226	4728	3989	2359	3038
Hubei	942	808	1143	1175	3351	1724	816	897
Hunan	1226	999	1195	1464	3559	1335	920	892
Jilin	1489	2094	2816	956	4459	3724	2089	2768
Jiangsu	1100	1106	1669	912	3652	2239	278	1423
Jiangxi	1303	1112	1498	1377	3727	1653	581	1287
Liaoning	1200	1804	2519	666	4168	3433	1799	2478
Inner Mongolia	527	972	1685	630	3011	2552	1786	1668
Shandong	528	893	1603	340	3364	2436	902	1568
Shanxi	0	610	1319	551	2875	2166	1363	1283
Shaanxi	610	0	714	1168	2549	1570	1320	687
Sichuan	1319	714	0	1864	3239	841	1950	322
Tianjin	551	1168	1864	0	3426	2787	1152	1832
Xinjiang	2875	2549	3239	3426	0	4066	3915	3364
Yunnan	2166	1570	841	2787	4066	0	2176	884
Zhejiang	1363	1320	1950	1152	3915	2176	0	1704
Chongqing	1283	687	322	1832	3364	884	1704	0

* Data source: http://map.baidu.com.

Table A2	Demand for bio-fuel in	possible markets	[30]
I able 112	Demana for bio faci m	possible markets	

	Maximum demand for BD/t·a ⁻¹	Minimum demand for BD/t·a ⁻¹		Maximum demand for BD/t·a ⁻¹	Minimum demand for BD/t·a ⁻¹
Anhui	105000	63000	Jilin	57500	34500
Fujian	50300	30200	Jiangxi	54700	32800
Guangxi	65300	39200	Liaoning	128900	77300
Guizhou	43800	26300	Shanxi	104600	62700
Hebei	179800	107900	Shaaxi	61300	36800
Henan	207600	124600	Sichuan	122500	73500
Heillongjiang	80900	48600	Tianjin	20300	12200
Hubei	74800	44900	Yunnan	95700	57400
Hunan	100900	60500	Chongqing	58700	35200

Location	$\begin{array}{c} Maximum \ amount \\ available \\ /t \cdot a^{-1} \end{array}$	Fossil energy inputs during plantation/MJ·(t biomass) ⁻¹	GHG emissions during plantation /g CO ₂ ·(t biomass) ⁻¹	Plantation cost $/\text{CNY} \cdot (\text{t biomass})^{-1}$	Conversion rate to preliminarily processed oil
Guangdong	185000	6921	661.5	1315	0.33
Guangxi	210000	6921	661.5	1315	0.33
Guizhou	200000	6921	661.5	1315	0.33
Hainan	40000	6921	661.5	1315	0.33
Sichuan	310000	6921	661.5	1315	0.33
Yunnan	340000	6921	661.5	1315	0.33

 Table A3
 Plantation information about Jatropha fruit [5, 10, 29-31]

 Table A4
 Plantation information about rapeseed [5, 10, 29-31]

Location	Maximum amount available/t·a ⁻¹	Fossil energy inputs during plantation /MJ·(t biomass) ⁻¹	GHG emissions during plantation /g CO_2 ·(t biomass) ⁻¹	Plantation cost /CNY · (t biomass) ⁻¹	Conversion rate to preliminarily processed oil
Anhui	190000	7401	681.7	1786	0.37
Gansu	25900	8769	807.7	2117	0.37
Guizhou	74000	9164	844.1	2212	0.37
Henan	78100	6725	619.4	1623	0.37
Hubei	235000	7088	652.9	1711	0.37
Hunan	107000	9563	880.8	2309	0.37
Jiangsu	167000	5793	533.6	1398	0.37
Jiangxi	40100	14034	1292	3388	0.37
Inner Mongolia	31300	12487	1150	3014	0.37
Qinghai	28300	7839	722.1	1892	0.37
Shaanxi	29400	8263	761.1	1995	0.37
Sichuan	165000	6934	638.7	1674	0.37
Xinjiang	12100	7796	718.1	1882	0.37
Yunnan	26200	7919	729.4	1912	0.37
Zhejiang	43500	6971	642.2	1683	0.37
Chongqing	31000	7879	725.7	1902	0.37

Table A5 Information about integrated factory [5, 10, 29-31]

$\begin{array}{c} Capacity \\ /t \cdot a^{-1} \end{array}$	Processing GHG emissions /MJ·(t biomass) ⁻¹ (<i>Jatropha</i> fruit/rapeseed)	Processing fossil energy inputs /g CO ₂ ·(t biomass) ⁻¹ (<i>Jatropha</i> fruit/rapeseed)	Processing cost /CNY·(t biomass) ⁻¹ (<i>Jatropha</i> fruit/rapeseed)	Fixed cost /CNY \cdot a ⁻¹
100000	3253/3520	301.3/324.8	179.9/189.8	13540000
200000	3035/3284	281.1/303.1	167.8/177.1	22000000
500000	2769/2996	256.5/276.5	153.1/161.6	41770000

 Table A6
 Information about two steps factory [5, 10, 29-31]

		Pretreatment factories		
Capacity/t·a ⁻¹	Processing GHG emissions /MJ·(t biomass) ⁻¹ (<i>Jatropha</i> fruit/rapeseed)	Processing fossil energy inputs /g CO ₂ ·(t biomass) ⁻¹ (<i>Jatropha</i> fruit/rapeseed)	Processing cost /CNY (t biomass) ⁻¹ (<i>Jatropha</i> fruit/rapeseed)	Fixed cost /CNY·a ⁻¹
50000	481.4/403.2	49.01/41.05	36.54/28.25	363100
100000	449.2/376.2	45.73/38.30	34.10/26.36	590000
200000	419.1.351.0	42.67/35.73	31.81/24.60	958400

		Biofuel production factories		
Capacity/t·a ⁻¹	Processing GHG emiss /MJ·t ⁻¹	ons Processing fossil energy inputs $/g CO_2 \cdot t^{-1}$	Processing cost $/\text{CNY} \cdot (\text{t biomass})^{-1}$	Fixed cos /CNY·a ⁻¹
31500	8496	774.4	441.8	12950000
63000	7927	722.5	412.2	21030000
100000	7569	689.9	393.6	29070000
		Table A7 Information about transportation To a state of the state of		and the
Transportation	cost/CNY·t ⁻¹ ·km ⁻¹	Table A7 Information about transportat Transportation GHG emissions/g CO2·t ⁻¹ ·km ⁻¹	tion [10] Transportation fossil energy inp	outs/MJ·t ⁻¹ ·km ⁻
	cost/CNY·t ⁻¹ ·km ⁻¹ 0.35	•		outs/MJ·t ⁻¹ ·km ⁻
	0.35	Transportation GHG emissions/g $CO_2 \cdot t^{-1} \cdot km^{-1}$	Transportation fossil energy inp 1.587	puts/MJ·t ⁻¹ ·km ⁻
	0.35	Transportation GHG emissions/g $CO_2 \cdot t^{-1} \cdot km^{-1}$ 0.1215	Transportation fossil energy inp 1.587	

Table A6 (Continued)