7.9 KiB
7.9 KiB
In [1]:
import pandas as pd
In [2]:
data = pd.read_csv('./供热测试结果.csv')
In [3]:
data
Out[3]:
0 | 1 | |
---|---|---|
0 | 0.072858 | 0.072700 |
1 | 0.073347 | 0.075045 |
2 | 0.082159 | 0.080671 |
3 | 0.084120 | 0.081944 |
4 | 0.065845 | 0.066739 |
... | ... | ... |
408 | 0.066066 | 0.066927 |
409 | 0.084331 | 0.082709 |
410 | 0.069216 | 0.069256 |
411 | 0.065259 | 0.066203 |
412 | 0.069608 | 0.071754 |
413 rows × 2 columns
In [4]:
from sklearn.metrics import r2_score
In [7]:
r2_score(data.values[:,1], data.values[:,0])
Out[7]:
0.8483477508497194
In [8]:
help(r2_score)
Help on function r2_score in module sklearn.metrics._regression: r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average') :math:`R^2` (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a :math:`R^2` score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. multioutput : {'raw_values', 'uniform_average', 'variance_weighted'}, array-like of shape (n_outputs,) or None, default='uniform_average' Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default is "uniform_average". 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. .. versionchanged:: 0.19 Default value of multioutput is 'uniform_average'. Returns ------- z : float or ndarray of floats The :math:`R^2` score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, :math:`R^2` score may be negative (it need not actually be the square of a quantity R). This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two. References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, ... multioutput='variance_weighted') 0.938... >>> y_true = [1, 2, 3] >>> y_pred = [1, 2, 3] >>> r2_score(y_true, y_pred) 1.0 >>> y_true = [1, 2, 3] >>> y_pred = [2, 2, 2] >>> r2_score(y_true, y_pred) 0.0 >>> y_true = [1, 2, 3] >>> y_pred = [3, 2, 1] >>> r2_score(y_true, y_pred) -3.0
In [ ]: