T85_code/省际测试.ipynb

235 lines
7.9 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import pandas as pd"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"data = pd.read_csv('./供热测试结果.csv')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [
{
"data": {
"text/plain": " 0 1\n0 0.072858 0.072700\n1 0.073347 0.075045\n2 0.082159 0.080671\n3 0.084120 0.081944\n4 0.065845 0.066739\n.. ... ...\n408 0.066066 0.066927\n409 0.084331 0.082709\n410 0.069216 0.069256\n411 0.065259 0.066203\n412 0.069608 0.071754\n\n[413 rows x 2 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>0</th>\n <th>1</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>0.072858</td>\n <td>0.072700</td>\n </tr>\n <tr>\n <th>1</th>\n <td>0.073347</td>\n <td>0.075045</td>\n </tr>\n <tr>\n <th>2</th>\n <td>0.082159</td>\n <td>0.080671</td>\n </tr>\n <tr>\n <th>3</th>\n <td>0.084120</td>\n <td>0.081944</td>\n </tr>\n <tr>\n <th>4</th>\n <td>0.065845</td>\n <td>0.066739</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>408</th>\n <td>0.066066</td>\n <td>0.066927</td>\n </tr>\n <tr>\n <th>409</th>\n <td>0.084331</td>\n <td>0.082709</td>\n </tr>\n <tr>\n <th>410</th>\n <td>0.069216</td>\n <td>0.069256</td>\n </tr>\n <tr>\n <th>411</th>\n <td>0.065259</td>\n <td>0.066203</td>\n </tr>\n <tr>\n <th>412</th>\n <td>0.069608</td>\n <td>0.071754</td>\n </tr>\n </tbody>\n</table>\n<p>413 rows × 2 columns</p>\n</div>"
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [],
"source": [
"from sklearn.metrics import r2_score"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [
{
"data": {
"text/plain": "0.8483477508497194"
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r2_score(data.values[:,1], data.values[:,0])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Help on function r2_score in module sklearn.metrics._regression:\n",
"\n",
"r2_score(y_true, y_pred, *, sample_weight=None, multioutput='uniform_average')\n",
" :math:`R^2` (coefficient of determination) regression score function.\n",
" \n",
" Best possible score is 1.0 and it can be negative (because the\n",
" model can be arbitrarily worse). A constant model that always\n",
" predicts the expected value of y, disregarding the input features,\n",
" would get a :math:`R^2` score of 0.0.\n",
" \n",
" Read more in the :ref:`User Guide <r2_score>`.\n",
" \n",
" Parameters\n",
" ----------\n",
" y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)\n",
" Ground truth (correct) target values.\n",
" \n",
" y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)\n",
" Estimated target values.\n",
" \n",
" sample_weight : array-like of shape (n_samples,), default=None\n",
" Sample weights.\n",
" \n",
" multioutput : {'raw_values', 'uniform_average', 'variance_weighted'}, array-like of shape (n_outputs,) or None, default='uniform_average'\n",
" \n",
" Defines aggregating of multiple output scores.\n",
" Array-like value defines weights used to average scores.\n",
" Default is \"uniform_average\".\n",
" \n",
" 'raw_values' :\n",
" Returns a full set of scores in case of multioutput input.\n",
" \n",
" 'uniform_average' :\n",
" Scores of all outputs are averaged with uniform weight.\n",
" \n",
" 'variance_weighted' :\n",
" Scores of all outputs are averaged, weighted by the variances\n",
" of each individual output.\n",
" \n",
" .. versionchanged:: 0.19\n",
" Default value of multioutput is 'uniform_average'.\n",
" \n",
" Returns\n",
" -------\n",
" z : float or ndarray of floats\n",
" The :math:`R^2` score or ndarray of scores if 'multioutput' is\n",
" 'raw_values'.\n",
" \n",
" Notes\n",
" -----\n",
" This is not a symmetric function.\n",
" \n",
" Unlike most other scores, :math:`R^2` score may be negative (it need not\n",
" actually be the square of a quantity R).\n",
" \n",
" This metric is not well-defined for single samples and will return a NaN\n",
" value if n_samples is less than two.\n",
" \n",
" References\n",
" ----------\n",
" .. [1] `Wikipedia entry on the Coefficient of determination\n",
" <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_\n",
" \n",
" Examples\n",
" --------\n",
" >>> from sklearn.metrics import r2_score\n",
" >>> y_true = [3, -0.5, 2, 7]\n",
" >>> y_pred = [2.5, 0.0, 2, 8]\n",
" >>> r2_score(y_true, y_pred)\n",
" 0.948...\n",
" >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]\n",
" >>> y_pred = [[0, 2], [-1, 2], [8, -5]]\n",
" >>> r2_score(y_true, y_pred,\n",
" ... multioutput='variance_weighted')\n",
" 0.938...\n",
" >>> y_true = [1, 2, 3]\n",
" >>> y_pred = [1, 2, 3]\n",
" >>> r2_score(y_true, y_pred)\n",
" 1.0\n",
" >>> y_true = [1, 2, 3]\n",
" >>> y_pred = [2, 2, 2]\n",
" >>> r2_score(y_true, y_pred)\n",
" 0.0\n",
" >>> y_true = [1, 2, 3]\n",
" >>> y_pred = [3, 2, 1]\n",
" >>> r2_score(y_true, y_pred)\n",
" -3.0\n",
"\n"
]
}
],
"source": [
"help(r2_score)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}