T85_code/计算碳排放.ipynb

701 lines
60 KiB
Plaintext
Raw Permalink Normal View History

2023-05-11 14:18:08 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import pandas as pd"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"import numpy as np\n",
"import time"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"$E = E_{燃烧} + E_{脱硫} + E_{电}$ \\\n",
"$E_{燃烧} = \\sum_i (AD_i\\times EF_i)$ \\\n",
"$AD_i = FC_i \\times NCV_i \\times 10^{-6}$ 消耗量*低位热值\n",
"$EF_i = CC_i \\times OF_i \\times \\frac{44}{12}$ 单位热值含碳量 * 碳氧化率"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"def cal_ad(fc, ncv):\n",
" return fc * ncv * 1e-6"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [],
"source": [
"def cal_ef(cc, of):\n",
" return cc * of * 44 / 12"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [],
"source": [
"cc_map = {\n",
" \"无烟煤\": 27.49,\n",
" \"烟煤\": 26.18,\n",
" \"褐煤\": 27.97,\n",
" \"贫煤\": 26.0,\n",
"}"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [],
"source": [
"data = pd.read_excel('./total_data.xlsx')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"data['入炉煤低位热值(kJ/kg)'] = data['入炉煤低位热值(kJ/kg)'].apply(lambda x: x*1000 if x < 100 else x*1)\n",
"data['燃煤灰份Aar(%)'] = data['燃煤灰份Aar(%)'].apply(lambda x: x / 1000 if x > 10000 else x*1)\n",
"data['燃煤挥发份Var(%)'] = data['燃煤挥发份Var(%)'].apply(lambda x: x / 1000 if x > 10000 else x*1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [],
"source": [
"def cal_ctype(ncv, vdaf, ash):\n",
" if pd.isna(ncv) or pd.isna(vdaf) or pd.isna(ash):\n",
" return pd.NA\n",
" else:\n",
" if vdaf / (1 - ash/100 - 0.07196) < 10:\n",
" return '无烟煤'\n",
" elif vdaf / (1 - ash/100 - 0.06825) < 20:\n",
" return '贫煤'\n",
" elif vdaf / (1 - ash/100 - 0.08679) < 37 and ncv > 16730:\n",
" return '烟煤'\n",
" elif ncv < 16730:\n",
" return '褐煤'\n",
" else:\n",
" return '烟煤'"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [],
"source": [
"data['煤种'] = data.apply(lambda x: cal_ctype(x['入炉煤低位热值(kJ/kg)'], x['燃煤挥发份Var(%)'], x['燃煤灰份Aar(%)']), axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [],
"source": [
"data = data[~data['煤种'].isna()].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [],
"source": [
"data = data[data['入炉煤低位热值(kJ/kg)']> 8000].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [],
"source": [
"data = data[~((data['发电用标煤量t'].isna())|(data['发电用标煤量t']==0))].copy()\n",
"data = data[~((data['发电用标煤量t'].isna())|(data['发电用标煤量t']==0))].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 13,
"outputs": [
{
"data": {
"text/plain": "['出力系数(%).1', '出力系数(%).2', '化学系统耗电率 (%).1', '额再热蒸汽温度 (℃).1']"
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"drop_cols = [x for x in data.columns if '.1' in x or '.2' in x]\n",
"drop_cols"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 14,
"outputs": [],
"source": [
"data.drop(columns=drop_cols, inplace=True)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 15,
"outputs": [],
"source": [
"data['工业供热量'].fillna(0, inplace=True)\n",
"data['采暖供热量'].fillna(0, inplace=True)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 16,
"outputs": [
{
"data": {
"text/plain": "array([ 56, 96, 122, ..., 16724, 16725, 16837], dtype=int64)"
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"drop_index = data[(data['发电量(万kWh)']<10000)|(data['总供热量']<=10000)|(data['供热用标煤量t']==0)].index.values\n",
"drop_index"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 17,
"outputs": [],
"source": [
"data.drop(index=drop_index, inplace=True)\n",
"data.reset_index(inplace=True, drop=True)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 18,
"outputs": [],
"source": [
"data['发电碳排放因子(kg/kWh)'] = data.apply(lambda x: (cal_ad(x['发电用标煤量t'], x['入炉煤低位热值(kJ/kg)']) * cal_ef(cc_map.get(x['煤种']), 0.98))/x['发电量(万kWh)']/10, axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 19,
"outputs": [],
"source": [
"data['供热碳排放因子(kg/MJ)'] = data.apply(lambda x:(cal_ad(x['供热用标煤量t'], x['入炉煤低位热值(kJ/kg)']) * cal_ef(cc_map.get(x['煤种']), 0.98))/x['总供热量'] if x['总供热量'] != 0 else 0, axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 20,
"outputs": [
{
"data": {
"text/plain": " 总供热量 供热碳排放因子(kg/MJ)\n0 8.294556e+05 0.076843\n1 8.789928e+04 0.077676\n2 8.481764e+05 0.074823\n3 4.473469e+05 0.081628\n4 7.157164e+05 0.081103\n... ... ...\n7252 1.532303e+06 0.078776\n7253 2.147545e+06 0.076622\n7254 2.131207e+06 0.074772\n7255 3.039811e+06 0.091482\n7256 3.039813e+06 0.091483\n\n[7257 rows x 2 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>总供热量</th>\n <th>供热碳排放因子(kg/MJ)</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>8.294556e+05</td>\n <td>0.076843</td>\n </tr>\n <tr>\n <th>1</th>\n <td>8.789928e+04</td>\n <td>0.077676</td>\n </tr>\n <tr>\n <th>2</th>\n <td>8.481764e+05</td>\n <td>0.074823</td>\n </tr>\n <tr>\n <th>3</th>\n <td>4.473469e+05</td>\n <td>0.081628</td>\n </tr>\n <tr>\n <th>4</th>\n <td>7.157164e+05</td>\n <td>0.081103</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>7252</th>\n <td>1.532303e+06</td>\n <td>0.078776</td>\n </tr>\n <tr>\n <th>7253</th>\n <td>2.147545e+06</td>\n <td>0.076622</td>\n </tr>\n <tr>\n <th>7254</th>\n <td>2.131207e+06</td>\n <td>0.074772</td>\n </tr>\n <tr>\n <th>7255</th>\n <td>3.039811e+06</td>\n <td>0.091482</td>\n </tr>\n <tr>\n <th>7256</th>\n <td>3.039813e+06</td>\n <td>0.091483</td>\n </tr>\n </tbody>\n</table>\n<p>7257 rows × 2 columns</p>\n</div>"
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[['总供热量', '供热碳排放因子(kg/MJ)']]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 21,
"outputs": [
{
"data": {
"text/plain": "126 0.460130\n127 0.480800\n128 0.493493\n129 0.487034\n130 0.475439\n131 0.481355\n132 0.450568\n133 0.454952\n134 0.460595\n135 0.478949\n136 0.486923\n137 0.483407\n138 0.488134\n139 0.471598\n140 0.450577\n141 0.461044\nName: 发电碳排放因子(kg/kWh), dtype: float64"
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[data['电厂名称']=='华电内蒙古能源有限公司包头发电分公司']['发电碳排放因子(kg/kWh)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 22,
"outputs": [
{
"data": {
"text/plain": " plant longitude latitude altitude\n0 万方发电厂(焦作爱依斯万方电力有限公司) 113.381649 35.255622 88.0\n1 三河发电有限责任公司 116.860260 39.953617 27.0\n2 上海上电漕泾发电有限公司 121.407593 30.765242 4.0\n3 上海吴泾发电有限责任公司 121.471140 31.065113 3.0\n4 上海吴泾第二发电有限责任公司 121.471340 31.062532 4.0",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>plant</th>\n <th>longitude</th>\n <th>latitude</th>\n <th>altitude</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>万方发电厂(焦作爱依斯万方电力有限公司)</td>\n <td>113.381649</td>\n <td>35.255622</td>\n <td>88.0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>三河发电有限责任公司</td>\n <td>116.860260</td>\n <td>39.953617</td>\n <td>27.0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>上海上电漕泾发电有限公司</td>\n <td>121.407593</td>\n <td>30.765242</td>\n <td>4.0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>上海吴泾发电有限责任公司</td>\n <td>121.471140</td>\n <td>31.065113</td>\n <td>3.0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>上海吴泾第二发电有限责任公司</td>\n <td>121.471340</td>\n <td>31.062532</td>\n <td>4.0</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loc_data = pd.read_csv('./电厂机组地理信息.csv')\n",
"loc_data.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 23,
"outputs": [],
"source": [
"loc_data.rename(columns={'plant':'电厂名称'}, inplace=True)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 24,
"outputs": [],
"source": [
"data = data.merge(loc_data, how='left', on='电厂名称')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 25,
"outputs": [
{
"data": {
"text/plain": "Index(['发电碳排放因子(kg/kWh)', '供热碳排放因子(kg/MJ)', 'longitude', 'latitude',\n 'altitude'],\n dtype='object')"
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.columns[-5:]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 26,
"outputs": [],
"source": [
"uni = data.groupby(['电厂名称', '机组编号'])['铭牌容量 (MW)'].unique().to_frame()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 27,
"outputs": [],
"source": [
"uni['len'] = uni['铭牌容量 (MW)'].apply(len)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 28,
"outputs": [
{
"data": {
"text/plain": "Empty DataFrame\nColumns: [铭牌容量 (MW), len]\nIndex: []",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th></th>\n <th>铭牌容量 (MW)</th>\n <th>len</th>\n </tr>\n <tr>\n <th>电厂名称</th>\n <th>机组编号</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n </tbody>\n</table>\n</div>"
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"uni[uni.len==2]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 29,
"outputs": [],
"source": [
"data = data[data['供热碳排放因子(kg/MJ)'] < 0.2].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 30,
"outputs": [],
"source": [
"import seaborn as sns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 31,
"outputs": [],
"source": [
"from scipy.stats import norm"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 32,
"outputs": [
{
"data": {
"text/plain": "Empty DataFrame\nColumns: [电厂名称, 机组编号, 铭牌容量 (MW), 投产时间, 机组类型, 参数分类, 所处地区, 冷凝器型式, 时间, 发电量(万kWh), 供电量(万kWh), 标煤量t, 发电用标煤量t, 供热用标煤量t, 利用小时(h), 平均负荷(MW), 出力系数(%), 工业供热量, 工业热电比(%), 采暖供热量, 采暖热电比(%), 总热电比(%), 总供热量, 供热煤耗, 给水泵汽轮机总耗热量, 供电煤耗gce/(kWh), 综合厂用电率(%), 发电厂用电率(%), 供热厂用电率(%), 非生产厂用电率(%), 最新THA工况二类修正后汽机热耗率kJ/KWh, 点火用油(kg/万kWh), 助燃用油(kg/万kWh), 主蒸汽压力(MPa), 主蒸汽温度(℃), 再热蒸汽温度(℃), 高加投入率(%), 给水温度(℃), 真空严密性V(Pa/min), 真空度(%), 凝汽器端差(℃), 凝结水过冷度(℃), 发电补给水率(%), 发电综合耗水率, 排烟温度(℃), 飞灰含碳量(%), 空预器漏风率(%), 过热器减温水量(t/h), 再热器减温水量(t/h), 入厂煤低位热值(kJ/kg), 入炉煤低位热值(kJ/kg), 燃煤挥发份Var(%), 燃煤灰份Aar(%), 燃煤低位热值Qar,net(kJ/kg), 燃煤硫份Sar(%), 锅炉专业主要辅机耗电率 送风机耗电率(%), 锅炉专业主要辅机耗电率 引风机耗电率(%), 锅炉专业主要辅机耗电率 一次风机耗电率(%), 锅炉专业主要辅机耗电率 炉水泵耗电率(%), 锅炉专业主要辅机耗电率 给煤机耗电率(%), 锅炉专业主要辅机耗电率 磨煤机耗电率(%), 锅炉专业主要辅机耗电率 电除尘器耗电率(%), 锅炉专业主要辅机耗电率 除灰系统耗电率(%), 汽机专业主要辅机耗电率 凝结水泵耗电率(%), 汽机专业主要辅机耗电率 前置泵耗电率(%), 汽机专业主要辅机耗电率 电动给水泵耗电率(%), 汽机专业主要辅机耗电率 循环水泵耗电率(%), 汽机专业主要辅机耗电率 空冷风机耗电率(%), 汽机专业主要辅机耗电率 热网循环水泵耗电率(%), 环保专业耗电率 脱硫系统耗电率(%), 环保专业耗电率 脱销系统耗电率(%), 输煤专业耗电率输煤系统耗电率(%), 化学系统耗电率 (%), 企业编码, 简称, 制造厂家, 型号, 型式, 最大连续出力B-MCR(t/h), 设计效率(%), 工质流动方式, 额定主蒸汽压力 (MPa), 额再热蒸汽温度 (℃), 额定再热蒸汽压力 (MPa), 额再热蒸汽温度 (℃), 点火方式, 燃烧方式, 设计燃煤种类, 设计燃煤灰份(收到基)(%), 设计燃煤挥发份)(收到基)(%), 设计燃煤低位热值收到基kJ/kg, 排渣方式, 除灰方式, 空预器制造厂家, 空预器型号, 空预器型式, 空预器设计漏风率(%), 磨煤机制造厂家, 磨煤机型号, 磨煤机型式, ...]\nIndex: []\n\n[0 rows x 134 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>电厂名称</th>\n <th>机组编号</th>\n <th>铭牌容量 (MW)</th>\n <th>投产时间</th>\n <th>机组类型</th>\n <th>参数分类</th>\n <th>所处地区</th>\n <th>冷凝器型式</th>\n <th>时间</th>\n <th>发电量(万kWh)</th>\n <th>...</th>\n <th>引风机最大风压(Pa)</th>\n <th>引风机最大流量(m3/S</th>\n <th>引风机电机电压(V)</th>\n <th>引风机电机功率KW</th>\n <th>煤种</th>\n <th>发电碳排放因子(kg/kWh)</th>\n <th>供热碳排放因子(kg/MJ)</th>\n <th>longitude</th>\n <th>latitude</th>\n <th>altitude</th>\n </tr>\n </thead>\n <tbody>\n </tbody>\n</table>\n<p>0 rows × 134 columns</p>\n</div>"
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data[data['供热碳排放因子(kg/MJ)'] <= 0]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 33,
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\ipykernel_launcher.py:1: UserWarning: \n",
"\n",
"`distplot` is a deprecated function and will be removed in seaborn v0.14.0.\n",
"\n",
"Please adapt your code to use either `displot` (a figure-level function with\n",
"similar flexibility) or `histplot` (an axes-level function for histograms).\n",
"\n",
"For a guide to updating your code to use the new functions, please see\n",
"https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751\n",
"\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
},
{
"data": {
"text/plain": "<matplotlib.axes._subplots.AxesSubplot at 0x12eeb377708>"
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:214: RuntimeWarning: Glyph 20379 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:214: RuntimeWarning: Glyph 28909 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:214: RuntimeWarning: Glyph 30899 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:214: RuntimeWarning: Glyph 25490 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:214: RuntimeWarning: Glyph 25918 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:214: RuntimeWarning: Glyph 22240 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:214: RuntimeWarning: Glyph 23376 missing from current font.\n",
" font.set_text(s, 0.0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:183: RuntimeWarning: Glyph 20379 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:183: RuntimeWarning: Glyph 28909 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:183: RuntimeWarning: Glyph 30899 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:183: RuntimeWarning: Glyph 25490 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:183: RuntimeWarning: Glyph 25918 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:183: RuntimeWarning: Glyph 22240 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n",
"D:\\miniconda3\\envs\\py37\\lib\\site-packages\\matplotlib\\backends\\backend_agg.py:183: RuntimeWarning: Glyph 23376 missing from current font.\n",
" font.set_text(s, 0, flags=flags)\n"
]
},
{
"data": {
"text/plain": "<Figure size 640x480 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGsCAYAAAAVGEevAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhc9Z3n+/epTSWVdsmL5N2WN7AAEzAQkxDcDUw68UDiuCGhuVzmEjJPeNL9pDtkAmEuJDTt9MwkncvTNzedJgxNoJsMdAghMcQhIZMAtvEi28J4kfdFwrZka1et59w/SqdkWVuVLOmcI39ez+Mnoc5R1Vf+qcof/VbDsiwLEREREY/wOV2AiIiISC4UXkRERMRTFF5ERETEUxReRERExFMUXkRERMRTFF5ERETEUxReRERExFMCThcw1kzTJJlM4vP5MAzD6XJEREQkC5ZlYZomgUAAn2/4vpVJF16SyST19fVOlyEiIiKjUFtbSygUGvaeSRde7LRWW1uL3+93uJq0VCpFfX29q2qSgdRO3qG28ga1k3e4oa3sGkbqdYFJGF7soSK/3++6N4sba5KB1E7eobbyBrWTd7ihrbKZ8qEJuyIiIuIpCi8iIiLiKQovIiIi4ikKLyIiIuIpCi8iIiLiKQovIiIi4ikKLyIiIuIpCi8iIiLiKQovIiIi4ikKLyIiIuIpCi8iIiLiKQovIiIi4ikKLyIiIuIpCi8iIiLiKQovIiIi4ikBpwsQkdHrjCX5zQcf8s6BFk6c6+bbty9j0bSiAfe19SToiCaGfa6icJCS/OB4lSoiMmYUXkQ8KpEy+dz/9y57P+zIPPbVn+7g1QdXEvD371TtiCbYfrSVRMoc9LmCfh9XzylVeBERT9CwkYhH/XTLcfZ+2EFJfpAvfXw+JflBdje28+O3Dw96fyJlEksO/meoUCMi4kYKLyIe1BNP8f/8tgGAv75lEQ//2VIe/dRSAL73m/0cae5ysjwRkXGl8CLiQf/z3cOc6Ygxsyyfz6+YDcDnPjKTG2sqiSVN1r2+x+EKRUTGj8KLiMe0RxP88PcHAfibWxcRCqTfxoZh8NjqywD4zQenaGrrcaxGEZHxpPAi4jEbdp+iPZpk/pQIt185o9+1hdOKuG5eOaaVnhMjIjIZKbyIeEBbT4IT57o5ca6bl7elQ8mqxVNpbOvhxLlu2nr6lkF/4br0MNKL7x0nqYm4IjIJaam0iAfYS51bu+O8d/gsABWFITYfOks46Kd2RnFmH5faGSWU5gf5sD3Ky9tO8PFFlcQSCjEiMnkovIh4RCJlUne8FdOCqpIwJfkhYkmTkN9HVzxFw6nOzJLnq2aX8vt9Z3j23SOU5oeYU1ngcPUiImNHw0YiHlJ/og1I965c6Px9XD4yuwyAfR92cPxc94TWKCIy3hwNL6lUinvuuYdvfOMbmcd27tzJ2rVrWb58OatWreKll15ysEIR9+iIJjh4phOAK2aWDntvRWEeS6uKsYDf7jk1AdWJiEwcR8PLP/7jP7J169bMf7e1tfHAAw9wxx13sGXLFp588knWrVvHrl27HKxSxB12N7ZjATNK8ymPhEa8/6aFlQBsOXqO5s7YOFcnIjJxHJvzsnHjRjZs2MCtt96aeWzDhg2UlpZy9913A3DDDTewevVqXnjhBa644oqcnj+VSo1pvRfDrsVNNclAbm4ny7QyvS6LphVimn0TcE3LBMvCNM1+j88sy2dORQFHW7r5ed1Jrp9X3u/6+Uwz/Rpu/N4H4+a2kj5qJ+9wQ1vl8tqOhJeWlha++c1v8oMf/IBnn30283hDQwOLFi3qd29NTQ0vv/xyzq9RX19/sWWOOTfWJAO5rZ38fj/JvGIOnGoHoMDs4viJvj1cygrDVBf6aGpqoisW7/e1S8ssjrbA+vompgV6SKWSg75GfijAqcIkLcfbPfUPjdvaSgandvIOr7TVhIcX0zR56KGHuO+++1iyZEm/a11dXeTn5/d7LBwO092d+4TD2tpa/H7/RdU6VlKpFPX19a6qSQZyczvtON5Ke8zEZ8DVC2eTF+yrrygcoDASoaqqiliyf8/KzBkWO88coqktyp5WP3+ytGrQ588L+Jg2tYLq0jnj+n2MFTe3lfRRO3mHG9rKriEbEx5e/umf/olQKMQ999wz4Fp+fj4dHR39HotGo0QikZxfx+/3u+7N4saaZCA3ttP7jelel6qSfPLzgv2u+QwfGAY+nw/fILPY/uMV1fzTHw/xxwPNXDuvnNKCgfNlfD4fhs9w3fc9Eje2lQykdvIOr7TVhIeXV199ldOnT3PNNdcA6XAC8Oabb/L1r3+dd955p9/9Bw4cYOHChRNdpoir7OpdIj2nIvf9Wi6vLuaKmSXsOtHGbz44xdprZo11eSIiE2rCVxu98cYbbN++na1bt7J161Y+/elP8+lPf5qtW7dyyy230NzczLPPPksikWDTpk289tprrFmzZqLLFHGVvvCSey+kYRj8XzfOA9LDT42tOrBRRLzNVZvUlZWV8cwzz/DGG29w3XXX8eijj/Loo49y/fXXO12aiGPaz9vfZTQ9LwCLphVx1axSLGBz7/ECIiJe5fjxAN/5znf6/XdtbS0vvviiQ9WIuE/dsfSRABWREMXh4MhfMIRr55ax43gr+z5sx7KqMQxjDKsUEZk4rup5EZGBth5J95TMq8x9yOh8NVMKCQV8tEeTNLZGx6I0ERFHKLyIuNyO460AzL3I8BLw+1g4tRCAPR+2X3RdIiJOUXgRcbnDzV0ATCvOu+jnWjK9GIC9TQovIuJdCi8iLhZNpDjZuzpoSuHFh5fF04swgMa2KK3d8RHvFxFxI4UXERc7drYby4LCvACFeRc/v74wL8Cs8vSKpb0fdoxwt4iIOym8iLiYPWQ0syx/zFYHLZ1eBMA+hRcR8SiFFxEXs8OL3VsyFuyN7k53aMWRiHiTwouIix0+0xteyvJHuDN75YXps41auxMkTXOEu0VE3EfhRcTFMsNGY9jzUpQXIOg3sEgHGBERr1F4EXGxwy3p8DJ7DHteDMOgPJLufTnbpRVHIuI9Ci8iLtURTXCmIwaMbc8LQHkkvey6ReFFRDxI4UXEpY40dwNQWRgak2XS56uwe146Y2P6vCIiE0HhRcSl7CGjiz3TaDAaNhIRL1N4EXEpe6XReIYXDRuJiBcpvIi41OHmTuDiD2QcjD1sdK47jmVZY/78IiLjSeFFxKXsZdLzxyG8lBaE8BmQSFl0RJNj/vwiIuNJ4UXEpezwMh49L36fQUl+ENDQkYh4j8KLiAt1x5O09/aIzCgduz1ezlfRu1xak3ZFxGsUXkRcyN7fJRz0jfkyaVvfiiMtlxYRb1F4EXEhO7xMLQqP2WnSF9KKIxHxKoUXERc63RtephTljdtraK8XEfEqhRcRF7J7XqYUjl94qShUeBERb1J4EXGhzLBR8Tj2vBSkw0t3PEUsmRq31xERGWsKLyIudLojCoxvz0so4CPgS8+n6YopvIiIdyi8iLjQRPS8GIZBpHclU1dMG9WJiHeMzxpMEclaW0+Cjmii32MnW3sAMAxobO0mljDH5bULQn7aehJ0xRVeRMQ7FF5EHNYRTbD9aCuJVF9A+bAtPWzU2Bpl1/F25lQWjMtrR0J2z4uGjUTEOxReRFwgkTKJJdPhxbQsOnuHccIBf79QM9YK8vyAho1ExFs050XEZbpiSUwLDMjMSRkvBXbPi4aNRMRDFF5EXMbudSnIC+D3jc/uurZIyO550bCRiHiHwouIy3T0HshYNM69LpAOSKBhIxHxFoUXEZfJhJfw+IeXTM+Lho1ExEMcCy8bN25k7dq1XH311axcuZInnniCaDS9wuKxxx5j2bJlLF++PPPnpz/9qVOlikyozt5l0xMRXgq02khEPMiR8HL27Fm+9KUv8fnPf56tW7fyyiuv8N577/GjH/0IgPr6ep544gnq6uoyf+68804nShWZcO29QziFecFxf62IVhuJiAc5slS6vLycd999l8LCQizLorW1lVgsRnl5OfF4nP3797Ns2TInShN
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.distplot(data['供热碳排放因子(kg/MJ)'], fit=norm)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 34,
"outputs": [],
"source": [
"data[['电厂名称', '机组编号', '铭牌容量 (MW)', '机组类型', '参数分类', '冷凝器型式', '入炉煤低位热值(kJ/kg)', '燃煤挥发份Var(%)', '燃煤灰份Aar(%)', '煤种', '所处地区', 'longitude', 'latitude', 'altitude','发电碳排放因子(kg/kWh)', '供热碳排放因子(kg/MJ)']].to_csv('./train_data.csv', index=False, encoding='utf-8-sig')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}