97 lines
2.9 KiB
Python
97 lines
2.9 KiB
Python
import os
|
||
import re
|
||
import gradio as gr
|
||
from PIL import Image
|
||
from pprint import pprint
|
||
from qwen_agent.agents import Assistant
|
||
import sys
|
||
os.chdir(sys.path[0])
|
||
|
||
os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
|
||
|
||
# 填写Qwen的api-key
|
||
llm_cfg = {
|
||
'model': 'qwen-1.5-72b',
|
||
'model_server': 'dashscope',
|
||
'api_key': "xxx",
|
||
}
|
||
|
||
system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后,
|
||
如果有可视化要求,请使用 `plt.show()` 显示图像,输出图像的路径,不需要保存。
|
||
最后,请对数据分析结果结合生命周期评价领域知识进行解释。'''
|
||
|
||
tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code.
|
||
messages = [] # This stores the chat history.
|
||
|
||
name = '中国电建集团成都电力金具有限公司产品'
|
||
files = ["/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/lciaData/"+name+".csv","/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/lciaData/报告模板.md"]
|
||
|
||
def getImage(response):
|
||
'''
|
||
获取图像路径
|
||
'''
|
||
pattern = r'workspace.*?\.png'
|
||
path = None
|
||
for res in response:
|
||
content = str(res['content'])
|
||
matches = re.findall(pattern, content)
|
||
# print("*********",res['content'])
|
||
if len(matches):
|
||
path = matches[0]
|
||
# print("###### path #####,", path)
|
||
return path
|
||
|
||
# Convert bot response to string
|
||
res_str = ""
|
||
|
||
image_paths = []
|
||
while True:
|
||
print("input>")
|
||
inputs = input()
|
||
if inputs == 'q':
|
||
break
|
||
image_path_str = ''
|
||
if len(image_paths):
|
||
image_path_str = ' '.join(image_paths)
|
||
user_input = inputs+"多个图像路径如下,"+image_path_str
|
||
else:
|
||
user_input = inputs
|
||
global responses
|
||
response = []
|
||
messages.append({'role': 'user', 'content': user_input})
|
||
bot = Assistant(llm=llm_cfg,
|
||
system_message=system_instruction,
|
||
function_list=tools,
|
||
files=files)
|
||
for response in bot.run(messages=messages):
|
||
continue
|
||
|
||
# pprint(response)
|
||
messages.extend(response)
|
||
|
||
image_path = getImage(response)
|
||
if image_path:
|
||
image_paths.append(image_path)
|
||
|
||
tmp = ''
|
||
for res in response:
|
||
tmp += res['content']
|
||
print(tmp)
|
||
|
||
for res in response:
|
||
res_str += res['content']
|
||
try:
|
||
with open("/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/Qwen1.5-72b"+name+".md", "w", encoding="utf-8") as f:
|
||
f.write(res_str)
|
||
except IOError as e:
|
||
print(f"An error occurred: {e}")
|
||
|
||
# print(res_str)
|
||
'''
|
||
英文,中英文都有结果;
|
||
报告标准化:完整;准确;模板;数据长了之后多轮对话。
|
||
|
||
请按照报告案例1作为模板,用你掌握的信息进行填充,并且将可视化得到的图像结果插入到报告中并加以分析,
|
||
以markdown格式输出填充数据信息之后的报告。
|
||
'''
|