{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import pandas as pd"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"power_eva = pd.read_csv('./发电测试结果.csv')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [],
"source": [
"power_eva.columns = ['real', 'pred']\n",
"power_eva['error'] = (power_eva.pred - power_eva.real).apply(abs) / power_eva.real"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 15,
"outputs": [
{
"data": {
"text/plain": " real pred error\n222 0.517443 0.518051 0.001175\n54 0.701795 0.671254 0.043519\n201 0.539900 0.541033 0.002099\n30 0.532658 0.530621 0.003823\n124 0.410033 0.420981 0.026701\n37 0.390315 0.391309 0.002548\n7 0.571029 0.579793 0.015347\n232 0.580826 0.579876 0.001635\n165 0.352021 0.374194 0.062987\n139 0.584566 0.567410 0.029348",
"text/html": "
\n\n
\n \n \n | \n real | \n pred | \n error | \n
\n \n \n \n 222 | \n 0.517443 | \n 0.518051 | \n 0.001175 | \n
\n \n 54 | \n 0.701795 | \n 0.671254 | \n 0.043519 | \n
\n \n 201 | \n 0.539900 | \n 0.541033 | \n 0.002099 | \n
\n \n 30 | \n 0.532658 | \n 0.530621 | \n 0.003823 | \n
\n \n 124 | \n 0.410033 | \n 0.420981 | \n 0.026701 | \n
\n \n 37 | \n 0.390315 | \n 0.391309 | \n 0.002548 | \n
\n \n 7 | \n 0.571029 | \n 0.579793 | \n 0.015347 | \n
\n \n 232 | \n 0.580826 | \n 0.579876 | \n 0.001635 | \n
\n \n 165 | \n 0.352021 | \n 0.374194 | \n 0.062987 | \n
\n \n 139 | \n 0.584566 | \n 0.567410 | \n 0.029348 | \n
\n \n
\n
"
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"power_eva.sample(10)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"heat_eva = pd.read_csv('./供热测试结果.csv')\n",
"heat_eva.columns = ['real', 'pred']\n",
"heat_eva['error'] = (heat_eva.pred - heat_eva.real).apply(abs) / heat_eva.real"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [
{
"data": {
"text/plain": " real pred error\n131 0.071626 0.071494 0.001839\n256 0.076446 0.069821 0.086672\n141 0.067995 0.068865 0.012802\n71 0.071438 0.071276 0.002270\n284 0.072052 0.071835 0.003018\n294 0.075010 0.074507 0.006716\n77 0.052603 0.055783 0.060461\n96 0.062181 0.063483 0.020932\n176 0.077847 0.077317 0.006807\n164 0.082962 0.082844 0.001420",
"text/html": "\n\n
\n \n \n | \n real | \n pred | \n error | \n
\n \n \n \n 131 | \n 0.071626 | \n 0.071494 | \n 0.001839 | \n
\n \n 256 | \n 0.076446 | \n 0.069821 | \n 0.086672 | \n
\n \n 141 | \n 0.067995 | \n 0.068865 | \n 0.012802 | \n
\n \n 71 | \n 0.071438 | \n 0.071276 | \n 0.002270 | \n
\n \n 284 | \n 0.072052 | \n 0.071835 | \n 0.003018 | \n
\n \n 294 | \n 0.075010 | \n 0.074507 | \n 0.006716 | \n
\n \n 77 | \n 0.052603 | \n 0.055783 | \n 0.060461 | \n
\n \n 96 | \n 0.062181 | \n 0.063483 | \n 0.020932 | \n
\n \n 176 | \n 0.077847 | \n 0.077317 | \n 0.006807 | \n
\n \n 164 | \n 0.082962 | \n 0.082844 | \n 0.001420 | \n
\n \n
\n
"
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"heat_eva.sample(10)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}