{ "cells": [ { "cell_type": "code", "execution_count": 1, "outputs": [], "source": [ "import pandas as pd" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 2, "outputs": [], "source": [ "power_eva = pd.read_csv('./发电测试结果.csv')" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 4, "outputs": [], "source": [ "power_eva.columns = ['real', 'pred']\n", "power_eva['error'] = (power_eva.pred - power_eva.real).apply(abs) / power_eva.real" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 15, "outputs": [ { "data": { "text/plain": " real pred error\n222 0.517443 0.518051 0.001175\n54 0.701795 0.671254 0.043519\n201 0.539900 0.541033 0.002099\n30 0.532658 0.530621 0.003823\n124 0.410033 0.420981 0.026701\n37 0.390315 0.391309 0.002548\n7 0.571029 0.579793 0.015347\n232 0.580826 0.579876 0.001635\n165 0.352021 0.374194 0.062987\n139 0.584566 0.567410 0.029348", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
realprederror
2220.5174430.5180510.001175
540.7017950.6712540.043519
2010.5399000.5410330.002099
300.5326580.5306210.003823
1240.4100330.4209810.026701
370.3903150.3913090.002548
70.5710290.5797930.015347
2320.5808260.5798760.001635
1650.3520210.3741940.062987
1390.5845660.5674100.029348
\n
" }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "power_eva.sample(10)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 7, "outputs": [], "source": [ "heat_eva = pd.read_csv('./供热测试结果.csv')\n", "heat_eva.columns = ['real', 'pred']\n", "heat_eva['error'] = (heat_eva.pred - heat_eva.real).apply(abs) / heat_eva.real" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 9, "outputs": [ { "data": { "text/plain": " real pred error\n131 0.071626 0.071494 0.001839\n256 0.076446 0.069821 0.086672\n141 0.067995 0.068865 0.012802\n71 0.071438 0.071276 0.002270\n284 0.072052 0.071835 0.003018\n294 0.075010 0.074507 0.006716\n77 0.052603 0.055783 0.060461\n96 0.062181 0.063483 0.020932\n176 0.077847 0.077317 0.006807\n164 0.082962 0.082844 0.001420", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
realprederror
1310.0716260.0714940.001839
2560.0764460.0698210.086672
1410.0679950.0688650.012802
710.0714380.0712760.002270
2840.0720520.0718350.003018
2940.0750100.0745070.006716
770.0526030.0557830.060461
960.0621810.0634830.020932
1760.0778470.0773170.006807
1640.0829620.0828440.001420
\n
" }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "heat_eva.sample(10)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }