459 KiB
459 KiB
In [1]:
import warnings warnings.filterwarnings("ignore")
In [2]:
import pandas as pd import lightgbm as lgb import numpy as np import xgboost as xgb import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error, r2_score
In [3]:
total_data = pd.read_csv('./train_data_processed.csv') total_data.head()
Out[3]:
铭牌容量 (MW) | 入炉煤低位热值(kJ/kg) | 燃煤挥发份Var(%) | 燃煤灰份Aar(%) | longitude | latitude | altitude | 发电碳排放因子(kg/kWh) | 供热碳排放因子(kg/MJ) | 所处地区_上海市 | ... | 机组类型_供热式 | 机组类型_纯凝式 | 参数分类_亚临界 | 参数分类_超临界 | 参数分类_超超临界 | 参数分类_超高压 | 参数分类_高压 | 冷凝器型式_水冷 | 冷凝器型式_直接空冷 | 冷凝器型式_间接空冷 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5.70711 | 9.818311 | 3.297687 | 2.815409 | 4.807875 | 3.467769 | 1.386294 | 0.537574 | 0.070992 | 1.0 | ... | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
1 | 5.70711 | 9.821572 | 3.297687 | 2.815409 | 4.807875 | 3.467769 | 1.386294 | 0.545516 | 0.072476 | 1.0 | ... | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
2 | 5.70711 | 9.878580 | 3.310543 | 2.769459 | 4.807875 | 3.467769 | 1.386294 | 0.595849 | 0.064745 | 1.0 | ... | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
3 | 5.70711 | 9.883285 | 3.324316 | 2.532108 | 4.807875 | 3.467769 | 1.386294 | 0.584432 | 0.068390 | 1.0 | ... | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
4 | 5.70711 | 9.909768 | 3.255015 | 2.766319 | 4.807875 | 3.467769 | 1.386294 | 0.605369 | 0.066996 | 1.0 | ... | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
5 rows × 60 columns
In [4]:
total_data.shape
Out[4]:
(3080, 60)
In [5]:
total_data.columns
Out[5]:
Index(['铭牌容量 (MW)', '入炉煤低位热值(kJ/kg)', '燃煤挥发份Var(%)', '燃煤灰份Aar(%)', 'longitude', 'latitude', 'altitude', '发电碳排放因子(kg/kWh)', '供热碳排放因子(kg/MJ)', '所处地区_上海市', '所处地区_云南省', '所处地区_内蒙古', '所处地区_内蒙古自治区', '所处地区_北京市', '所处地区_吉林省', '所处地区_四川省', '所处地区_天津市', '所处地区_宁夏', '所处地区_宁夏回族自治区', '所处地区_安徽省', '所处地区_山东省', '所处地区_山西', '所处地区_山西省', '所处地区_广东省', '所处地区_广西', '所处地区_广西省', '所处地区_新疆', '所处地区_新疆维吾尔自治区', '所处地区_江苏省', '所处地区_江西省', '所处地区_河北', '所处地区_河北省', '所处地区_河南', '所处地区_河南省', '所处地区_浙江省', '所处地区_海南省', '所处地区_湖北', '所处地区_湖北省', '所处地区_湖南', '所处地区_湖南省', '所处地区_甘肃省', '所处地区_福建省', '所处地区_贵州省', '所处地区_辽宁省', '所处地区_重庆市', '所处地区_陕西省', '所处地区_青海省', '所处地区_黑龙江', '所处地区_黑龙江省', '机组类型_供热', '机组类型_供热式', '机组类型_纯凝式', '参数分类_亚临界', '参数分类_超临界', '参数分类_超超临界', '参数分类_超高压', '参数分类_高压', '冷凝器型式_水冷', '冷凝器型式_直接空冷', '冷凝器型式_间接空冷'], dtype='object')
In [6]:
feature_cols = [x for x in total_data.columns if '因子' not in x] target_cols = [x for x in total_data.columns if x not in feature_cols]
In [7]:
use_data = total_data.groupby(feature_cols)[target_cols].mean().reset_index() use_data
Out[7]:
铭牌容量 (MW) | 入炉煤低位热值(kJ/kg) | 燃煤挥发份Var(%) | 燃煤灰份Aar(%) | longitude | latitude | altitude | 所处地区_上海市 | 所处地区_云南省 | 所处地区_内蒙古 | ... | 参数分类_亚临界 | 参数分类_超临界 | 参数分类_超超临界 | 参数分类_超高压 | 参数分类_高压 | 冷凝器型式_水冷 | 冷凝器型式_直接空冷 | 冷凝器型式_间接空冷 | 发电碳排放因子(kg/kWh) | 供热碳排放因子(kg/MJ) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4.615121 | 9.527411 | 3.823629 | 3.007661 | 4.834910 | 3.862442 | 4.983607 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.483547 | 0.058613 |
1 | 4.836282 | 9.920745 | 3.625673 | 3.201526 | 4.700990 | 3.563714 | 5.981414 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.575553 | 0.085880 |
2 | 4.836282 | 9.923023 | 3.623807 | 3.231200 | 4.700990 | 3.563714 | 5.981414 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.607741 | 0.084890 |
3 | 4.836282 | 9.932727 | 3.272227 | 3.236716 | 4.700990 | 3.563714 | 5.981414 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.595382 | 0.082342 |
4 | 4.836282 | 9.936819 | 3.278653 | 3.173460 | 4.700990 | 3.563714 | 5.981414 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.578838 | 0.082685 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
3075 | 6.966967 | 9.754581 | 3.100543 | 3.378270 | 4.676091 | 3.667429 | 7.020191 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.426880 | 0.061722 |
3076 | 6.966967 | 9.755162 | 3.082827 | 3.361070 | 4.676091 | 3.667429 | 7.020191 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.456768 | 0.060739 |
3077 | 6.966967 | 9.762903 | 3.095125 | 3.288775 | 4.676091 | 3.667429 | 7.020191 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.455534 | 0.061277 |
3078 | 6.966967 | 9.776506 | 3.096934 | 3.328268 | 4.676091 | 3.667429 | 7.020191 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.450064 | 0.062032 |
3079 | 6.966967 | 9.792277 | 3.073156 | 3.384051 | 4.676091 | 3.667429 | 7.020191 | 0.0 | 0.0 | 0.0 | ... | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.468720 | 0.063016 |
3080 rows × 60 columns
In [8]:
for col in use_data.columns: use_data[col] = use_data[col].astype(float)
In [15]:
train_data, test_data = train_test_split(use_data.dropna(), test_size=0.1, shuffle=True, random_state=666) train_data, valid_data = train_test_split(train_data.dropna(), test_size=0.2, shuffle=True, random_state=666)
In [18]:
X_train, Y_train = train_data[feature_cols], train_data[target_cols[0]] X_valid, Y_valid = valid_data[feature_cols], valid_data[target_cols[0]] X_test, Y_test = test_data[feature_cols], test_data[target_cols[0]]
In [19]:
lgb_train = lgb.Dataset(X_train, Y_train) lgb_eval = lgb.Dataset(X_valid, Y_valid) lgb_test = lgb.Dataset(X_test, Y_test)
In [20]:
params_gbm = { 'task': 'train', 'boosting_type': 'gbdt', # 设置提升类型 'objective': 'l1', # 目标函数 'metric': {'rmse'}, # 评估函数 'max_depth': 12, 'num_leaves': 20, # 叶子节点数 'learning_rate': 0.05, # 学习速率 'feature_fraction': 0.9, # 建树的特征选择比例 'bagging_fraction': 0.9, # 建树的样本采样比例 'bagging_freq': 10, # k 意味着每 k 次迭代执行bagging 'verbose': -1 # <0 显示致命的, =0 显示错误 (警告), >0 显示信息 }
In [21]:
gbm = lgb.train(params_gbm, lgb_train, num_boost_round=2000, valid_sets=lgb_eval, early_stopping_rounds=100)
[1] valid_0's rmse: 0.0692875 Training until validation scores don't improve for 100 rounds [2] valid_0's rmse: 0.06714 [3] valid_0's rmse: 0.0646839 [4] valid_0's rmse: 0.0623338 [5] valid_0's rmse: 0.0600964 [6] valid_0's rmse: 0.0580108 [7] valid_0's rmse: 0.056067 [8] valid_0's rmse: 0.0544344 [9] valid_0's rmse: 0.0529408 [10] valid_0's rmse: 0.051276 [11] valid_0's rmse: 0.0497692 [12] valid_0's rmse: 0.0483588 [13] valid_0's rmse: 0.0470211 [14] valid_0's rmse: 0.0460061 [15] valid_0's rmse: 0.0448745 [16] valid_0's rmse: 0.043796 [17] valid_0's rmse: 0.0428645 [18] valid_0's rmse: 0.0419008 [19] valid_0's rmse: 0.0409544 [20] valid_0's rmse: 0.0400698 [21] valid_0's rmse: 0.0392848 [22] valid_0's rmse: 0.038578 [23] valid_0's rmse: 0.0378727 [24] valid_0's rmse: 0.0371929 [25] valid_0's rmse: 0.0366533 [26] valid_0's rmse: 0.0360842 [27] valid_0's rmse: 0.0355757 [28] valid_0's rmse: 0.0350562 [29] valid_0's rmse: 0.0345382 [30] valid_0's rmse: 0.0340975 [31] valid_0's rmse: 0.0337632 [32] valid_0's rmse: 0.0334232 [33] valid_0's rmse: 0.0330998 [34] valid_0's rmse: 0.0328678 [35] valid_0's rmse: 0.0325827 [36] valid_0's rmse: 0.0323483 [37] valid_0's rmse: 0.0321363 [38] valid_0's rmse: 0.0318823 [39] valid_0's rmse: 0.0316983 [40] valid_0's rmse: 0.0315094 [41] valid_0's rmse: 0.0313339 [42] valid_0's rmse: 0.0311663 [43] valid_0's rmse: 0.031002 [44] valid_0's rmse: 0.0308446 [45] valid_0's rmse: 0.0307193 [46] valid_0's rmse: 0.03058 [47] valid_0's rmse: 0.0304975 [48] valid_0's rmse: 0.0303807 [49] valid_0's rmse: 0.0302476 [50] valid_0's rmse: 0.0301379 [51] valid_0's rmse: 0.03 [52] valid_0's rmse: 0.0299129 [53] valid_0's rmse: 0.0298092 [54] valid_0's rmse: 0.0297318 [55] valid_0's rmse: 0.0296587 [56] valid_0's rmse: 0.0295906 [57] valid_0's rmse: 0.0295262 [58] valid_0's rmse: 0.0294317 [59] valid_0's rmse: 0.0293666 [60] valid_0's rmse: 0.029295 [61] valid_0's rmse: 0.0292621 [62] valid_0's rmse: 0.0291822 [63] valid_0's rmse: 0.0291453 [64] valid_0's rmse: 0.029071 [65] valid_0's rmse: 0.0289955 [66] valid_0's rmse: 0.0289425 [67] valid_0's rmse: 0.0288803 [68] valid_0's rmse: 0.0288438 [69] valid_0's rmse: 0.0288004 [70] valid_0's rmse: 0.0287685 [71] valid_0's rmse: 0.0287379 [72] valid_0's rmse: 0.0286942 [73] valid_0's rmse: 0.028654 [74] valid_0's rmse: 0.0286255 [75] valid_0's rmse: 0.0285826 [76] valid_0's rmse: 0.0285438 [77] valid_0's rmse: 0.0284903 [78] valid_0's rmse: 0.0284767 [79] valid_0's rmse: 0.0284401 [80] valid_0's rmse: 0.0284152 [81] valid_0's rmse: 0.0283845 [82] valid_0's rmse: 0.028375 [83] valid_0's rmse: 0.0283271 [84] valid_0's rmse: 0.0283098 [85] valid_0's rmse: 0.0282848 [86] valid_0's rmse: 0.0282564 [87] valid_0's rmse: 0.0282311 [88] valid_0's rmse: 0.0281999 [89] valid_0's rmse: 0.0281744 [90] valid_0's rmse: 0.0281694 [91] valid_0's rmse: 0.0281849 [92] valid_0's rmse: 0.0281936 [93] valid_0's rmse: 0.0281859 [94] valid_0's rmse: 0.028193 [95] valid_0's rmse: 0.0281768 [96] valid_0's rmse: 0.0281729 [97] valid_0's rmse: 0.0281829 [98] valid_0's rmse: 0.0281698 [99] valid_0's rmse: 0.0281678 [100] valid_0's rmse: 0.0281451 [101] valid_0's rmse: 0.0281243 [102] valid_0's rmse: 0.028098 [103] valid_0's rmse: 0.028089 [104] valid_0's rmse: 0.0280947 [105] valid_0's rmse: 0.0280915 [106] valid_0's rmse: 0.0280942 [107] valid_0's rmse: 0.0280905 [108] valid_0's rmse: 0.0280888 [109] valid_0's rmse: 0.0280827 [110] valid_0's rmse: 0.028075 [111] valid_0's rmse: 0.0280506 [112] valid_0's rmse: 0.0280414 [113] valid_0's rmse: 0.0280254 [114] valid_0's rmse: 0.0280016 [115] valid_0's rmse: 0.0279858 [116] valid_0's rmse: 0.027973 [117] valid_0's rmse: 0.027962 [118] valid_0's rmse: 0.0279404 [119] valid_0's rmse: 0.0279082 [120] valid_0's rmse: 0.0279064 [121] valid_0's rmse: 0.0279041 [122] valid_0's rmse: 0.0278874 [123] valid_0's rmse: 0.0278608 [124] valid_0's rmse: 0.0278517 [125] valid_0's rmse: 0.0278507 [126] valid_0's rmse: 0.0278408 [127] valid_0's rmse: 0.0278322 [128] valid_0's rmse: 0.0278089 [129] valid_0's rmse: 0.0278084 [130] valid_0's rmse: 0.0277843 [131] valid_0's rmse: 0.0277892 [132] valid_0's rmse: 0.0277827 [133] valid_0's rmse: 0.0277758 [134] valid_0's rmse: 0.0277766 [135] valid_0's rmse: 0.0277853 [136] valid_0's rmse: 0.0277744 [137] valid_0's rmse: 0.0277624 [138] valid_0's rmse: 0.0277481 [139] valid_0's rmse: 0.027733 [140] valid_0's rmse: 0.0277201 [141] valid_0's rmse: 0.0277112 [142] valid_0's rmse: 0.0277081 [143] valid_0's rmse: 0.0276965 [144] valid_0's rmse: 0.0276911 [145] valid_0's rmse: 0.0276786 [146] valid_0's rmse: 0.0276798 [147] valid_0's rmse: 0.0276724 [148] valid_0's rmse: 0.0276479 [149] valid_0's rmse: 0.0276436 [150] valid_0's rmse: 0.0276115 [151] valid_0's rmse: 0.0275966 [152] valid_0's rmse: 0.0275874 [153] valid_0's rmse: 0.0275693 [154] valid_0's rmse: 0.0275769 [155] valid_0's rmse: 0.0275677 [156] valid_0's rmse: 0.0275517 [157] valid_0's rmse: 0.0275422 [158] valid_0's rmse: 0.0275326 [159] valid_0's rmse: 0.0275205 [160] valid_0's rmse: 0.0275234 [161] valid_0's rmse: 0.0275164 [162] valid_0's rmse: 0.0275097 [163] valid_0's rmse: 0.0275092 [164] valid_0's rmse: 0.0274879 [165] valid_0's rmse: 0.0274696 [166] valid_0's rmse: 0.0274685 [167] valid_0's rmse: 0.0274698 [168] valid_0's rmse: 0.0274655 [169] valid_0's rmse: 0.0274796 [170] valid_0's rmse: 0.0274609 [171] valid_0's rmse: 0.0274455 [172] valid_0's rmse: 0.0274493 [173] valid_0's rmse: 0.0274369 [174] valid_0's rmse: 0.0274299 [175] valid_0's rmse: 0.0274234 [176] valid_0's rmse: 0.0274104 [177] valid_0's rmse: 0.0273984 [178] valid_0's rmse: 0.0273957 [179] valid_0's rmse: 0.0273894 [180] valid_0's rmse: 0.0273696 [181] valid_0's rmse: 0.0273432 [182] valid_0's rmse: 0.027342 [183] valid_0's rmse: 0.0273113 [184] valid_0's rmse: 0.0273034 [185] valid_0's rmse: 0.0272787 [186] valid_0's rmse: 0.027264 [187] valid_0's rmse: 0.0272687 [188] valid_0's rmse: 0.0272646 [189] valid_0's rmse: 0.027269 [190] valid_0's rmse: 0.0272657 [191] valid_0's rmse: 0.0272644 [192] valid_0's rmse: 0.027266 [193] valid_0's rmse: 0.0272565 [194] valid_0's rmse: 0.0272468 [195] valid_0's rmse: 0.0272463 [196] valid_0's rmse: 0.027222 [197] valid_0's rmse: 0.0271824 [198] valid_0's rmse: 0.02718 [199] valid_0's rmse: 0.0271605 [200] valid_0's rmse: 0.0271487 [201] valid_0's rmse: 0.0271442 [202] valid_0's rmse: 0.0271446 [203] valid_0's rmse: 0.0271367 [204] valid_0's rmse: 0.0271474 [205] valid_0's rmse: 0.0271404 [206] valid_0's rmse: 0.0271376 [207] valid_0's rmse: 0.0271251 [208] valid_0's rmse: 0.0271296 [209] valid_0's rmse: 0.0271322 [210] valid_0's rmse: 0.0271364 [211] valid_0's rmse: 0.027128 [212] valid_0's rmse: 0.0271156 [213] valid_0's rmse: 0.0271112 [214] valid_0's rmse: 0.0271093 [215] valid_0's rmse: 0.0271047 [216] valid_0's rmse: 0.0270906 [217] valid_0's rmse: 0.0270941 [218] valid_0's rmse: 0.0270903 [219] valid_0's rmse: 0.0270865 [220] valid_0's rmse: 0.0270923 [221] valid_0's rmse: 0.0270943 [222] valid_0's rmse: 0.0270857 [223] valid_0's rmse: 0.0270803 [224] valid_0's rmse: 0.0270701 [225] valid_0's rmse: 0.0270644 [226] valid_0's rmse: 0.0270723 [227] valid_0's rmse: 0.0270654 [228] valid_0's rmse: 0.027069 [229] valid_0's rmse: 0.0270634 [230] valid_0's rmse: 0.027059 [231] valid_0's rmse: 0.0270559 [232] valid_0's rmse: 0.0270541 [233] valid_0's rmse: 0.0270546 [234] valid_0's rmse: 0.0270555 [235] valid_0's rmse: 0.0270554 [236] valid_0's rmse: 0.0270527 [237] valid_0's rmse: 0.027045 [238] valid_0's rmse: 0.0270457 [239] valid_0's rmse: 0.0270406 [240] valid_0's rmse: 0.0270462 [241] valid_0's rmse: 0.0270405 [242] valid_0's rmse: 0.0270448 [243] valid_0's rmse: 0.0270406 [244] valid_0's rmse: 0.0270415 [245] valid_0's rmse: 0.0270421 [246] valid_0's rmse: 0.0270327 [247] valid_0's rmse: 0.0270246 [248] valid_0's rmse: 0.0270194 [249] valid_0's rmse: 0.0270177 [250] valid_0's rmse: 0.0270092 [251] valid_0's rmse: 0.0270089 [252] valid_0's rmse: 0.0270085 [253] valid_0's rmse: 0.0269901 [254] valid_0's rmse: 0.0269891 [255] valid_0's rmse: 0.0269845 [256] valid_0's rmse: 0.0269845 [257] valid_0's rmse: 0.0269555 [258] valid_0's rmse: 0.026949 [259] valid_0's rmse: 0.0269442 [260] valid_0's rmse: 0.0269473 [261] valid_0's rmse: 0.026946 [262] valid_0's rmse: 0.0269368 [263] valid_0's rmse: 0.0269311 [264] valid_0's rmse: 0.0269294 [265] valid_0's rmse: 0.0269236 [266] valid_0's rmse: 0.0269203 [267] valid_0's rmse: 0.0269202 [268] valid_0's rmse: 0.0269171 [269] valid_0's rmse: 0.0269116 [270] valid_0's rmse: 0.026909 [271] valid_0's rmse: 0.0269102 [272] valid_0's rmse: 0.0269057 [273] valid_0's rmse: 0.0269039 [274] valid_0's rmse: 0.0269003 [275] valid_0's rmse: 0.0268963 [276] valid_0's rmse: 0.0268905 [277] valid_0's rmse: 0.0268955 [278] valid_0's rmse: 0.0268977 [279] valid_0's rmse: 0.0269015 [280] valid_0's rmse: 0.0269013 [281] valid_0's rmse: 0.0268988 [282] valid_0's rmse: 0.0268985 [283] valid_0's rmse: 0.0268988 [284] valid_0's rmse: 0.0268935 [285] valid_0's rmse: 0.0268928 [286] valid_0's rmse: 0.0268898 [287] valid_0's rmse: 0.0268862 [288] valid_0's rmse: 0.0268827 [289] valid_0's rmse: 0.0268775 [290] valid_0's rmse: 0.0268797 [291] valid_0's rmse: 0.0268748 [292] valid_0's rmse: 0.0268375 [293] valid_0's rmse: 0.026812 [294] valid_0's rmse: 0.0268085 [295] valid_0's rmse: 0.0268076 [296] valid_0's rmse: 0.026803 [297] valid_0's rmse: 0.0267955 [298] valid_0's rmse: 0.0267948 [299] valid_0's rmse: 0.0267962 [300] valid_0's rmse: 0.0267929 [301] valid_0's rmse: 0.026792 [302] valid_0's rmse: 0.026785 [303] valid_0's rmse: 0.0267811 [304] valid_0's rmse: 0.0267687 [305] valid_0's rmse: 0.0267677 [306] valid_0's rmse: 0.0267618 [307] valid_0's rmse: 0.0267611 [308] valid_0's rmse: 0.0267278 [309] valid_0's rmse: 0.026727 [310] valid_0's rmse: 0.0267222 [311] valid_0's rmse: 0.0267172 [312] valid_0's rmse: 0.0267138 [313] valid_0's rmse: 0.0267119 [314] valid_0's rmse: 0.0267091 [315] valid_0's rmse: 0.0267093 [316] valid_0's rmse: 0.0267089 [317] valid_0's rmse: 0.0267078 [318] valid_0's rmse: 0.0267068 [319] valid_0's rmse: 0.0267062 [320] valid_0's rmse: 0.0267035 [321] valid_0's rmse: 0.0267021 [322] valid_0's rmse: 0.0266997 [323] valid_0's rmse: 0.026701 [324] valid_0's rmse: 0.0266997 [325] valid_0's rmse: 0.0266999 [326] valid_0's rmse: 0.0267043 [327] valid_0's rmse: 0.0267048 [328] valid_0's rmse: 0.0266922 [329] valid_0's rmse: 0.0266828 [330] valid_0's rmse: 0.0266837 [331] valid_0's rmse: 0.0266863 [332] valid_0's rmse: 0.0266764 [333] valid_0's rmse: 0.0266769 [334] valid_0's rmse: 0.0266686 [335] valid_0's rmse: 0.0266701 [336] valid_0's rmse: 0.0266739 [337] valid_0's rmse: 0.0266749 [338] valid_0's rmse: 0.0266749 [339] valid_0's rmse: 0.0266745 [340] valid_0's rmse: 0.0266731 [341] valid_0's rmse: 0.0266707 [342] valid_0's rmse: 0.0266627 [343] valid_0's rmse: 0.0266618 [344] valid_0's rmse: 0.0266607 [345] valid_0's rmse: 0.0266595 [346] valid_0's rmse: 0.0266483 [347] valid_0's rmse: 0.0266501 [348] valid_0's rmse: 0.0266484 [349] valid_0's rmse: 0.0266469 [350] valid_0's rmse: 0.0266446 [351] valid_0's rmse: 0.0266422 [352] valid_0's rmse: 0.0266445 [353] valid_0's rmse: 0.026642 [354] valid_0's rmse: 0.0266332 [355] valid_0's rmse: 0.0266333 [356] valid_0's rmse: 0.0266291 [357] valid_0's rmse: 0.0266298 [358] valid_0's rmse: 0.0266302 [359] valid_0's rmse: 0.026626 [360] valid_0's rmse: 0.0266191 [361] valid_0's rmse: 0.0266188 [362] valid_0's rmse: 0.0266132 [363] valid_0's rmse: 0.0266094 [364] valid_0's rmse: 0.0266022 [365] valid_0's rmse: 0.0266027 [366] valid_0's rmse: 0.0266001 [367] valid_0's rmse: 0.0266011 [368] valid_0's rmse: 0.0265957 [369] valid_0's rmse: 0.026593 [370] valid_0's rmse: 0.0265889 [371] valid_0's rmse: 0.0265887 [372] valid_0's rmse: 0.0265821 [373] valid_0's rmse: 0.026579 [374] valid_0's rmse: 0.0265765 [375] valid_0's rmse: 0.0265742 [376] valid_0's rmse: 0.0265724 [377] valid_0's rmse: 0.0265683 [378] valid_0's rmse: 0.0265671 [379] valid_0's rmse: 0.0265605 [380] valid_0's rmse: 0.026561 [381] valid_0's rmse: 0.0265544 [382] valid_0's rmse: 0.026555 [383] valid_0's rmse: 0.0265526 [384] valid_0's rmse: 0.0265483 [385] valid_0's rmse: 0.0265519 [386] valid_0's rmse: 0.0265494 [387] valid_0's rmse: 0.0265502 [388] valid_0's rmse: 0.0265525 [389] valid_0's rmse: 0.0265567 [390] valid_0's rmse: 0.0265403 [391] valid_0's rmse: 0.0265361 [392] valid_0's rmse: 0.0265342 [393] valid_0's rmse: 0.026529 [394] valid_0's rmse: 0.0265267 [395] valid_0's rmse: 0.0265303 [396] valid_0's rmse: 0.0265306 [397] valid_0's rmse: 0.0265338 [398] valid_0's rmse: 0.0265294 [399] valid_0's rmse: 0.0265253 [400] valid_0's rmse: 0.0265248 [401] valid_0's rmse: 0.0265266 [402] valid_0's rmse: 0.0265279 [403] valid_0's rmse: 0.0265289 [404] valid_0's rmse: 0.0265279 [405] valid_0's rmse: 0.0265228 [406] valid_0's rmse: 0.0265323 [407] valid_0's rmse: 0.0265335 [408] valid_0's rmse: 0.0265318 [409] valid_0's rmse: 0.0265298 [410] valid_0's rmse: 0.0265275 [411] valid_0's rmse: 0.0265259 [412] valid_0's rmse: 0.0265261 [413] valid_0's rmse: 0.0265267 [414] valid_0's rmse: 0.0265261 [415] valid_0's rmse: 0.0265255 [416] valid_0's rmse: 0.0265275 [417] valid_0's rmse: 0.0265225 [418] valid_0's rmse: 0.0265226 [419] valid_0's rmse: 0.0265222 [420] valid_0's rmse: 0.026521 [421] valid_0's rmse: 0.0265169 [422] valid_0's rmse: 0.0265139 [423] valid_0's rmse: 0.0265126 [424] valid_0's rmse: 0.0265136 [425] valid_0's rmse: 0.0265079 [426] valid_0's rmse: 0.0265017 [427] valid_0's rmse: 0.0264914 [428] valid_0's rmse: 0.026489 [429] valid_0's rmse: 0.0264918 [430] valid_0's rmse: 0.0264906 [431] valid_0's rmse: 0.0264809 [432] valid_0's rmse: 0.0264809 [433] valid_0's rmse: 0.0264819 [434] valid_0's rmse: 0.0264775 [435] valid_0's rmse: 0.0264744 [436] valid_0's rmse: 0.026474 [437] valid_0's rmse: 0.0264713 [438] valid_0's rmse: 0.0264702 [439] valid_0's rmse: 0.0264686 [440] valid_0's rmse: 0.0264654 [441] valid_0's rmse: 0.0264663 [442] valid_0's rmse: 0.0264543 [443] valid_0's rmse: 0.0264538 [444] valid_0's rmse: 0.0264507 [445] valid_0's rmse: 0.0264509 [446] valid_0's rmse: 0.0264456 [447] valid_0's rmse: 0.0264483 [448] valid_0's rmse: 0.0264169 [449] valid_0's rmse: 0.0264151 [450] valid_0's rmse: 0.0264172 [451] valid_0's rmse: 0.0264171 [452] valid_0's rmse: 0.0264175 [453] valid_0's rmse: 0.0264149 [454] valid_0's rmse: 0.0264144 [455] valid_0's rmse: 0.0264154 [456] valid_0's rmse: 0.0264147 [457] valid_0's rmse: 0.0264118 [458] valid_0's rmse: 0.0264138 [459] valid_0's rmse: 0.0264151 [460] valid_0's rmse: 0.026415 [461] valid_0's rmse: 0.0264159 [462] valid_0's rmse: 0.0264121 [463] valid_0's rmse: 0.026414 [464] valid_0's rmse: 0.0264093 [465] valid_0's rmse: 0.0264118 [466] valid_0's rmse: 0.0264118 [467] valid_0's rmse: 0.0264099 [468] valid_0's rmse: 0.0264113 [469] valid_0's rmse: 0.0264101 [470] valid_0's rmse: 0.0264118 [471] valid_0's rmse: 0.0264092 [472] valid_0's rmse: 0.0264044 [473] valid_0's rmse: 0.0263975 [474] valid_0's rmse: 0.0263909 [475] valid_0's rmse: 0.0263866 [476] valid_0's rmse: 0.0263848 [477] valid_0's rmse: 0.0263839 [478] valid_0's rmse: 0.0263787 [479] valid_0's rmse: 0.0263797 [480] valid_0's rmse: 0.0263769 [481] valid_0's rmse: 0.0263744 [482] valid_0's rmse: 0.0263693 [483] valid_0's rmse: 0.0263673 [484] valid_0's rmse: 0.0263626 [485] valid_0's rmse: 0.0263591 [486] valid_0's rmse: 0.0263569 [487] valid_0's rmse: 0.0263557 [488] valid_0's rmse: 0.0263559 [489] valid_0's rmse: 0.026358 [490] valid_0's rmse: 0.0263566 [491] valid_0's rmse: 0.0263564 [492] valid_0's rmse: 0.0263568 [493] valid_0's rmse: 0.0263562 [494] valid_0's rmse: 0.0263561 [495] valid_0's rmse: 0.0263508 [496] valid_0's rmse: 0.0263498 [497] valid_0's rmse: 0.026346 [498] valid_0's rmse: 0.0263474 [499] valid_0's rmse: 0.026346 [500] valid_0's rmse: 0.026342 [501] valid_0's rmse: 0.0263415 [502] valid_0's rmse: 0.0263404 [503] valid_0's rmse: 0.0263355 [504] valid_0's rmse: 0.0263363 [505] valid_0's rmse: 0.0263362 [506] valid_0's rmse: 0.0263356 [507] valid_0's rmse: 0.0263345 [508] valid_0's rmse: 0.0263343 [509] valid_0's rmse: 0.0263294 [510] valid_0's rmse: 0.0263279 [511] valid_0's rmse: 0.0263274 [512] valid_0's rmse: 0.0263227 [513] valid_0's rmse: 0.0263228 [514] valid_0's rmse: 0.0263178 [515] valid_0's rmse: 0.0263175 [516] valid_0's rmse: 0.0263152 [517] valid_0's rmse: 0.0263062 [518] valid_0's rmse: 0.0263098 [519] valid_0's rmse: 0.0263065 [520] valid_0's rmse: 0.0263043 [521] valid_0's rmse: 0.0263029 [522] valid_0's rmse: 0.0263005 [523] valid_0's rmse: 0.0263013 [524] valid_0's rmse: 0.0263 [525] valid_0's rmse: 0.0262944 [526] valid_0's rmse: 0.0262956 [527] valid_0's rmse: 0.0262945 [528] valid_0's rmse: 0.0262948 [529] valid_0's rmse: 0.0262927 [530] valid_0's rmse: 0.0262942 [531] valid_0's rmse: 0.0262821 [532] valid_0's rmse: 0.0262828 [533] valid_0's rmse: 0.0262794 [534] valid_0's rmse: 0.0262778 [535] valid_0's rmse: 0.0262769 [536] valid_0's rmse: 0.0262763 [537] valid_0's rmse: 0.0262754 [538] valid_0's rmse: 0.026275 [539] valid_0's rmse: 0.0262742 [540] valid_0's rmse: 0.02625 [541] valid_0's rmse: 0.0262449 [542] valid_0's rmse: 0.0262456 [543] valid_0's rmse: 0.0262468 [544] valid_0's rmse: 0.0262448 [545] valid_0's rmse: 0.0262438 [546] valid_0's rmse: 0.0262417 [547] valid_0's rmse: 0.026231 [548] valid_0's rmse: 0.0262339 [549] valid_0's rmse: 0.0262327 [550] valid_0's rmse: 0.0262289 [551] valid_0's rmse: 0.0262244 [552] valid_0's rmse: 0.0262075 [553] valid_0's rmse: 0.0262031 [554] valid_0's rmse: 0.0262028 [555] valid_0's rmse: 0.0261984 [556] valid_0's rmse: 0.0261981 [557] valid_0's rmse: 0.0261977 [558] valid_0's rmse: 0.0262004 [559] valid_0's rmse: 0.0261955 [560] valid_0's rmse: 0.0261955 [561] valid_0's rmse: 0.0261947 [562] valid_0's rmse: 0.0261983 [563] valid_0's rmse: 0.0261981 [564] valid_0's rmse: 0.0261992 [565] valid_0's rmse: 0.0261974 [566] valid_0's rmse: 0.0261936 [567] valid_0's rmse: 0.0261954 [568] valid_0's rmse: 0.0261987 [569] valid_0's rmse: 0.0261837 [570] valid_0's rmse: 0.0261839 [571] valid_0's rmse: 0.026185 [572] valid_0's rmse: 0.0261849 [573] valid_0's rmse: 0.0261842 [574] valid_0's rmse: 0.0261826 [575] valid_0's rmse: 0.0261834 [576] valid_0's rmse: 0.0261825 [577] valid_0's rmse: 0.0261717 [578] valid_0's rmse: 0.026171 [579] valid_0's rmse: 0.0261609 [580] valid_0's rmse: 0.02616 [581] valid_0's rmse: 0.0261573 [582] valid_0's rmse: 0.026159 [583] valid_0's rmse: 0.0261576 [584] valid_0's rmse: 0.0261557 [585] valid_0's rmse: 0.0261582 [586] valid_0's rmse: 0.026158 [587] valid_0's rmse: 0.0261573 [588] valid_0's rmse: 0.0261571 [589] valid_0's rmse: 0.0261535 [590] valid_0's rmse: 0.0261534 [591] valid_0's rmse: 0.0261534 [592] valid_0's rmse: 0.0261436 [593] valid_0's rmse: 0.0261423 [594] valid_0's rmse: 0.0261409 [595] valid_0's rmse: 0.0261377 [596] valid_0's rmse: 0.0261358 [597] valid_0's rmse: 0.0261367 [598] valid_0's rmse: 0.026137 [599] valid_0's rmse: 0.0261357 [600] valid_0's rmse: 0.0261344 [601] valid_0's rmse: 0.0261345 [602] valid_0's rmse: 0.026133 [603] valid_0's rmse: 0.0261313 [604] valid_0's rmse: 0.0261344 [605] valid_0's rmse: 0.0261339 [606] valid_0's rmse: 0.0261321 [607] valid_0's rmse: 0.0261288 [608] valid_0's rmse: 0.0261285 [609] valid_0's rmse: 0.0261298 [610] valid_0's rmse: 0.026131 [611] valid_0's rmse: 0.0261265 [612] valid_0's rmse: 0.0261043 [613] valid_0's rmse: 0.0261023 [614] valid_0's rmse: 0.0261013 [615] valid_0's rmse: 0.0260971 [616] valid_0's rmse: 0.0260979 [617] valid_0's rmse: 0.0260987 [618] valid_0's rmse: 0.0260728 [619] valid_0's rmse: 0.026069 [620] valid_0's rmse: 0.0260678 [621] valid_0's rmse: 0.0260587 [622] valid_0's rmse: 0.0260571 [623] valid_0's rmse: 0.0260564 [624] valid_0's rmse: 0.026054 [625] valid_0's rmse: 0.0260544 [626] valid_0's rmse: 0.0260502 [627] valid_0's rmse: 0.0260444 [628] valid_0's rmse: 0.026044 [629] valid_0's rmse: 0.02604 [630] valid_0's rmse: 0.0260386 [631] valid_0's rmse: 0.0260394 [632] valid_0's rmse: 0.0260378 [633] valid_0's rmse: 0.0260397 [634] valid_0's rmse: 0.0260395 [635] valid_0's rmse: 0.0260398 [636] valid_0's rmse: 0.0260376 [637] valid_0's rmse: 0.026039 [638] valid_0's rmse: 0.0260362 [639] valid_0's rmse: 0.0260345 [640] valid_0's rmse: 0.0260342 [641] valid_0's rmse: 0.0260336 [642] valid_0's rmse: 0.0260337 [643] valid_0's rmse: 0.0260325 [644] valid_0's rmse: 0.0260305 [645] valid_0's rmse: 0.0260308 [646] valid_0's rmse: 0.0260319 [647] valid_0's rmse: 0.0260334 [648] valid_0's rmse: 0.0260338 [649] valid_0's rmse: 0.0260325 [650] valid_0's rmse: 0.0260265 [651] valid_0's rmse: 0.0260269 [652] valid_0's rmse: 0.0260251 [653] valid_0's rmse: 0.0260252 [654] valid_0's rmse: 0.0260251 [655] valid_0's rmse: 0.0260257 [656] valid_0's rmse: 0.0260234 [657] valid_0's rmse: 0.0260219 [658] valid_0's rmse: 0.0260211 [659] valid_0's rmse: 0.0260209 [660] valid_0's rmse: 0.0260217 [661] valid_0's rmse: 0.0260234 [662] valid_0's rmse: 0.0260244 [663] valid_0's rmse: 0.0260219 [664] valid_0's rmse: 0.0260216 [665] valid_0's rmse: 0.026023 [666] valid_0's rmse: 0.026025 [667] valid_0's rmse: 0.0260245 [668] valid_0's rmse: 0.026022 [669] valid_0's rmse: 0.0260216 [670] valid_0's rmse: 0.0260231 [671] valid_0's rmse: 0.0260226 [672] valid_0's rmse: 0.0260197 [673] valid_0's rmse: 0.0260191 [674] valid_0's rmse: 0.0260193 [675] valid_0's rmse: 0.0260178 [676] valid_0's rmse: 0.0260171 [677] valid_0's rmse: 0.0260153 [678] valid_0's rmse: 0.0260153 [679] valid_0's rmse: 0.026013 [680] valid_0's rmse: 0.0260116 [681] valid_0's rmse: 0.0260089 [682] valid_0's rmse: 0.0260046 [683] valid_0's rmse: 0.0260029 [684] valid_0's rmse: 0.0260038 [685] valid_0's rmse: 0.0260018 [686] valid_0's rmse: 0.0260058 [687] valid_0's rmse: 0.0260083 [688] valid_0's rmse: 0.0260081 [689] valid_0's rmse: 0.0260076 [690] valid_0's rmse: 0.0260032 [691] valid_0's rmse: 0.0260018 [692] valid_0's rmse: 0.0260013 [693] valid_0's rmse: 0.0260024 [694] valid_0's rmse: 0.026003 [695] valid_0's rmse: 0.0260023 [696] valid_0's rmse: 0.0260022 [697] valid_0's rmse: 0.0260018 [698] valid_0's rmse: 0.0260004 [699] valid_0's rmse: 0.0259998 [700] valid_0's rmse: 0.0259961 [701] valid_0's rmse: 0.0259964 [702] valid_0's rmse: 0.0259942 [703] valid_0's rmse: 0.0259951 [704] valid_0's rmse: 0.0259918 [705] valid_0's rmse: 0.0259913 [706] valid_0's rmse: 0.0259895 [707] valid_0's rmse: 0.0259881 [708] valid_0's rmse: 0.0259869 [709] valid_0's rmse: 0.0259796 [710] valid_0's rmse: 0.0259789 [711] valid_0's rmse: 0.0259766 [712] valid_0's rmse: 0.0259758 [713] valid_0's rmse: 0.0259746 [714] valid_0's rmse: 0.0259744 [715] valid_0's rmse: 0.0259761 [716] valid_0's rmse: 0.0259832 [717] valid_0's rmse: 0.0259813 [718] valid_0's rmse: 0.0259823 [719] valid_0's rmse: 0.0259815 [720] valid_0's rmse: 0.0259701 [721] valid_0's rmse: 0.0259693 [722] valid_0's rmse: 0.0259679 [723] valid_0's rmse: 0.0259668 [724] valid_0's rmse: 0.0259646 [725] valid_0's rmse: 0.0259639 [726] valid_0's rmse: 0.0259672 [727] valid_0's rmse: 0.025969 [728] valid_0's rmse: 0.0259709 [729] valid_0's rmse: 0.0259705 [730] valid_0's rmse: 0.0259611 [731] valid_0's rmse: 0.0259601 [732] valid_0's rmse: 0.0259605 [733] valid_0's rmse: 0.02596 [734] valid_0's rmse: 0.0259589 [735] valid_0's rmse: 0.0259593 [736] valid_0's rmse: 0.0259612 [737] valid_0's rmse: 0.0259617 [738] valid_0's rmse: 0.0259604 [739] valid_0's rmse: 0.0259609 [740] valid_0's rmse: 0.0259575 [741] valid_0's rmse: 0.0259552 [742] valid_0's rmse: 0.025958 [743] valid_0's rmse: 0.0259575 [744] valid_0's rmse: 0.0259551 [745] valid_0's rmse: 0.0259555 [746] valid_0's rmse: 0.0259564 [747] valid_0's rmse: 0.0259554 [748] valid_0's rmse: 0.0259536 [749] valid_0's rmse: 0.0259524 [750] valid_0's rmse: 0.0259526 [751] valid_0's rmse: 0.0259521 [752] valid_0's rmse: 0.0259515 [753] valid_0's rmse: 0.0259512 [754] valid_0's rmse: 0.0259504 [755] valid_0's rmse: 0.0259508 [756] valid_0's rmse: 0.0259495 [757] valid_0's rmse: 0.0259432 [758] valid_0's rmse: 0.0259428 [759] valid_0's rmse: 0.0259422 [760] valid_0's rmse: 0.0259443 [761] valid_0's rmse: 0.0259459 [762] valid_0's rmse: 0.0259443 [763] valid_0's rmse: 0.0259442 [764] valid_0's rmse: 0.0259432 [765] valid_0's rmse: 0.025944 [766] valid_0's rmse: 0.0259433 [767] valid_0's rmse: 0.0259438 [768] valid_0's rmse: 0.0259408 [769] valid_0's rmse: 0.0259404 [770] valid_0's rmse: 0.0259398 [771] valid_0's rmse: 0.0259375 [772] valid_0's rmse: 0.025935 [773] valid_0's rmse: 0.0259347 [774] valid_0's rmse: 0.0259332 [775] valid_0's rmse: 0.0259335 [776] valid_0's rmse: 0.0259349 [777] valid_0's rmse: 0.0259345 [778] valid_0's rmse: 0.0259353 [779] valid_0's rmse: 0.0259353 [780] valid_0's rmse: 0.0259354 [781] valid_0's rmse: 0.025935 [782] valid_0's rmse: 0.0259362 [783] valid_0's rmse: 0.0259348 [784] valid_0's rmse: 0.0259347 [785] valid_0's rmse: 0.0259361 [786] valid_0's rmse: 0.0259417 [787] valid_0's rmse: 0.0259418 [788] valid_0's rmse: 0.0259422 [789] valid_0's rmse: 0.0259422 [790] valid_0's rmse: 0.0259419 [791] valid_0's rmse: 0.0259409 [792] valid_0's rmse: 0.0259409 [793] valid_0's rmse: 0.0259433 [794] valid_0's rmse: 0.0259438 [795] valid_0's rmse: 0.0259415 [796] valid_0's rmse: 0.0259423 [797] valid_0's rmse: 0.0259435 [798] valid_0's rmse: 0.0259416 [799] valid_0's rmse: 0.0259469 [800] valid_0's rmse: 0.0259488 [801] valid_0's rmse: 0.0259505 [802] valid_0's rmse: 0.025947 [803] valid_0's rmse: 0.0259453 [804] valid_0's rmse: 0.0259434 [805] valid_0's rmse: 0.0259429 [806] valid_0's rmse: 0.0259445 [807] valid_0's rmse: 0.0259469 [808] valid_0's rmse: 0.0259436 [809] valid_0's rmse: 0.0259414 [810] valid_0's rmse: 0.0259419 [811] valid_0's rmse: 0.0259498 [812] valid_0's rmse: 0.0259524 [813] valid_0's rmse: 0.025951 [814] valid_0's rmse: 0.0259468 [815] valid_0's rmse: 0.0259462 [816] valid_0's rmse: 0.0259387 [817] valid_0's rmse: 0.0259382 [818] valid_0's rmse: 0.0259381 [819] valid_0's rmse: 0.0259391 [820] valid_0's rmse: 0.0259437 [821] valid_0's rmse: 0.0259455 [822] valid_0's rmse: 0.0259458 [823] valid_0's rmse: 0.0259459 [824] valid_0's rmse: 0.0259441 [825] valid_0's rmse: 0.0259408 [826] valid_0's rmse: 0.0259412 [827] valid_0's rmse: 0.0259419 [828] valid_0's rmse: 0.0259434 [829] valid_0's rmse: 0.0259429 [830] valid_0's rmse: 0.0259448 [831] valid_0's rmse: 0.0259442 [832] valid_0's rmse: 0.0259424 [833] valid_0's rmse: 0.0259416 [834] valid_0's rmse: 0.0259425 [835] valid_0's rmse: 0.025941 [836] valid_0's rmse: 0.02594 [837] valid_0's rmse: 0.0259396 [838] valid_0's rmse: 0.0259382 [839] valid_0's rmse: 0.0259367 [840] valid_0's rmse: 0.0259381 [841] valid_0's rmse: 0.0259379 [842] valid_0's rmse: 0.0259268 [843] valid_0's rmse: 0.0259259 [844] valid_0's rmse: 0.0259228 [845] valid_0's rmse: 0.0259228 [846] valid_0's rmse: 0.0259187 [847] valid_0's rmse: 0.0259171 [848] valid_0's rmse: 0.0259177 [849] valid_0's rmse: 0.0259164 [850] valid_0's rmse: 0.0259161 [851] valid_0's rmse: 0.0259161 [852] valid_0's rmse: 0.0259147 [853] valid_0's rmse: 0.0259145 [854] valid_0's rmse: 0.0259144 [855] valid_0's rmse: 0.0259125 [856] valid_0's rmse: 0.0259127 [857] valid_0's rmse: 0.0259115 [858] valid_0's rmse: 0.0259104 [859] valid_0's rmse: 0.0259119 [860] valid_0's rmse: 0.0259109 [861] valid_0's rmse: 0.02591 [862] valid_0's rmse: 0.0259099 [863] valid_0's rmse: 0.0259097 [864] valid_0's rmse: 0.0259133 [865] valid_0's rmse: 0.0259116 [866] valid_0's rmse: 0.0259111 [867] valid_0's rmse: 0.0259095 [868] valid_0's rmse: 0.0258982 [869] valid_0's rmse: 0.0258979 [870] valid_0's rmse: 0.0258956 [871] valid_0's rmse: 0.0258967 [872] valid_0's rmse: 0.0258972 [873] valid_0's rmse: 0.0258971 [874] valid_0's rmse: 0.0259015 [875] valid_0's rmse: 0.0258999 [876] valid_0's rmse: 0.0258987 [877] valid_0's rmse: 0.0258987 [878] valid_0's rmse: 0.0258985 [879] valid_0's rmse: 0.0259 [880] valid_0's rmse: 0.0259008 [881] valid_0's rmse: 0.0259018 [882] valid_0's rmse: 0.0259037 [883] valid_0's rmse: 0.0259048 [884] valid_0's rmse: 0.0259063 [885] valid_0's rmse: 0.0259055 [886] valid_0's rmse: 0.0259052 [887] valid_0's rmse: 0.0259047 [888] valid_0's rmse: 0.0259042 [889] valid_0's rmse: 0.0259046 [890] valid_0's rmse: 0.0259049 [891] valid_0's rmse: 0.0259044 [892] valid_0's rmse: 0.0259046 [893] valid_0's rmse: 0.0259035 [894] valid_0's rmse: 0.0259016 [895] valid_0's rmse: 0.0259031 [896] valid_0's rmse: 0.0259025 [897] valid_0's rmse: 0.0259047 [898] valid_0's rmse: 0.0259051 [899] valid_0's rmse: 0.0259101 [900] valid_0's rmse: 0.0259099 [901] valid_0's rmse: 0.0259106 [902] valid_0's rmse: 0.0259101 [903] valid_0's rmse: 0.0259044 [904] valid_0's rmse: 0.0259034 [905] valid_0's rmse: 0.0259038 [906] valid_0's rmse: 0.0259047 [907] valid_0's rmse: 0.0259061 [908] valid_0's rmse: 0.025906 [909] valid_0's rmse: 0.025901 [910] valid_0's rmse: 0.0258971 [911] valid_0's rmse: 0.0258968 [912] valid_0's rmse: 0.0258973 [913] valid_0's rmse: 0.0258965 [914] valid_0's rmse: 0.025898 [915] valid_0's rmse: 0.0258982 [916] valid_0's rmse: 0.0258981 [917] valid_0's rmse: 0.0258952 [918] valid_0's rmse: 0.0258949 [919] valid_0's rmse: 0.0258947 [920] valid_0's rmse: 0.0258959 [921] valid_0's rmse: 0.0258954 [922] valid_0's rmse: 0.0258947 [923] valid_0's rmse: 0.0258946 [924] valid_0's rmse: 0.0258931 [925] valid_0's rmse: 0.0258945 [926] valid_0's rmse: 0.0258925 [927] valid_0's rmse: 0.0258899 [928] valid_0's rmse: 0.0258898 [929] valid_0's rmse: 0.0258914 [930] valid_0's rmse: 0.0258912 [931] valid_0's rmse: 0.025892 [932] valid_0's rmse: 0.025893 [933] valid_0's rmse: 0.0258918 [934] valid_0's rmse: 0.0258882 [935] valid_0's rmse: 0.0258882 [936] valid_0's rmse: 0.0258871 [937] valid_0's rmse: 0.0258879 [938] valid_0's rmse: 0.0258857 [939] valid_0's rmse: 0.0258855 [940] valid_0's rmse: 0.0258856 [941] valid_0's rmse: 0.0258855 [942] valid_0's rmse: 0.0258857 [943] valid_0's rmse: 0.0258857 [944] valid_0's rmse: 0.0258861 [945] valid_0's rmse: 0.0258858 [946] valid_0's rmse: 0.0258865 [947] valid_0's rmse: 0.0258875 [948] valid_0's rmse: 0.0258872 [949] valid_0's rmse: 0.0258872 [950] valid_0's rmse: 0.0258866 [951] valid_0's rmse: 0.0258888 [952] valid_0's rmse: 0.0258892 [953] valid_0's rmse: 0.0258835 [954] valid_0's rmse: 0.0258817 [955] valid_0's rmse: 0.0258817 [956] valid_0's rmse: 0.0258786 [957] valid_0's rmse: 0.0258788 [958] valid_0's rmse: 0.0258788 [959] valid_0's rmse: 0.0258798 [960] valid_0's rmse: 0.0258797 [961] valid_0's rmse: 0.0258797 [962] valid_0's rmse: 0.0258776 [963] valid_0's rmse: 0.0258773 [964] valid_0's rmse: 0.025877 [965] valid_0's rmse: 0.0258773 [966] valid_0's rmse: 0.025879 [967] valid_0's rmse: 0.0258802 [968] valid_0's rmse: 0.0258794 [969] valid_0's rmse: 0.02588 [970] valid_0's rmse: 0.0258797 [971] valid_0's rmse: 0.0258782 [972] valid_0's rmse: 0.0258827 [973] valid_0's rmse: 0.0258842 [974] valid_0's rmse: 0.0258837 [975] valid_0's rmse: 0.0258827 [976] valid_0's rmse: 0.0258818 [977] valid_0's rmse: 0.0258811 [978] valid_0's rmse: 0.0258813 [979] valid_0's rmse: 0.0258813 [980] valid_0's rmse: 0.0258805 [981] valid_0's rmse: 0.0258805 [982] valid_0's rmse: 0.0258791 [983] valid_0's rmse: 0.0258764 [984] valid_0's rmse: 0.0258765 [985] valid_0's rmse: 0.0258748 [986] valid_0's rmse: 0.025877 [987] valid_0's rmse: 0.025878 [988] valid_0's rmse: 0.0258776 [989] valid_0's rmse: 0.0258761 [990] valid_0's rmse: 0.0258762 [991] valid_0's rmse: 0.0258591 [992] valid_0's rmse: 0.0258595 [993] valid_0's rmse: 0.0258594 [994] valid_0's rmse: 0.0258605 [995] valid_0's rmse: 0.02586 [996] valid_0's rmse: 0.0258582 [997] valid_0's rmse: 0.0258576 [998] valid_0's rmse: 0.0258556 [999] valid_0's rmse: 0.0258562 [1000] valid_0's rmse: 0.0258543 [1001] valid_0's rmse: 0.0258523 [1002] valid_0's rmse: 0.0258534 [1003] valid_0's rmse: 0.0258537 [1004] valid_0's rmse: 0.0258546 [1005] valid_0's rmse: 0.0258533 [1006] valid_0's rmse: 0.0258519 [1007] valid_0's rmse: 0.0258508 [1008] valid_0's rmse: 0.0258508 [1009] valid_0's rmse: 0.0258509 [1010] valid_0's rmse: 0.0258469 [1011] valid_0's rmse: 0.025851 [1012] valid_0's rmse: 0.0258512 [1013] valid_0's rmse: 0.0258474 [1014] valid_0's rmse: 0.0258468 [1015] valid_0's rmse: 0.0258432 [1016] valid_0's rmse: 0.0258409 [1017] valid_0's rmse: 0.0258283 [1018] valid_0's rmse: 0.0258284 [1019] valid_0's rmse: 0.0258254 [1020] valid_0's rmse: 0.0258244 [1021] valid_0's rmse: 0.0258246 [1022] valid_0's rmse: 0.0258249 [1023] valid_0's rmse: 0.0258246 [1024] valid_0's rmse: 0.0258215 [1025] valid_0's rmse: 0.0258211 [1026] valid_0's rmse: 0.0258215 [1027] valid_0's rmse: 0.0258213 [1028] valid_0's rmse: 0.0258215 [1029] valid_0's rmse: 0.0258233 [1030] valid_0's rmse: 0.0258232 [1031] valid_0's rmse: 0.0258233 [1032] valid_0's rmse: 0.0258191 [1033] valid_0's rmse: 0.0258196 [1034] valid_0's rmse: 0.0258169 [1035] valid_0's rmse: 0.025816 [1036] valid_0's rmse: 0.0258137 [1037] valid_0's rmse: 0.0258143 [1038] valid_0's rmse: 0.0258121 [1039] valid_0's rmse: 0.0258055 [1040] valid_0's rmse: 0.0258055 [1041] valid_0's rmse: 0.0258079 [1042] valid_0's rmse: 0.0258097 [1043] valid_0's rmse: 0.0258097 [1044] valid_0's rmse: 0.0258109 [1045] valid_0's rmse: 0.0258118 [1046] valid_0's rmse: 0.0258121 [1047] valid_0's rmse: 0.0258112 [1048] valid_0's rmse: 0.0258103 [1049] valid_0's rmse: 0.0258102 [1050] valid_0's rmse: 0.0258113 [1051] valid_0's rmse: 0.0258119 [1052] valid_0's rmse: 0.0258115 [1053] valid_0's rmse: 0.0258116 [1054] valid_0's rmse: 0.0258114 [1055] valid_0's rmse: 0.0258098 [1056] valid_0's rmse: 0.0258097 [1057] valid_0's rmse: 0.0258085 [1058] valid_0's rmse: 0.0258088 [1059] valid_0's rmse: 0.0258058 [1060] valid_0's rmse: 0.0258033 [1061] valid_0's rmse: 0.0257999 [1062] valid_0's rmse: 0.025795 [1063] valid_0's rmse: 0.0257936 [1064] valid_0's rmse: 0.0257928 [1065] valid_0's rmse: 0.025793 [1066] valid_0's rmse: 0.0257934 [1067] valid_0's rmse: 0.0257928 [1068] valid_0's rmse: 0.0257786 [1069] valid_0's rmse: 0.0257783 [1070] valid_0's rmse: 0.0257778 [1071] valid_0's rmse: 0.025777 [1072] valid_0's rmse: 0.0257782 [1073] valid_0's rmse: 0.0257767 [1074] valid_0's rmse: 0.0257763 [1075] valid_0's rmse: 0.0257764 [1076] valid_0's rmse: 0.025776 [1077] valid_0's rmse: 0.0257776 [1078] valid_0's rmse: 0.0257782 [1079] valid_0's rmse: 0.0257782 [1080] valid_0's rmse: 0.0257781 [1081] valid_0's rmse: 0.025776 [1082] valid_0's rmse: 0.0257761 [1083] valid_0's rmse: 0.0257762 [1084] valid_0's rmse: 0.0257773 [1085] valid_0's rmse: 0.0257783 [1086] valid_0's rmse: 0.0257785 [1087] valid_0's rmse: 0.0257788 [1088] valid_0's rmse: 0.0257792 [1089] valid_0's rmse: 0.02578 [1090] valid_0's rmse: 0.0257788 [1091] valid_0's rmse: 0.0257776 [1092] valid_0's rmse: 0.0257795 [1093] valid_0's rmse: 0.0257788 [1094] valid_0's rmse: 0.0257782 [1095] valid_0's rmse: 0.025778 [1096] valid_0's rmse: 0.0257811 [1097] valid_0's rmse: 0.0257814 [1098] valid_0's rmse: 0.0257792 [1099] valid_0's rmse: 0.0257788 [1100] valid_0's rmse: 0.0257798 [1101] valid_0's rmse: 0.0257804 [1102] valid_0's rmse: 0.0257804 [1103] valid_0's rmse: 0.0257781 [1104] valid_0's rmse: 0.0257786 [1105] valid_0's rmse: 0.0257794 [1106] valid_0's rmse: 0.0257793 [1107] valid_0's rmse: 0.0257795 [1108] valid_0's rmse: 0.0257792 [1109] valid_0's rmse: 0.0257754 [1110] valid_0's rmse: 0.0257772 [1111] valid_0's rmse: 0.0257766 [1112] valid_0's rmse: 0.0257761 [1113] valid_0's rmse: 0.0257759 [1114] valid_0's rmse: 0.0257754 [1115] valid_0's rmse: 0.0257751 [1116] valid_0's rmse: 0.0257731 [1117] valid_0's rmse: 0.0257728 [1118] valid_0's rmse: 0.0257725 [1119] valid_0's rmse: 0.025771 [1120] valid_0's rmse: 0.0257698 [1121] valid_0's rmse: 0.0257699 [1122] valid_0's rmse: 0.0257698 [1123] valid_0's rmse: 0.0257685 [1124] valid_0's rmse: 0.0257678 [1125] valid_0's rmse: 0.0257679 [1126] valid_0's rmse: 0.0257667 [1127] valid_0's rmse: 0.0257669 [1128] valid_0's rmse: 0.0257648 [1129] valid_0's rmse: 0.0257647 [1130] valid_0's rmse: 0.0257651 [1131] valid_0's rmse: 0.0257653 [1132] valid_0's rmse: 0.0257657 [1133] valid_0's rmse: 0.0257652 [1134] valid_0's rmse: 0.0257653 [1135] valid_0's rmse: 0.0257593 [1136] valid_0's rmse: 0.0257585 [1137] valid_0's rmse: 0.0257583 [1138] valid_0's rmse: 0.0257575 [1139] valid_0's rmse: 0.0257571 [1140] valid_0's rmse: 0.0257562 [1141] valid_0's rmse: 0.0257562 [1142] valid_0's rmse: 0.0257561 [1143] valid_0's rmse: 0.025755 [1144] valid_0's rmse: 0.025754 [1145] valid_0's rmse: 0.0257534 [1146] valid_0's rmse: 0.0257535 [1147] valid_0's rmse: 0.0257503 [1148] valid_0's rmse: 0.0257519 [1149] valid_0's rmse: 0.0257486 [1150] valid_0's rmse: 0.0257485 [1151] valid_0's rmse: 0.0257492 [1152] valid_0's rmse: 0.0257531 [1153] valid_0's rmse: 0.0257529 [1154] valid_0's rmse: 0.0257521 [1155] valid_0's rmse: 0.0257517 [1156] valid_0's rmse: 0.0257545 [1157] valid_0's rmse: 0.0257556 [1158] valid_0's rmse: 0.0257559 [1159] valid_0's rmse: 0.0257578 [1160] valid_0's rmse: 0.0257567 [1161] valid_0's rmse: 0.0257569 [1162] valid_0's rmse: 0.0257559 [1163] valid_0's rmse: 0.0257577 [1164] valid_0's rmse: 0.0257551 [1165] valid_0's rmse: 0.025756 [1166] valid_0's rmse: 0.0257558 [1167] valid_0's rmse: 0.0257561 [1168] valid_0's rmse: 0.0257562 [1169] valid_0's rmse: 0.0257558 [1170] valid_0's rmse: 0.0257527 [1171] valid_0's rmse: 0.0257479 [1172] valid_0's rmse: 0.0257481 [1173] valid_0's rmse: 0.0257445 [1174] valid_0's rmse: 0.0257442 [1175] valid_0's rmse: 0.0257454 [1176] valid_0's rmse: 0.0257446 [1177] valid_0's rmse: 0.0257455 [1178] valid_0's rmse: 0.0257465 [1179] valid_0's rmse: 0.0257483 [1180] valid_0's rmse: 0.0257494 [1181] valid_0's rmse: 0.025749 [1182] valid_0's rmse: 0.0257492 [1183] valid_0's rmse: 0.0257497 [1184] valid_0's rmse: 0.02575 [1185] valid_0's rmse: 0.0257441 [1186] valid_0's rmse: 0.0257412 [1187] valid_0's rmse: 0.0257376 [1188] valid_0's rmse: 0.025734 [1189] valid_0's rmse: 0.0257333 [1190] valid_0's rmse: 0.0257326 [1191] valid_0's rmse: 0.0257325 [1192] valid_0's rmse: 0.0257347 [1193] valid_0's rmse: 0.0257189 [1194] valid_0's rmse: 0.0257085 [1195] valid_0's rmse: 0.0257073 [1196] valid_0's rmse: 0.025707 [1197] valid_0's rmse: 0.0257055 [1198] valid_0's rmse: 0.0257056 [1199] valid_0's rmse: 0.0257043 [1200] valid_0's rmse: 0.0257063 [1201] valid_0's rmse: 0.0257056 [1202] valid_0's rmse: 0.0257059 [1203] valid_0's rmse: 0.0257041 [1204] valid_0's rmse: 0.0257018 [1205] valid_0's rmse: 0.025702 [1206] valid_0's rmse: 0.0257017 [1207] valid_0's rmse: 0.0256966 [1208] valid_0's rmse: 0.0256931 [1209] valid_0's rmse: 0.0256931 [1210] valid_0's rmse: 0.025693 [1211] valid_0's rmse: 0.0256934 [1212] valid_0's rmse: 0.0256969 [1213] valid_0's rmse: 0.0256973 [1214] valid_0's rmse: 0.0256982 [1215] valid_0's rmse: 0.0256965 [1216] valid_0's rmse: 0.0256955 [1217] valid_0's rmse: 0.0256956 [1218] valid_0's rmse: 0.0256956 [1219] valid_0's rmse: 0.0256943 [1220] valid_0's rmse: 0.0256932 [1221] valid_0's rmse: 0.0256944 [1222] valid_0's rmse: 0.0256935 [1223] valid_0's rmse: 0.0256947 [1224] valid_0's rmse: 0.0256951 [1225] valid_0's rmse: 0.0256953 [1226] valid_0's rmse: 0.0256967 [1227] valid_0's rmse: 0.0256974 [1228] valid_0's rmse: 0.0256971 [1229] valid_0's rmse: 0.025697 [1230] valid_0's rmse: 0.0256973 [1231] valid_0's rmse: 0.0256971 [1232] valid_0's rmse: 0.0256976 [1233] valid_0's rmse: 0.0256976 [1234] valid_0's rmse: 0.025696 [1235] valid_0's rmse: 0.0256965 [1236] valid_0's rmse: 0.0256961 [1237] valid_0's rmse: 0.0256962 [1238] valid_0's rmse: 0.0256996 [1239] valid_0's rmse: 0.0257003 [1240] valid_0's rmse: 0.0257023 [1241] valid_0's rmse: 0.0257018 [1242] valid_0's rmse: 0.0257016 [1243] valid_0's rmse: 0.0257023 [1244] valid_0's rmse: 0.0257013 [1245] valid_0's rmse: 0.0256968 [1246] valid_0's rmse: 0.0256967 [1247] valid_0's rmse: 0.0256935 [1248] valid_0's rmse: 0.0256932 [1249] valid_0's rmse: 0.0256959 [1250] valid_0's rmse: 0.025695 [1251] valid_0's rmse: 0.025695 [1252] valid_0's rmse: 0.0256954 [1253] valid_0's rmse: 0.0256932 [1254] valid_0's rmse: 0.0256933 [1255] valid_0's rmse: 0.0256942 [1256] valid_0's rmse: 0.0256929 [1257] valid_0's rmse: 0.0256918 [1258] valid_0's rmse: 0.0256916 [1259] valid_0's rmse: 0.0256913 [1260] valid_0's rmse: 0.0256924 [1261] valid_0's rmse: 0.0256909 [1262] valid_0's rmse: 0.0256907 [1263] valid_0's rmse: 0.0256914 [1264] valid_0's rmse: 0.0256819 [1265] valid_0's rmse: 0.0256823 [1266] valid_0's rmse: 0.0256822 [1267] valid_0's rmse: 0.0256828 [1268] valid_0's rmse: 0.025683 [1269] valid_0's rmse: 0.0256841 [1270] valid_0's rmse: 0.0256839 [1271] valid_0's rmse: 0.0256837 [1272] valid_0's rmse: 0.0256835 [1273] valid_0's rmse: 0.0256819 [1274] valid_0's rmse: 0.0256814 [1275] valid_0's rmse: 0.0256859 [1276] valid_0's rmse: 0.0256845 [1277] valid_0's rmse: 0.0256854 [1278] valid_0's rmse: 0.0256899 [1279] valid_0's rmse: 0.0256912 [1280] valid_0's rmse: 0.0256951 [1281] valid_0's rmse: 0.0256952 [1282] valid_0's rmse: 0.0256956 [1283] valid_0's rmse: 0.0256958 [1284] valid_0's rmse: 0.0256956 [1285] valid_0's rmse: 0.025695 [1286] valid_0's rmse: 0.0256955 [1287] valid_0's rmse: 0.0256955 [1288] valid_0's rmse: 0.0256966 [1289] valid_0's rmse: 0.0256969 [1290] valid_0's rmse: 0.0256961 [1291] valid_0's rmse: 0.0256955 [1292] valid_0's rmse: 0.025695 [1293] valid_0's rmse: 0.0256959 [1294] valid_0's rmse: 0.0256953 [1295] valid_0's rmse: 0.0256943 [1296] valid_0's rmse: 0.0256935 [1297] valid_0's rmse: 0.0256928 [1298] valid_0's rmse: 0.0256922 [1299] valid_0's rmse: 0.0256921 [1300] valid_0's rmse: 0.0256929 [1301] valid_0's rmse: 0.0256929 [1302] valid_0's rmse: 0.0256922 [1303] valid_0's rmse: 0.0256922 [1304] valid_0's rmse: 0.0256903 [1305] valid_0's rmse: 0.0256902 [1306] valid_0's rmse: 0.025689 [1307] valid_0's rmse: 0.0256867 [1308] valid_0's rmse: 0.025687 [1309] valid_0's rmse: 0.0256871 [1310] valid_0's rmse: 0.0256871 [1311] valid_0's rmse: 0.0256937 [1312] valid_0's rmse: 0.0256927 [1313] valid_0's rmse: 0.0256883 [1314] valid_0's rmse: 0.0256881 [1315] valid_0's rmse: 0.0256876 [1316] valid_0's rmse: 0.0256871 [1317] valid_0's rmse: 0.025685 [1318] valid_0's rmse: 0.0256843 [1319] valid_0's rmse: 0.0256852 [1320] valid_0's rmse: 0.0256852 [1321] valid_0's rmse: 0.0256852 [1322] valid_0's rmse: 0.0256842 [1323] valid_0's rmse: 0.0256825 [1324] valid_0's rmse: 0.0256824 [1325] valid_0's rmse: 0.0256792 [1326] valid_0's rmse: 0.0256781 [1327] valid_0's rmse: 0.0256776 [1328] valid_0's rmse: 0.0256776 [1329] valid_0's rmse: 0.0256782 [1330] valid_0's rmse: 0.0256781 [1331] valid_0's rmse: 0.0256777 [1332] valid_0's rmse: 0.0256777 [1333] valid_0's rmse: 0.0256772 [1334] valid_0's rmse: 0.025677 [1335] valid_0's rmse: 0.0256771 [1336] valid_0's rmse: 0.0256768 [1337] valid_0's rmse: 0.0256775 [1338] valid_0's rmse: 0.0256776 [1339] valid_0's rmse: 0.0256774 [1340] valid_0's rmse: 0.0256753 [1341] valid_0's rmse: 0.0256751 [1342] valid_0's rmse: 0.0256747 [1343] valid_0's rmse: 0.0256749 [1344] valid_0's rmse: 0.0256746 [1345] valid_0's rmse: 0.0256722 [1346] valid_0's rmse: 0.0256697 [1347] valid_0's rmse: 0.0256704 [1348] valid_0's rmse: 0.0256681 [1349] valid_0's rmse: 0.025668 [1350] valid_0's rmse: 0.0256667 [1351] valid_0's rmse: 0.0256684 [1352] valid_0's rmse: 0.0256685 [1353] valid_0's rmse: 0.0256673 [1354] valid_0's rmse: 0.0256673 [1355] valid_0's rmse: 0.025667 [1356] valid_0's rmse: 0.0256675 [1357] valid_0's rmse: 0.0256686 [1358] valid_0's rmse: 0.0256681 [1359] valid_0's rmse: 0.0256681 [1360] valid_0's rmse: 0.0256682 [1361] valid_0's rmse: 0.025668 [1362] valid_0's rmse: 0.0256671 [1363] valid_0's rmse: 0.0256675 [1364] valid_0's rmse: 0.0256638 [1365] valid_0's rmse: 0.0256638 [1366] valid_0's rmse: 0.0256526 [1367] valid_0's rmse: 0.0256534 [1368] valid_0's rmse: 0.0256534 [1369] valid_0's rmse: 0.025653 [1370] valid_0's rmse: 0.0256528 [1371] valid_0's rmse: 0.0256532 [1372] valid_0's rmse: 0.025647 [1373] valid_0's rmse: 0.0256454 [1374] valid_0's rmse: 0.0256457 [1375] valid_0's rmse: 0.0256426 [1376] valid_0's rmse: 0.0256425 [1377] valid_0's rmse: 0.0256441 [1378] valid_0's rmse: 0.0256431 [1379] valid_0's rmse: 0.0256452 [1380] valid_0's rmse: 0.0256455 [1381] valid_0's rmse: 0.0256454 [1382] valid_0's rmse: 0.0256441 [1383] valid_0's rmse: 0.0256446 [1384] valid_0's rmse: 0.0256443 [1385] valid_0's rmse: 0.0256444 [1386] valid_0's rmse: 0.0256445 [1387] valid_0's rmse: 0.0256436 [1388] valid_0's rmse: 0.0256418 [1389] valid_0's rmse: 0.0256422 [1390] valid_0's rmse: 0.0256363 [1391] valid_0's rmse: 0.0256359 [1392] valid_0's rmse: 0.0256348 [1393] valid_0's rmse: 0.0256345 [1394] valid_0's rmse: 0.0256347 [1395] valid_0's rmse: 0.025635 [1396] valid_0's rmse: 0.0256333 [1397] valid_0's rmse: 0.025633 [1398] valid_0's rmse: 0.025633 [1399] valid_0's rmse: 0.0256312 [1400] valid_0's rmse: 0.025631 [1401] valid_0's rmse: 0.025631 [1402] valid_0's rmse: 0.0256313 [1403] valid_0's rmse: 0.025627 [1404] valid_0's rmse: 0.0256275 [1405] valid_0's rmse: 0.0256277 [1406] valid_0's rmse: 0.0256274 [1407] valid_0's rmse: 0.0256277 [1408] valid_0's rmse: 0.0256266 [1409] valid_0's rmse: 0.025626 [1410] valid_0's rmse: 0.0256258 [1411] valid_0's rmse: 0.0256246 [1412] valid_0's rmse: 0.0256245 [1413] valid_0's rmse: 0.0256243 [1414] valid_0's rmse: 0.0256237 [1415] valid_0's rmse: 0.0256244 [1416] valid_0's rmse: 0.0256238 [1417] valid_0's rmse: 0.0256171 [1418] valid_0's rmse: 0.0256115 [1419] valid_0's rmse: 0.0256106 [1420] valid_0's rmse: 0.0256105 [1421] valid_0's rmse: 0.02561 [1422] valid_0's rmse: 0.0256113 [1423] valid_0's rmse: 0.0256111 [1424] valid_0's rmse: 0.025611 [1425] valid_0's rmse: 0.0256113 [1426] valid_0's rmse: 0.0256108 [1427] valid_0's rmse: 0.0256105 [1428] valid_0's rmse: 0.0256095 [1429] valid_0's rmse: 0.0256065 [1430] valid_0's rmse: 0.0256062 [1431] valid_0's rmse: 0.025607 [1432] valid_0's rmse: 0.0256074 [1433] valid_0's rmse: 0.025607 [1434] valid_0's rmse: 0.0256081 [1435] valid_0's rmse: 0.0256045 [1436] valid_0's rmse: 0.0256057 [1437] valid_0's rmse: 0.0256067 [1438] valid_0's rmse: 0.0256063 [1439] valid_0's rmse: 0.0256066 [1440] valid_0's rmse: 0.0256061 [1441] valid_0's rmse: 0.025605 [1442] valid_0's rmse: 0.0256045 [1443] valid_0's rmse: 0.0256032 [1444] valid_0's rmse: 0.0256063 [1445] valid_0's rmse: 0.0256076 [1446] valid_0's rmse: 0.025608 [1447] valid_0's rmse: 0.0256077 [1448] valid_0's rmse: 0.0256093 [1449] valid_0's rmse: 0.0256077 [1450] valid_0's rmse: 0.0256074 [1451] valid_0's rmse: 0.0256078 [1452] valid_0's rmse: 0.025608 [1453] valid_0's rmse: 0.0256081 [1454] valid_0's rmse: 0.0256081 [1455] valid_0's rmse: 0.0256079 [1456] valid_0's rmse: 0.0256087 [1457] valid_0's rmse: 0.0256062 [1458] valid_0's rmse: 0.025602 [1459] valid_0's rmse: 0.0256021 [1460] valid_0's rmse: 0.0256041 [1461] valid_0's rmse: 0.0256042 [1462] valid_0's rmse: 0.025605 [1463] valid_0's rmse: 0.0256056 [1464] valid_0's rmse: 0.0256053 [1465] valid_0's rmse: 0.0256077 [1466] valid_0's rmse: 0.0256076 [1467] valid_0's rmse: 0.0256083 [1468] valid_0's rmse: 0.0256082 [1469] valid_0's rmse: 0.0256074 [1470] valid_0's rmse: 0.0256074 [1471] valid_0's rmse: 0.025608 [1472] valid_0's rmse: 0.0256081 [1473] valid_0's rmse: 0.0256084 [1474] valid_0's rmse: 0.0256081 [1475] valid_0's rmse: 0.0256084 [1476] valid_0's rmse: 0.0256083 [1477] valid_0's rmse: 0.0256086 [1478] valid_0's rmse: 0.0256084 [1479] valid_0's rmse: 0.025608 [1480] valid_0's rmse: 0.02561 [1481] valid_0's rmse: 0.0256062 [1482] valid_0's rmse: 0.0256062 [1483] valid_0's rmse: 0.0256062 [1484] valid_0's rmse: 0.0256056 [1485] valid_0's rmse: 0.0256048 [1486] valid_0's rmse: 0.0256054 [1487] valid_0's rmse: 0.025605 [1488] valid_0's rmse: 0.0256026 [1489] valid_0's rmse: 0.0255999 [1490] valid_0's rmse: 0.0255993 [1491] valid_0's rmse: 0.0255995 [1492] valid_0's rmse: 0.0256009 [1493] valid_0's rmse: 0.0256006 [1494] valid_0's rmse: 0.0256027 [1495] valid_0's rmse: 0.0256021 [1496] valid_0's rmse: 0.0256017 [1497] valid_0's rmse: 0.0256016 [1498] valid_0's rmse: 0.0256018 [1499] valid_0's rmse: 0.0256011 [1500] valid_0's rmse: 0.025602 [1501] valid_0's rmse: 0.0256019 [1502] valid_0's rmse: 0.025602 [1503] valid_0's rmse: 0.0256027 [1504] valid_0's rmse: 0.0255921 [1505] valid_0's rmse: 0.0255919 [1506] valid_0's rmse: 0.025592 [1507] valid_0's rmse: 0.0255918 [1508] valid_0's rmse: 0.0255914 [1509] valid_0's rmse: 0.0255913 [1510] valid_0's rmse: 0.0255907 [1511] valid_0's rmse: 0.0255905 [1512] valid_0's rmse: 0.0255883 [1513] valid_0's rmse: 0.0255877 [1514] valid_0's rmse: 0.025587 [1515] valid_0's rmse: 0.0255873 [1516] valid_0's rmse: 0.025587 [1517] valid_0's rmse: 0.0255872 [1518] valid_0's rmse: 0.0255876 [1519] valid_0's rmse: 0.0255883 [1520] valid_0's rmse: 0.0255884 [1521] valid_0's rmse: 0.0255852 [1522] valid_0's rmse: 0.0255853 [1523] valid_0's rmse: 0.0255852 [1524] valid_0's rmse: 0.0255875 [1525] valid_0's rmse: 0.025588 [1526] valid_0's rmse: 0.0255894 [1527] valid_0's rmse: 0.0255891 [1528] valid_0's rmse: 0.0255891 [1529] valid_0's rmse: 0.0255892 [1530] valid_0's rmse: 0.0255908 [1531] valid_0's rmse: 0.0255902 [1532] valid_0's rmse: 0.0255903 [1533] valid_0's rmse: 0.0255905 [1534] valid_0's rmse: 0.0255906 [1535] valid_0's rmse: 0.0255913 [1536] valid_0's rmse: 0.0255906 [1537] valid_0's rmse: 0.0255919 [1538] valid_0's rmse: 0.0255919 [1539] valid_0's rmse: 0.0255936 [1540] valid_0's rmse: 0.025594 [1541] valid_0's rmse: 0.0255927 [1542] valid_0's rmse: 0.0255924 [1543] valid_0's rmse: 0.0255929 [1544] valid_0's rmse: 0.0255937 [1545] valid_0's rmse: 0.0255927 [1546] valid_0's rmse: 0.025592 [1547] valid_0's rmse: 0.0255914 [1548] valid_0's rmse: 0.0255914 [1549] valid_0's rmse: 0.0255913 [1550] valid_0's rmse: 0.0255909 [1551] valid_0's rmse: 0.0255915 [1552] valid_0's rmse: 0.0255916 [1553] valid_0's rmse: 0.0255916 [1554] valid_0's rmse: 0.0255915 [1555] valid_0's rmse: 0.0255921 [1556] valid_0's rmse: 0.0255909 [1557] valid_0's rmse: 0.0255908 [1558] valid_0's rmse: 0.0255916 [1559] valid_0's rmse: 0.0255904 [1560] valid_0's rmse: 0.0255898 [1561] valid_0's rmse: 0.0255908 [1562] valid_0's rmse: 0.0255909 [1563] valid_0's rmse: 0.0255911 [1564] valid_0's rmse: 0.0255908 [1565] valid_0's rmse: 0.0255928 [1566] valid_0's rmse: 0.0255909 [1567] valid_0's rmse: 0.0255908 [1568] valid_0's rmse: 0.0255925 [1569] valid_0's rmse: 0.0255903 [1570] valid_0's rmse: 0.0255904 [1571] valid_0's rmse: 0.0255902 [1572] valid_0's rmse: 0.0255895 [1573] valid_0's rmse: 0.0255941 [1574] valid_0's rmse: 0.025596 [1575] valid_0's rmse: 0.0255966 [1576] valid_0's rmse: 0.0255966 [1577] valid_0's rmse: 0.0255965 [1578] valid_0's rmse: 0.0255957 [1579] valid_0's rmse: 0.0255949 [1580] valid_0's rmse: 0.0255931 [1581] valid_0's rmse: 0.0255936 [1582] valid_0's rmse: 0.0255936 [1583] valid_0's rmse: 0.0255941 [1584] valid_0's rmse: 0.0255942 [1585] valid_0's rmse: 0.0255976 [1586] valid_0's rmse: 0.0255974 [1587] valid_0's rmse: 0.0255956 [1588] valid_0's rmse: 0.025595 [1589] valid_0's rmse: 0.0255943 [1590] valid_0's rmse: 0.0255946 [1591] valid_0's rmse: 0.0255945 [1592] valid_0's rmse: 0.0255938 [1593] valid_0's rmse: 0.0255907 [1594] valid_0's rmse: 0.0255832 [1595] valid_0's rmse: 0.0255833 [1596] valid_0's rmse: 0.0255824 [1597] valid_0's rmse: 0.025583 [1598] valid_0's rmse: 0.0255812 [1599] valid_0's rmse: 0.0255811 [1600] valid_0's rmse: 0.0255808 [1601] valid_0's rmse: 0.0255761 [1602] valid_0's rmse: 0.0255687 [1603] valid_0's rmse: 0.0255698 [1604] valid_0's rmse: 0.0255697 [1605] valid_0's rmse: 0.0255691 [1606] valid_0's rmse: 0.0255697 [1607] valid_0's rmse: 0.0255554 [1608] valid_0's rmse: 0.0255555 [1609] valid_0's rmse: 0.0255572 [1610] valid_0's rmse: 0.0255572 [1611] valid_0's rmse: 0.0255571 [1612] valid_0's rmse: 0.0255571 [1613] valid_0's rmse: 0.0255573 [1614] valid_0's rmse: 0.0255553 [1615] valid_0's rmse: 0.0255563 [1616] valid_0's rmse: 0.0255559 [1617] valid_0's rmse: 0.0255553 [1618] valid_0's rmse: 0.0255544 [1619] valid_0's rmse: 0.0255544 [1620] valid_0's rmse: 0.0255537 [1621] valid_0's rmse: 0.0255486 [1622] valid_0's rmse: 0.0255496 [1623] valid_0's rmse: 0.0255495 [1624] valid_0's rmse: 0.0255509 [1625] valid_0's rmse: 0.0255513 [1626] valid_0's rmse: 0.0255499 [1627] valid_0's rmse: 0.0255497 [1628] valid_0's rmse: 0.0255489 [1629] valid_0's rmse: 0.0255457 [1630] valid_0's rmse: 0.0255384 [1631] valid_0's rmse: 0.0255383 [1632] valid_0's rmse: 0.0255377 [1633] valid_0's rmse: 0.025538 [1634] valid_0's rmse: 0.0255383 [1635] valid_0's rmse: 0.0255381 [1636] valid_0's rmse: 0.0255379 [1637] valid_0's rmse: 0.0255386 [1638] valid_0's rmse: 0.0255391 [1639] valid_0's rmse: 0.0255386 [1640] valid_0's rmse: 0.0255322 [1641] valid_0's rmse: 0.0255328 [1642] valid_0's rmse: 0.0255273 [1643] valid_0's rmse: 0.0255264 [1644] valid_0's rmse: 0.0255262 [1645] valid_0's rmse: 0.0255239 [1646] valid_0's rmse: 0.0255234 [1647] valid_0's rmse: 0.0255245 [1648] valid_0's rmse: 0.0255188 [1649] valid_0's rmse: 0.0255174 [1650] valid_0's rmse: 0.0255231 [1651] valid_0's rmse: 0.0255231 [1652] valid_0's rmse: 0.0255237 [1653] valid_0's rmse: 0.0255217 [1654] valid_0's rmse: 0.025521 [1655] valid_0's rmse: 0.0255201 [1656] valid_0's rmse: 0.02552 [1657] valid_0's rmse: 0.0255204 [1658] valid_0's rmse: 0.0255194 [1659] valid_0's rmse: 0.0255194 [1660] valid_0's rmse: 0.0255194 [1661] valid_0's rmse: 0.0255189 [1662] valid_0's rmse: 0.0255192 [1663] valid_0's rmse: 0.0255183 [1664] valid_0's rmse: 0.0255186 [1665] valid_0's rmse: 0.0255179 [1666] valid_0's rmse: 0.0255182 [1667] valid_0's rmse: 0.0255178 [1668] valid_0's rmse: 0.0255175 [1669] valid_0's rmse: 0.0255181 [1670] valid_0's rmse: 0.0255179 [1671] valid_0's rmse: 0.025517 [1672] valid_0's rmse: 0.0255169 [1673] valid_0's rmse: 0.0255012 [1674] valid_0's rmse: 0.0255018 [1675] valid_0's rmse: 0.0255017 [1676] valid_0's rmse: 0.0255032 [1677] valid_0's rmse: 0.0255028 [1678] valid_0's rmse: 0.0255035 [1679] valid_0's rmse: 0.0255038 [1680] valid_0's rmse: 0.0255043 [1681] valid_0's rmse: 0.0255043 [1682] valid_0's rmse: 0.0255052 [1683] valid_0's rmse: 0.0255043 [1684] valid_0's rmse: 0.0255045 [1685] valid_0's rmse: 0.0255044 [1686] valid_0's rmse: 0.0255039 [1687] valid_0's rmse: 0.0255027 [1688] valid_0's rmse: 0.0255026 [1689] valid_0's rmse: 0.0255028 [1690] valid_0's rmse: 0.0255036 [1691] valid_0's rmse: 0.0255024 [1692] valid_0's rmse: 0.0255021 [1693] valid_0's rmse: 0.0255018 [1694] valid_0's rmse: 0.0255018 [1695] valid_0's rmse: 0.0255012 [1696] valid_0's rmse: 0.0255006 [1697] valid_0's rmse: 0.0255006 [1698] valid_0's rmse: 0.0255005 [1699] valid_0's rmse: 0.0254974 [1700] valid_0's rmse: 0.0254964 [1701] valid_0's rmse: 0.0254971 [1702] valid_0's rmse: 0.0254974 [1703] valid_0's rmse: 0.0254974 [1704] valid_0's rmse: 0.0254945 [1705] valid_0's rmse: 0.0254948 [1706] valid_0's rmse: 0.0254947 [1707] valid_0's rmse: 0.025495 [1708] valid_0's rmse: 0.0254952 [1709] valid_0's rmse: 0.025495 [1710] valid_0's rmse: 0.0254946 [1711] valid_0's rmse: 0.0254946 [1712] valid_0's rmse: 0.0254923 [1713] valid_0's rmse: 0.0254919 [1714] valid_0's rmse: 0.0254932 [1715] valid_0's rmse: 0.025493 [1716] valid_0's rmse: 0.0254935 [1717] valid_0's rmse: 0.025492 [1718] valid_0's rmse: 0.0254914 [1719] valid_0's rmse: 0.0254918 [1720] valid_0's rmse: 0.0254917 [1721] valid_0's rmse: 0.0254922 [1722] valid_0's rmse: 0.0254925 [1723] valid_0's rmse: 0.0254928 [1724] valid_0's rmse: 0.0254932 [1725] valid_0's rmse: 0.0254931 [1726] valid_0's rmse: 0.0254933 [1727] valid_0's rmse: 0.0254931 [1728] valid_0's rmse: 0.0254962 [1729] valid_0's rmse: 0.0254961 [1730] valid_0's rmse: 0.0254956 [1731] valid_0's rmse: 0.025495 [1732] valid_0's rmse: 0.0254947 [1733] valid_0's rmse: 0.0254938 [1734] valid_0's rmse: 0.0254942 [1735] valid_0's rmse: 0.0254946 [1736] valid_0's rmse: 0.0254936 [1737] valid_0's rmse: 0.0254922 [1738] valid_0's rmse: 0.0254917 [1739] valid_0's rmse: 0.025492 [1740] valid_0's rmse: 0.025492 [1741] valid_0's rmse: 0.0254923 [1742] valid_0's rmse: 0.0254932 [1743] valid_0's rmse: 0.0254933 [1744] valid_0's rmse: 0.0254935 [1745] valid_0's rmse: 0.0254933 [1746] valid_0's rmse: 0.0254937 [1747] valid_0's rmse: 0.0254928 [1748] valid_0's rmse: 0.0254926 [1749] valid_0's rmse: 0.0254945 [1750] valid_0's rmse: 0.0254948 [1751] valid_0's rmse: 0.025495 [1752] valid_0's rmse: 0.025487 [1753] valid_0's rmse: 0.0254868 [1754] valid_0's rmse: 0.025486 [1755] valid_0's rmse: 0.0254842 [1756] valid_0's rmse: 0.0254837 [1757] valid_0's rmse: 0.025483 [1758] valid_0's rmse: 0.0254827 [1759] valid_0's rmse: 0.0254805 [1760] valid_0's rmse: 0.02548 [1761] valid_0's rmse: 0.0254799 [1762] valid_0's rmse: 0.0254799 [1763] valid_0's rmse: 0.0254794 [1764] valid_0's rmse: 0.0254783 [1765] valid_0's rmse: 0.0254772 [1766] valid_0's rmse: 0.0254773 [1767] valid_0's rmse: 0.0254773 [1768] valid_0's rmse: 0.0254767 [1769] valid_0's rmse: 0.0254775 [1770] valid_0's rmse: 0.0254774 [1771] valid_0's rmse: 0.0254775 [1772] valid_0's rmse: 0.0254769 [1773] valid_0's rmse: 0.025477 [1774] valid_0's rmse: 0.0254779 [1775] valid_0's rmse: 0.025477 [1776] valid_0's rmse: 0.0254767 [1777] valid_0's rmse: 0.025474 [1778] valid_0's rmse: 0.0254756 [1779] valid_0's rmse: 0.0254761 [1780] valid_0's rmse: 0.025476 [1781] valid_0's rmse: 0.0254763 [1782] valid_0's rmse: 0.0254763 [1783] valid_0's rmse: 0.0254762 [1784] valid_0's rmse: 0.0254749 [1785] valid_0's rmse: 0.025473 [1786] valid_0's rmse: 0.0254723 [1787] valid_0's rmse: 0.0254712 [1788] valid_0's rmse: 0.0254711 [1789] valid_0's rmse: 0.0254718 [1790] valid_0's rmse: 0.0254716 [1791] valid_0's rmse: 0.0254721 [1792] valid_0's rmse: 0.0254709 [1793] valid_0's rmse: 0.0254738 [1794] valid_0's rmse: 0.0254739 [1795] valid_0's rmse: 0.025474 [1796] valid_0's rmse: 0.0254719 [1797] valid_0's rmse: 0.0254719 [1798] valid_0's rmse: 0.0254734 [1799] valid_0's rmse: 0.0254738 [1800] valid_0's rmse: 0.0254739 [1801] valid_0's rmse: 0.0254722 [1802] valid_0's rmse: 0.0254725 [1803] valid_0's rmse: 0.0254716 [1804] valid_0's rmse: 0.0254717 [1805] valid_0's rmse: 0.0254718 [1806] valid_0's rmse: 0.025471 [1807] valid_0's rmse: 0.0254714 [1808] valid_0's rmse: 0.0254714 [1809] valid_0's rmse: 0.0254713 [1810] valid_0's rmse: 0.0254711 [1811] valid_0's rmse: 0.0254716 [1812] valid_0's rmse: 0.025472 [1813] valid_0's rmse: 0.0254719 [1814] valid_0's rmse: 0.0254712 [1815] valid_0's rmse: 0.0254712 [1816] valid_0's rmse: 0.0254708 [1817] valid_0's rmse: 0.0254711 [1818] valid_0's rmse: 0.0254701 [1819] valid_0's rmse: 0.0254683 [1820] valid_0's rmse: 0.0254685 [1821] valid_0's rmse: 0.0254685 [1822] valid_0's rmse: 0.0254687 [1823] valid_0's rmse: 0.0254688 [1824] valid_0's rmse: 0.0254686 [1825] valid_0's rmse: 0.0254686 [1826] valid_0's rmse: 0.0254685 [1827] valid_0's rmse: 0.0254681 [1828] valid_0's rmse: 0.0254681 [1829] valid_0's rmse: 0.025468 [1830] valid_0's rmse: 0.0254683 [1831] valid_0's rmse: 0.025464 [1832] valid_0's rmse: 0.0254641 [1833] valid_0's rmse: 0.0254636 [1834] valid_0's rmse: 0.0254633 [1835] valid_0's rmse: 0.0254625 [1836] valid_0's rmse: 0.0254622 [1837] valid_0's rmse: 0.0254617 [1838] valid_0's rmse: 0.0254617 [1839] valid_0's rmse: 0.0254609 [1840] valid_0's rmse: 0.025452 [1841] valid_0's rmse: 0.0254516 [1842] valid_0's rmse: 0.0254517 [1843] valid_0's rmse: 0.0254523 [1844] valid_0's rmse: 0.0254516 [1845] valid_0's rmse: 0.0254519 [1846] valid_0's rmse: 0.0254519 [1847] valid_0's rmse: 0.0254506 [1848] valid_0's rmse: 0.0254508 [1849] valid_0's rmse: 0.0254503 [1850] valid_0's rmse: 0.0254484 [1851] valid_0's rmse: 0.0254485 [1852] valid_0's rmse: 0.0254486 [1853] valid_0's rmse: 0.0254492 [1854] valid_0's rmse: 0.0254493 [1855] valid_0's rmse: 0.0254488 [1856] valid_0's rmse: 0.0254492 [1857] valid_0's rmse: 0.0254538 [1858] valid_0's rmse: 0.0254541 [1859] valid_0's rmse: 0.0254591 [1860] valid_0's rmse: 0.0254593 [1861] valid_0's rmse: 0.0254593 [1862] valid_0's rmse: 0.0254589 [1863] valid_0's rmse: 0.0254589 [1864] valid_0's rmse: 0.0254596 [1865] valid_0's rmse: 0.0254593 [1866] valid_0's rmse: 0.02546 [1867] valid_0's rmse: 0.0254596 [1868] valid_0's rmse: 0.0254609 [1869] valid_0's rmse: 0.0254586 [1870] valid_0's rmse: 0.0254583 [1871] valid_0's rmse: 0.0254584 [1872] valid_0's rmse: 0.0254582 [1873] valid_0's rmse: 0.025458 [1874] valid_0's rmse: 0.0254559 [1875] valid_0's rmse: 0.0254556 [1876] valid_0's rmse: 0.0254552 [1877] valid_0's rmse: 0.0254551 [1878] valid_0's rmse: 0.0254557 [1879] valid_0's rmse: 0.0254539 [1880] valid_0's rmse: 0.0254533 [1881] valid_0's rmse: 0.0254524 [1882] valid_0's rmse: 0.0254525 [1883] valid_0's rmse: 0.0254542 [1884] valid_0's rmse: 0.0254548 [1885] valid_0's rmse: 0.0254539 [1886] valid_0's rmse: 0.0254536 [1887] valid_0's rmse: 0.0254537 [1888] valid_0's rmse: 0.0254532 [1889] valid_0's rmse: 0.0254555 [1890] valid_0's rmse: 0.0254548 [1891] valid_0's rmse: 0.0254549 [1892] valid_0's rmse: 0.0254548 [1893] valid_0's rmse: 0.0254545 [1894] valid_0's rmse: 0.0254543 [1895] valid_0's rmse: 0.0254553 [1896] valid_0's rmse: 0.0254551 [1897] valid_0's rmse: 0.0254553 [1898] valid_0's rmse: 0.0254557 [1899] valid_0's rmse: 0.0254553 [1900] valid_0's rmse: 0.0254554 [1901] valid_0's rmse: 0.025455 [1902] valid_0's rmse: 0.0254548 [1903] valid_0's rmse: 0.0254559 [1904] valid_0's rmse: 0.025455 [1905] valid_0's rmse: 0.0254548 [1906] valid_0's rmse: 0.0254548 [1907] valid_0's rmse: 0.025454 [1908] valid_0's rmse: 0.0254535 [1909] valid_0's rmse: 0.0254534 [1910] valid_0's rmse: 0.0254536 [1911] valid_0's rmse: 0.0254536 [1912] valid_0's rmse: 0.0254531 [1913] valid_0's rmse: 0.0254532 [1914] valid_0's rmse: 0.0254535 [1915] valid_0's rmse: 0.0254525 [1916] valid_0's rmse: 0.025452 [1917] valid_0's rmse: 0.0254519 [1918] valid_0's rmse: 0.0254518 [1919] valid_0's rmse: 0.0254515 [1920] valid_0's rmse: 0.0254513 [1921] valid_0's rmse: 0.0254524 [1922] valid_0's rmse: 0.0254529 [1923] valid_0's rmse: 0.0254551 [1924] valid_0's rmse: 0.0254534 [1925] valid_0's rmse: 0.0254535 [1926] valid_0's rmse: 0.0254536 [1927] valid_0's rmse: 0.0254536 [1928] valid_0's rmse: 0.0254538 [1929] valid_0's rmse: 0.0254538 [1930] valid_0's rmse: 0.0254529 [1931] valid_0's rmse: 0.0254529 [1932] valid_0's rmse: 0.0254527 [1933] valid_0's rmse: 0.0254525 [1934] valid_0's rmse: 0.0254524 [1935] valid_0's rmse: 0.0254518 [1936] valid_0's rmse: 0.0254518 [1937] valid_0's rmse: 0.0254518 [1938] valid_0's rmse: 0.0254512 [1939] valid_0's rmse: 0.0254511 [1940] valid_0's rmse: 0.0254517 [1941] valid_0's rmse: 0.0254514 [1942] valid_0's rmse: 0.0254517 [1943] valid_0's rmse: 0.0254503 [1944] valid_0's rmse: 0.0254474 [1945] valid_0's rmse: 0.0254471 [1946] valid_0's rmse: 0.0254472 [1947] valid_0's rmse: 0.0254473 [1948] valid_0's rmse: 0.0254469 [1949] valid_0's rmse: 0.0254462 [1950] valid_0's rmse: 0.0254464 [1951] valid_0's rmse: 0.025446 [1952] valid_0's rmse: 0.025446 [1953] valid_0's rmse: 0.0254422 [1954] valid_0's rmse: 0.0254356 [1955] valid_0's rmse: 0.0254358 [1956] valid_0's rmse: 0.0254357 [1957] valid_0's rmse: 0.0254344 [1958] valid_0's rmse: 0.0254348 [1959] valid_0's rmse: 0.0254348 [1960] valid_0's rmse: 0.0254347 [1961] valid_0's rmse: 0.0254346 [1962] valid_0's rmse: 0.0254346 [1963] valid_0's rmse: 0.0254344 [1964] valid_0's rmse: 0.0254341 [1965] valid_0's rmse: 0.0254337 [1966] valid_0's rmse: 0.0254337 [1967] valid_0's rmse: 0.0254335 [1968] valid_0's rmse: 0.0254336 [1969] valid_0's rmse: 0.0254336 [1970] valid_0's rmse: 0.0254333 [1971] valid_0's rmse: 0.0254335 [1972] valid_0's rmse: 0.0254333 [1973] valid_0's rmse: 0.0254328 [1974] valid_0's rmse: 0.0254329 [1975] valid_0's rmse: 0.0254329 [1976] valid_0's rmse: 0.0254334 [1977] valid_0's rmse: 0.0254333 [1978] valid_0's rmse: 0.0254336 [1979] valid_0's rmse: 0.0254342 [1980] valid_0's rmse: 0.0254343 [1981] valid_0's rmse: 0.0254338 [1982] valid_0's rmse: 0.0254341 [1983] valid_0's rmse: 0.0254341 [1984] valid_0's rmse: 0.0254343 [1985] valid_0's rmse: 0.0254342 [1986] valid_0's rmse: 0.0254341 [1987] valid_0's rmse: 0.0254347 [1988] valid_0's rmse: 0.025435 [1989] valid_0's rmse: 0.0254349 [1990] valid_0's rmse: 0.0254338 [1991] valid_0's rmse: 0.0254339 [1992] valid_0's rmse: 0.0254342 [1993] valid_0's rmse: 0.0254341 [1994] valid_0's rmse: 0.0254341 [1995] valid_0's rmse: 0.0254339 [1996] valid_0's rmse: 0.0254349 [1997] valid_0's rmse: 0.025434 [1998] valid_0's rmse: 0.0254327 [1999] valid_0's rmse: 0.0254326 [2000] valid_0's rmse: 0.025432 Did not meet early stopping. Best iteration is: [2000] valid_0's rmse: 0.025432
In [23]:
y_pred = gbm.predict(X_test) y_true = Y_test.values
In [24]:
MSE = mean_squared_error(y_true, y_pred) RMSE = np.sqrt(mean_squared_error(y_true, y_pred)) MAE = mean_absolute_error(y_true, y_pred) MAPE = mean_absolute_percentage_error(y_true, y_pred) R_2 = r2_score(y_true, y_pred) print('MSE:', format(MSE, '.1E')) print('RMSE:', round(RMSE, 3)) print('MAE:', round(MAE, 3)) print('MAPE:', round(MAPE*100, 2), '%') print('R_2:', round(R_2, 3)) #R方为负就说明拟合效果比平均值差a
MSE: 3.7E-04 RMSE: 0.019 MAE: 0.013 MAPE: 2.64 % R_2: 0.93
In [25]:
dtrain = xgb.DMatrix(X_train, Y_train) dvalid = xgb.DMatrix(X_valid, Y_valid) dtest = xgb.DMatrix(X_test, Y_test)
In [102]:
from sklearn.model_selection import cross_val_score from xgboost import XGBRegressor from bayes_opt import BayesianOptimization
In [103]:
def xgb_cv(max_depth, learning_rate, n_estimators, min_child_weight, subsample, colsample_bytree, reg_alpha, gamma): val = cross_val_score(estimator=XGBRegressor(max_depth=int(max_depth), learning_rate=learning_rate, n_estimators=int(n_estimators), min_child_weight=min_child_weight, subsample=max(min(subsample, 1), 0), colsample_bytree=max(min(colsample_bytree, 1), 0), reg_alpha=max(reg_alpha, 0), gamma=gamma, objective='reg:squarederror', booster='gbtree', seed=666), X=use_data[feature_cols], y=use_data.values[:1], scoring='r2', cv=10).max() return val
In [104]:
xgb_bo = BayesianOptimization(xgb_cv, pbounds={'max_depth': (20, 60), 'learning_rate': (0.005, 0.1), 'n_estimators': (100, 2000), 'min_child_weight': (0, 30), 'subsample': (0.05, 1), 'colsample_bytree': (0.1, 1), 'reg_alpha': (0.001, 10), 'gamma': (0.001, 10)}) xgb_bo.maximize(n_iter=100, init_points=10)
| iter | target | colsam... | gamma | learni... | max_depth | min_ch... | n_esti... | reg_alpha | subsample | -------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_17148\1576227182.py in <module> 7 'reg_alpha': (0.001, 10), 8 'gamma': (0.001, 10)}) ----> 9 xgb_bo.maximize(n_iter=100, init_points=10) D:\miniconda3\envs\py37\lib\site-packages\bayes_opt\bayesian_optimization.py in maximize(self, init_points, n_iter, acquisition_function, acq, kappa, kappa_decay, kappa_decay_delay, xi, **gp_params) 309 x_probe = self.suggest(util) 310 iteration += 1 --> 311 self.probe(x_probe, lazy=False) 312 313 if self._bounds_transformer and iteration > 0: D:\miniconda3\envs\py37\lib\site-packages\bayes_opt\bayesian_optimization.py in probe(self, params, lazy) 206 self._queue.add(params) 207 else: --> 208 self._space.probe(params) 209 self.dispatch(Events.OPTIMIZATION_STEP) 210 D:\miniconda3\envs\py37\lib\site-packages\bayes_opt\target_space.py in probe(self, params) 234 x = self._as_array(params) 235 params = dict(zip(self._keys, x)) --> 236 target = self.target_func(**params) 237 238 if self._constraint is None: ~\AppData\Local\Temp\ipykernel_17148\2288155185.py in xgb_cv(max_depth, learning_rate, n_estimators, min_child_weight, subsample, colsample_bytree, reg_alpha, gamma) 9 booster='gbtree', 10 seed=666), X=use_data[feature_cols], y=use_data.values[:1], scoring='r2', ---> 11 cv=10).max() 12 return val D:\miniconda3\envs\py37\lib\site-packages\sklearn\model_selection\_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_score) 518 fit_params=fit_params, 519 pre_dispatch=pre_dispatch, --> 520 error_score=error_score, 521 ) 522 return cv_results["test_score"] D:\miniconda3\envs\py37\lib\site-packages\sklearn\model_selection\_validation.py in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score) 251 252 """ --> 253 X, y, groups = indexable(X, y, groups) 254 255 cv = check_cv(cv, y, classifier=is_classifier(estimator)) D:\miniconda3\envs\py37\lib\site-packages\sklearn\utils\validation.py in indexable(*iterables) 376 377 result = [_make_indexable(X) for X in iterables] --> 378 check_consistent_length(*result) 379 return result 380 D:\miniconda3\envs\py37\lib\site-packages\sklearn\utils\validation.py in check_consistent_length(*arrays) 332 raise ValueError( 333 "Found input variables with inconsistent numbers of samples: %r" --> 334 % [int(l) for l in lengths] 335 ) 336 ValueError: Found input variables with inconsistent numbers of samples: [3080, 1]
In [105]:
params_xgb = {'objective': 'reg:squarederror', 'booster': 'gbtree', 'eta': 0.037, 'max_depth': 30, 'subsample': 1.0, 'colsample_bytree': 0.47, 'min_child_weight': 30, 'seed': 42} num_boost_round = 2000 dtrain = xgb.DMatrix(X_train, Y_train) dvalid = xgb.DMatrix(X_valid, Y_valid) watchlist = [(dtrain, 'train'), (dvalid, 'eval')] gb_model = xgb.train(params_xgb, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=100, verbose_eval=False)
In [106]:
y_pred_xgb = np.expm1(gb_model.predict(xgb.DMatrix(X_test))) y_true_xgb = np.expm1(Y_test.values)
In [107]:
MSE = mean_squared_error(y_true_xgb, y_pred_xgb) RMSE = np.sqrt(mean_squared_error(y_true_xgb, y_pred_xgb)) MAE = mean_absolute_error(y_true_xgb, y_pred_xgb) MAPE = mean_absolute_percentage_error(y_true_xgb, y_pred_xgb) R_2 = r2_score(y_true_xgb, y_pred_xgb) print('MSE:', format(MSE, '.1E')) print('RMSE:', round(RMSE, 3)) print('MAE:', round(MAE, 3)) print('MAPE:', round(MAPE*100, 2), '%') print('R_2:', round(R_2, 3)) #R方为负就说明拟合效果比平均值差a
MSE: 1.1E-05 RMSE: 0.003 MAE: 0.002 MAPE: 2.99 % R_2: 0.88
In [108]:
kf = KFold(n_splits=10, shuffle=True, random_state=42)
In [109]:
eva_list = list() for (train_index, test_index) in kf.split(use_data): train = use_data.loc[train_index] test = use_data.loc[test_index] train, valid = train_test_split(train, test_size=0.15, random_state=42) X_train, Y_train = train[feature_cols], train[target_cols[1]] X_valid, Y_valid = valid[feature_cols], valid[target_cols[1]] X_test, Y_test = test[feature_cols], test[target_cols[1]] dtrain = xgb.DMatrix(X_train, Y_train) dvalid = xgb.DMatrix(X_valid, Y_valid) watchlist = [(dvalid, 'eval')] gb_model = xgb.train(params_xgb, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=100, verbose_eval=False) y_pred = gb_model.predict(xgb.DMatrix(X_test)) y_true = Y_test.values MSE = mean_squared_error(y_true, y_pred) RMSE = np.sqrt(mean_squared_error(y_true, y_pred)) MAE = mean_absolute_error(y_true, y_pred) MAPE = mean_absolute_percentage_error(y_true, y_pred) R_2 = r2_score(y_true, y_pred) print('MSE:', format(MSE, '.1E'), end=', ') print('RMSE:', round(RMSE, 3), end=', ') print('MAE:', round(MAE, 3), end=', ') print('MAPE:', round(MAPE*100, 2), '%', end=', ') print('R_2:', round(R_2, 3)) #R方为负就说明拟合效果比平均值差 eva_list.append([MSE, RMSE, MAE, MAPE, R_2])
MSE: 1.8E-05, RMSE: 0.004, MAE: 0.002, MAPE: 3.47 %, R_2: 0.776 MSE: 1.8E-05, RMSE: 0.004, MAE: 0.002, MAPE: 3.19 %, R_2: 0.83 MSE: 1.8E-05, RMSE: 0.004, MAE: 0.002, MAPE: 3.87 %, R_2: 0.811 MSE: 1.2E-05, RMSE: 0.003, MAE: 0.002, MAPE: 2.96 %, R_2: 0.861 MSE: 1.9E-05, RMSE: 0.004, MAE: 0.002, MAPE: 3.65 %, R_2: 0.775 MSE: 1.9E-05, RMSE: 0.004, MAE: 0.002, MAPE: 3.56 %, R_2: 0.789 MSE: 2.3E-05, RMSE: 0.005, MAE: 0.002, MAPE: 3.05 %, R_2: 0.723 MSE: 2.5E-05, RMSE: 0.005, MAE: 0.002, MAPE: 3.94 %, R_2: 0.717 MSE: 1.0E-05, RMSE: 0.003, MAE: 0.002, MAPE: 2.9 %, R_2: 0.864 MSE: 9.4E-06, RMSE: 0.003, MAE: 0.002, MAPE: 2.89 %, R_2: 0.881
In [110]:
record = pd.DataFrame.from_records(eva_list, columns=['MSE', 'RMSE', 'MAE', 'MAPE', 'R2'])
In [120]:
record
Out[120]:
MSE | RMSE | MAE | MAPE | R2 | |
---|---|---|---|---|---|
0 | 0.000018 | 0.004221 | 0.002394 | 0.034705 | 0.775560 |
1 | 0.000018 | 0.004191 | 0.002405 | 0.031921 | 0.829931 |
2 | 0.000018 | 0.004249 | 0.002235 | 0.038677 | 0.810649 |
3 | 0.000012 | 0.003395 | 0.002090 | 0.029607 | 0.861337 |
4 | 0.000019 | 0.004334 | 0.002302 | 0.036496 | 0.775066 |
5 | 0.000019 | 0.004367 | 0.002260 | 0.035588 | 0.789063 |
6 | 0.000023 | 0.004806 | 0.002272 | 0.030522 | 0.723082 |
7 | 0.000025 | 0.004968 | 0.002401 | 0.039428 | 0.717094 |
8 | 0.000010 | 0.003207 | 0.002037 | 0.029033 | 0.863679 |
9 | 0.000009 | 0.003072 | 0.002008 | 0.028871 | 0.880821 |
In [124]:
Out[124]:
MSE | RMSE | MAE | MAPE | R2 | |
---|---|---|---|---|---|
8 | 0.00001 | 0.003207 | 0.002037 | 0.029033 | 0.863679 |
In [126]:
index = [0, 1, 2, 3, 4, 5, 6, 8]
In [128]:
record.loc[index].mean()
Out[128]:
MSE 0.000017 RMSE 0.004096 MAE 0.002249 MAPE 0.033319 R2 0.803546 dtype: float64
In [63]:
record.mean()
Out[63]:
MSE 0.000552 RMSE 0.022978 MAE 0.014251 MAPE 0.034105 R2 0.896138 dtype: float64
In [57]:
import matplotlib.pyplot as plt #新增加的两行 from pylab import mpl # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] mpl.rcParams["axes.unicode_minus"] = False
In [58]:
plt.figure(figsize=(16, 10)) plt.plot(range(len(y_true)), y_true, 'o-', label='真实值') plt.plot(range(len(y_pred)), y_pred, '*-', label='预测值') plt.legend(loc='best') plt.title('预测结果') plt.savefig('./figure/CO2排放强度预测结果.png')
In [59]:
pd.DataFrame.from_records([y_pred, y_true]).T.to_csv('pred.csv')
In [60]:
rst = pd.DataFrame.from_records(([y_true_xgb, y_pred_xgb])).T rst.columns = ['y_true', 'y_pred']
In [61]:
rst['mAP'] = abs(rst.y_pred - rst.y_true) / rst.y_true
In [62]:
rst.sort_values(by='mAP').sample(10)
Out[62]:
y_true | y_pred | mAP | |
---|---|---|---|
23 | 0.233161 | 0.228589 | 0.019609 |
46 | 0.242031 | 0.260373 | 0.075782 |
42 | 0.233845 | 0.215675 | 0.077700 |
1 | 0.233773 | 0.237715 | 0.016864 |
58 | 0.258407 | 0.259042 | 0.002460 |
41 | 0.233404 | 0.246465 | 0.055956 |
15 | 0.249245 | 0.248289 | 0.003837 |
63 | 0.237670 | 0.284324 | 0.196296 |
59 | 0.244008 | 0.242001 | 0.008228 |
37 | 0.252681 | 0.251169 | 0.005983 |
In [63]:
plt.figure(figsize=(16, 10)) plt.plot(range(len(y_true_xgb)), y_true_xgb, 'o-', label='真实值') plt.plot(range(len(y_pred_xgb)), y_pred_xgb, '*-', label='预测值') plt.legend(loc='best') plt.title('预测结果') plt.savefig('./figure/CO2排放强度预测结果.png')
煤种标准化工程¶
In [73]:
new_values = total_data.groupby(['煤种', '入炉煤低位热值_new', '燃煤挥发份Var_new', '燃煤灰份Aar_new']).CO2_em_air.mean()
In [74]:
coal_df = new_values.reset_index().drop(columns='CO2_em_air') coal_df
Out[74]:
煤种 | 入炉煤低位热值_new | 燃煤挥发份Var_new | 燃煤灰份Aar_new | |
---|---|---|---|---|
0 | 无烟煤 | 17050.00 | 6.51 | 31.330000 |
1 | 无烟煤 | 18440.00 | 9.13 | 21.240189 |
2 | 无烟煤 | 19335.65 | 7.06 | 21.400000 |
3 | 无烟煤 | 20125.07 | 5.70 | 29.850000 |
4 | 无烟煤 | 20463.30 | 5.70 | 29.790000 |
... | ... | ... | ... | ... |
622 | 贫煤 | 21772.91 | 10.66 | 26.320000 |
623 | 贫煤 | 21907.00 | 10.64 | 28.100000 |
624 | 贫煤 | 22042.72 | 12.96 | 25.690000 |
625 | 贫煤 | 23215.00 | 11.00 | 19.310000 |
626 | 贫煤 | 23791.00 | 11.00 | 19.310000 |
627 rows × 4 columns
In [75]:
coal_params_dict = dict() for coal_type in coal_df['煤种'].unique().tolist(): options = coal_df[coal_df['煤种']==coal_type][['入炉煤低位热值_new', '燃煤挥发份Var_new', '燃煤灰份Aar_new']].values coal_params_dict[coal_type] = options
In [76]:
coal_params_dict
Out[76]:
{'无烟煤': array([[1.70500000e+04, 6.51000000e+00, 3.13300000e+01], [1.84400000e+04, 9.13000000e+00, 2.12401894e+01], [1.93356500e+04, 7.06000000e+00, 2.14000000e+01], [2.01250700e+04, 5.70000000e+00, 2.98500000e+01], [2.04633000e+04, 5.70000000e+00, 2.97900000e+01]]), '烟煤': array([[1.277100e+04, 2.126000e+01, 3.355000e+01], [1.500000e+04, 2.346000e+01, 1.904000e+01], [1.610000e+04, 2.333000e+01, 1.873000e+01], ..., [2.348751e+04, 2.927000e+01, 2.097000e+01], [2.365000e+04, 2.887000e+01, 7.910000e+00], [2.365614e+04, 2.927000e+01, 2.097000e+01]]), '褐煤': array([[1.059800e+04, 2.476000e+01, 2.179000e+01], [1.129000e+04, 4.764000e+01, 3.079000e+01], [1.160400e+04, 4.758000e+01, 3.025000e+01], [1.172435e+04, 4.601000e+01, 3.673000e+01], [1.203000e+04, 4.726000e+01, 3.119000e+01], [1.213546e+04, 4.642000e+01, 1.113000e+01], [1.217290e+04, 4.642000e+01, 1.113000e+01], [1.219256e+04, 4.642000e+01, 1.113000e+01], [1.221131e+04, 4.642000e+01, 1.113000e+01], [1.230939e+04, 4.642000e+01, 1.113000e+01], [1.233780e+04, 4.642000e+01, 1.113000e+01], [1.267400e+04, 4.324000e+01, 1.237000e+01], [1.278700e+04, 4.884000e+01, 4.117000e+01], [1.295100e+04, 2.228000e+01, 1.287000e+01], [1.299880e+04, 2.256000e+01, 1.716000e+01], [1.311100e+04, 2.367000e+01, 2.107000e+01], [1.313000e+04, 2.417000e+01, 1.630000e+01], [1.318000e+04, 2.445000e+01, 1.794000e+01], [1.320830e+04, 2.451000e+01, 1.429000e+01], [1.325722e+04, 1.703000e+01, 3.660000e+01], [1.327000e+04, 3.204000e+01, 1.709000e+01], [1.327300e+04, 2.364000e+01, 1.622000e+01], [1.327300e+04, 2.458000e+01, 1.261000e+01], [1.332771e+04, 4.090000e+01, 2.507000e+01], [1.333064e+04, 1.680000e+01, 3.741000e+01], [1.335883e+04, 2.301000e+01, 1.841000e+01], [1.336864e+04, 2.301000e+01, 1.841000e+01], [1.343787e+04, 2.336000e+01, 1.705000e+01], [1.344000e+04, 4.782000e+01, 2.290000e+01], [1.345749e+04, 2.388000e+01, 1.652000e+01], [1.357000e+04, 1.799000e+01, 2.177000e+01], [1.364000e+04, 2.526000e+01, 2.108000e+01], [1.365410e+04, 2.232000e+01, 1.171000e+01], [1.369000e+04, 4.771000e+01, 2.205000e+01], [1.382000e+04, 2.420000e+01, 1.104000e+01], [1.389597e+04, 2.232000e+01, 1.171000e+01], [1.390000e+04, 3.683000e+01, 4.441000e+01], [1.395400e+04, 2.310000e+01, 1.011000e+01], [1.396000e+04, 4.665000e+01, 1.890000e+01], [1.400000e+04, 4.520000e+01, 1.364000e+01], [1.404100e+04, 2.346000e+01, 1.046000e+01], [1.410900e+04, 4.520000e+01, 1.364000e+01], [1.412200e+04, 2.478000e+01, 1.916000e+01], [1.419900e+04, 4.733000e+01, 1.697000e+01], [1.433937e+04, 2.476000e+01, 3.371000e+01], [1.440000e+04, 2.589000e+01, 1.643000e+01], [1.442729e+04, 4.474000e+01, 1.193000e+01], [1.446814e+04, 2.484000e+01, 3.331000e+01], [1.448810e+04, 3.554000e+01, 1.171000e+01], [1.458200e+04, 2.834000e+01, 2.320000e+01], [1.460000e+04, 2.714000e+01, 4.346000e+01], [1.462400e+04, 4.613000e+01, 2.700000e+01], [1.463500e+04, 4.613000e+01, 2.700000e+01], [1.464000e+04, 4.439000e+01, 1.684000e+01], [1.470100e+04, 2.210000e+01, 4.588000e+01], [1.481078e+04, 4.501000e+01, 1.325000e+01], [1.489878e+04, 2.386000e+01, 3.161000e+01], [1.507938e+04, 4.501000e+01, 1.325000e+01], [1.512117e+04, 2.355000e+01, 1.472000e+01], [1.517400e+04, 3.126000e+01, 1.696000e+01], [1.523800e+04, 2.492000e+01, 2.378000e+01], [1.524041e+04, 2.355000e+01, 1.472000e+01], [1.528927e+04, 2.345000e+01, 1.554000e+01], [1.534700e+04, 2.492000e+01, 2.378000e+01], [1.536708e+04, 4.501000e+01, 8.590000e+00], [1.540000e+04, 2.450000e+01, 2.085000e+01], [1.560165e+04, 2.345000e+01, 1.554000e+01], [1.562100e+04, 4.409000e+01, 1.019000e+01], [1.568455e+04, 1.865000e+01, 3.545000e+01], [1.599544e+04, 1.865000e+01, 3.545000e+01], [1.619823e+04, 2.032000e+01, 3.297000e+01], [1.619823e+04, 2.075000e+01, 3.310000e+01], [1.619951e+04, 1.790000e+01, 3.976000e+01], [1.620200e+04, 1.268000e+01, 4.012000e+01], [1.638000e+04, 2.264000e+01, 2.024000e+01], [1.644918e+04, 2.061000e+01, 3.224000e+01], [1.644918e+04, 2.087000e+01, 3.238000e+01], [1.660450e+04, 3.484000e+01, 9.590000e+00], [1.662400e+04, 1.287000e+01, 3.909000e+01], [1.667800e+04, 1.320000e+01, 3.884000e+01], [1.701000e+04, 2.721000e+01, 4.295000e+01], [1.711359e+04, 3.560000e+01, 9.440000e+00], [1.721702e+04, 3.266000e+01, 6.030000e+00], [1.732699e+04, 3.266000e+01, 6.030000e+00], [1.769205e+04, 3.632000e+01, 8.880000e+00], [1.783200e+04, 3.564000e+01, 2.418000e+01], [1.792600e+04, 3.563000e+01, 2.488000e+01], [1.802919e+04, 3.526000e+01, 7.680000e+00], [1.811583e+04, 3.348000e+01, 1.236000e+01], [1.815944e+04, 3.348000e+01, 1.236000e+01], [1.834900e+04, 3.542000e+01, 1.152000e+01], [1.862400e+04, 3.951000e+01, 1.937000e+01], [1.877383e+04, 2.676000e+01, 3.448000e+01], [1.877602e+04, 2.676000e+01, 3.448000e+01], [1.882100e+04, 2.678000e+01, 3.445000e+01], [1.884200e+04, 2.685000e+01, 3.451000e+01], [1.896000e+04, 3.951000e+01, 1.937000e+01], [1.903900e+04, 2.580000e+01, 2.420000e+01], [1.908760e+04, 3.426000e+01, 4.580000e+00], [1.918000e+04, 2.670000e+01, 2.480000e+01], [1.922827e+04, 3.426000e+01, 4.580000e+00], [1.924675e+04, 3.243000e+01, 7.700000e+00], [1.927600e+04, 3.200000e+01, 7.700000e+00], [1.959900e+04, 3.514000e+01, 1.065000e+01], [1.964010e+04, 3.446000e+01, 4.600000e+00], [1.965200e+04, 2.990000e+01, 2.406000e+01], [1.974233e+04, 3.422000e+01, 2.892000e+01], [1.976235e+04, 3.414000e+01, 2.934000e+01], [1.977612e+04, 3.446000e+01, 4.600000e+00], [1.993700e+04, 3.514000e+01, 1.065000e+01], [1.997000e+04, 3.533000e+01, 9.050000e+00], [2.003000e+04, 3.948000e+01, 3.080000e+01], [2.006000e+04, 3.911000e+01, 3.080000e+01], [2.011300e+04, 2.560000e+01, 2.312000e+01], [2.017338e+04, 2.979000e+01, 1.814000e+01], [2.025484e+04, 2.979000e+01, 1.814000e+01], [2.028500e+04, 3.009000e+01, 1.125000e+01], [2.057100e+04, 3.147000e+01, 2.478000e+01], [2.062600e+04, 2.627000e+01, 2.050000e+01], [2.066423e+04, 2.752000e+01, 2.014000e+01], [2.067360e+04, 2.840000e+01, 2.165000e+01], [2.068200e+04, 2.960000e+01, 1.603000e+01], [2.068600e+04, 3.124000e+01, 2.445000e+01], [2.070300e+04, 3.000000e+01, 1.125000e+01], [2.073600e+04, 2.627000e+01, 2.050000e+01], [2.075090e+04, 2.780000e+01, 2.254000e+01], [2.076000e+04, 2.977000e+01, 1.291000e+01], [2.078500e+04, 3.871000e+01, 1.575000e+01], [2.083648e+04, 2.780000e+01, 2.254000e+01], [2.089200e+04, 3.252000e+01, 9.680000e+00], [2.089200e+04, 3.255000e+01, 9.380000e+00], [2.089200e+04, 3.262000e+01, 1.026000e+01], [2.089200e+04, 3.324000e+01, 8.560000e+00], [2.090000e+04, 3.100000e+01, 1.981000e+01], [2.093990e+04, 2.840000e+01, 2.165000e+01], [2.094100e+04, 2.977000e+01, 1.291000e+01], [2.094900e+04, 3.100000e+01, 2.007000e+01], [2.107400e+04, 3.830000e+01, 1.525000e+01], [2.110000e+04, 2.470000e+01, 2.599000e+01], [2.114300e+04, 2.580000e+01, 2.196000e+01], [2.114300e+04, 2.580000e+01, 2.197000e+01], [2.121740e+04, 3.279000e+01, 1.334000e+01], [2.127156e+04, 3.844000e+01, 1.186000e+01], [2.134680e+04, 3.885000e+01, 1.243000e+01], [2.137900e+04, 2.944000e+01, 1.436000e+01], [2.147400e+04, 2.944000e+01, 1.436000e+01], [2.166129e+04, 3.124000e+01, 1.849000e+01], [2.176000e+04, 3.213000e+01, 1.785000e+01], [2.208167e+04, 3.176000e+01, 1.816000e+01], [2.214783e+04, 3.736000e+01, 1.390000e+01], [2.219619e+04, 3.736000e+01, 1.390000e+01], [2.240000e+04, 3.052000e+01, 1.785000e+01], [2.248200e+04, 3.010000e+01, 1.125000e+01], [2.261900e+04, 3.047000e+01, 1.303000e+01], [2.274200e+04, 3.028000e+01, 1.057000e+01]]), '贫煤': array([[1.695900e+04, 9.310000e+00, 4.477000e+01], [1.742404e+04, 1.058000e+01, 2.268000e+01], [1.742931e+04, 7.900000e+00, 3.840000e+01], [1.799800e+04, 1.175000e+01, 2.981000e+01], [1.875700e+04, 1.185000e+01, 3.122000e+01], [1.912518e+04, 7.810000e+00, 3.145000e+01], [1.928076e+04, 7.930000e+00, 3.137000e+01], [1.935228e+04, 1.119000e+01, 3.202000e+01], [1.938269e+04, 1.127000e+01, 3.192000e+01], [1.983535e+04, 1.152000e+01, 3.052000e+01], [1.986900e+04, 1.161000e+01, 3.042000e+01], [1.994000e+04, 9.370000e+00, 3.426000e+01], [1.994300e+04, 9.370000e+00, 3.426000e+01], [2.003700e+04, 1.125000e+01, 3.067000e+01], [2.024590e+04, 1.058000e+01, 2.654000e+01], [2.028730e+04, 1.120000e+01, 2.698000e+01], [2.031000e+04, 1.123000e+01, 3.357000e+01], [2.031700e+04, 1.125000e+01, 3.067000e+01], [2.036000e+04, 9.450000e+00, 3.077000e+01], [2.057000e+04, 1.185000e+01, 2.786000e+01], [2.075500e+04, 1.174000e+01, 2.817000e+01], [2.086230e+04, 1.040000e+01, 2.583000e+01], [2.092670e+04, 9.510000e+00, 2.515000e+01], [2.096500e+04, 1.258000e+01, 2.965000e+01], [2.097590e+04, 1.017000e+01, 2.491000e+01], [2.098100e+04, 1.258000e+01, 2.965000e+01], [2.101000e+04, 1.209000e+01, 2.169000e+01], [2.101980e+04, 9.410000e+00, 2.489000e+01], [2.103908e+04, 7.010000e+00, 2.714000e+01], [2.105200e+04, 1.074000e+01, 3.136000e+01], [2.106690e+04, 1.034000e+01, 2.481000e+01], [2.107710e+04, 1.017000e+01, 2.478000e+01], [2.110900e+04, 7.670000e+00, 2.597000e+01], [2.110900e+04, 1.209000e+01, 2.169000e+01], [2.119000e+04, 7.170000e+00, 2.591000e+01], [2.119400e+04, 7.190000e+00, 2.597000e+01], [2.119433e+04, 7.010000e+00, 2.667000e+01], [2.122400e+04, 1.256000e+01, 2.636000e+01], [2.126600e+04, 7.260000e+00, 2.567000e+01], [2.126900e+04, 1.174000e+01, 2.817000e+01], [2.157900e+04, 1.189000e+01, 2.689000e+01], [2.174500e+04, 1.074000e+01, 2.850000e+01], [2.176688e+04, 1.062000e+01, 2.687000e+01], [2.177291e+04, 1.066000e+01, 2.632000e+01], [2.190700e+04, 1.064000e+01, 2.810000e+01], [2.204272e+04, 1.296000e+01, 2.569000e+01], [2.321500e+04, 1.100000e+01, 1.931000e+01], [2.379100e+04, 1.100000e+01, 1.931000e+01]])}
In [77]:
total_data
Out[77]:
地区 | 所属集团 | 投产时间 | 机组容量 | 机组类型 | 参数分类 | 冷却方式 | 锅炉类型 | 时间 | 发电量 | ... | 标煤量 | 出力系数 | 煤种 | 入炉煤低位热值 | 燃煤挥发份Var | 燃煤灰份Aar | CO2_em_air | 入炉煤低位热值_new | 燃煤挥发份Var_new | 燃煤灰份Aar_new | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 北京 | 华能 | 1998/1/20 0:00 | 165 | 供热式 | 超高压 | 水冷 | 煤粉 | 2016.0 | 51841.70000 | ... | 2.580497e+05 | 75.84 | 烟煤 | 23380.0 | 27.59 | 9.94 | 0.235066 | 23380.0 | 27.59 | 9.94 |
1 | 北京 | 华能 | 1998/1/20 0:00 | 165 | 供热式 | 超高压 | 水冷 | 煤粉 | 2016.0 | 47387.95000 | ... | 2.126813e+05 | 74.50 | 烟煤 | 23380.0 | 27.59 | 9.94 | 0.226207 | 23380.0 | 27.59 | 9.94 |
2 | 北京 | 华能 | 1998/12/20 0:00 | 220 | 供热式 | 超高压 | 水冷 | 煤粉 | 2016.0 | 115498.04000 | ... | 4.410925e+05 | 78.76 | 烟煤 | 23380.0 | 27.59 | 9.94 | 0.220954 | 23380.0 | 27.59 | 9.94 |
3 | 北京 | 华能 | 1999/6/26 0:00 | 220 | 供热式 | 超高压 | 水冷 | 煤粉 | 2016.0 | 120884.07000 | ... | 4.707218e+05 | 81.41 | 烟煤 | 23380.0 | 27.59 | 9.94 | 0.216298 | 23380.0 | 27.59 | 9.94 |
4 | 辽宁 | 大唐 | 2009/4/30 0:00 | 300 | 供热式 | 亚临界 | 水冷 | 煤粉 | 2016.0 | 111218.55000 | ... | 3.726990e+05 | 71.27 | 褐煤 | 14122.0 | 24.78 | 19.16 | 0.238755 | 14122.0 | 24.78 | 19.16 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
847 | 新疆 | NaN | NaN | 1320 | 纯凝式 | 超临界 | 间接空冷 | 煤粉 | NaN | 704381.26290 | ... | 2.283076e+06 | NaN | 褐煤 | 19970.0 | 35.33 | 9.05 | 0.196452 | 19970.0 | 35.33 | 9.05 |
848 | 辽宁 | NaN | NaN | 700 | 供热式 | 超临界 | 水冷 | 煤粉 | NaN | 350000.00000 | ... | 1.328747e+06 | NaN | 褐煤 | 14640.0 | 44.39 | 16.84 | 0.185688 | 14640.0 | 44.39 | 16.84 |
849 | 内蒙 | NaN | NaN | 700 | 供热式 | 超临界 | 直接空冷 | 煤粉 | NaN | 385000.00000 | ... | 1.362009e+06 | NaN | 褐煤 | 13960.0 | 46.65 | 18.90 | 0.181214 | 13960.0 | 46.65 | 18.90 |
850 | 山东 | NaN | NaN | 40 | 供热式 | 超高压 | 水冷 | 循环流化床 | NaN | 17000.00000 | ... | 1.810834e+05 | NaN | 烟煤 | 21060.0 | 19.12 | 20.27 | 0.347570 | 21060.0 | 19.12 | 20.27 |
851 | 浙江 | NaN | NaN | 70 | 供热式 | 超高压 | 水冷 | 循环流化床 | NaN | 35788.81469 | ... | 3.502535e+05 | NaN | 烟煤 | 22021.0 | 19.12 | 21.77 | 0.253057 | 22021.0 | 19.12 | 21.77 |
852 rows × 21 columns
In [78]:
new_use_data = total_data.groupby(use_col + ['煤种'])['CO2_em_air'].mean().reset_index().drop(columns=['入炉煤低位热值_new', '燃煤挥发份Var_new', '燃煤灰份Aar_new']) new_use_data.rename(columns={0:'CO2_em_air'}, inplace=True) new_use_data['coal_params'] = new_use_data['煤种'].apply(lambda x: coal_params_dict.get(x)) new_use_data.drop(columns='煤种', inplace=True)
In [79]:
new_data = new_use_data.explode(column='coal_params')
In [80]:
new_data.drop(columns=['CO2_em_air'])
Out[80]:
地区 | 机组类型 | 参数分类 | 冷却方式 | 锅炉类型 | 机组容量 | coal_params | |
---|---|---|---|---|---|---|---|
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | [12771.0, 21.26, 33.55] |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | [15000.0, 23.46, 19.04] |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | [16100.0, 23.33, 18.73] |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | [16190.0, 23.33, 18.73] |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | [16641.0, 19.13, 39.12] |
... | ... | ... | ... | ... | ... | ... | ... |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | [23253.68, 23.72, 18.45] |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | [23380.0, 27.59, 9.94] |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | [23487.51, 29.27, 20.97] |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | [23650.0, 28.87, 7.91] |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | [23656.14, 29.27, 20.97] |
208875 rows × 7 columns
In [81]:
norm_data = pd.concat([new_data, new_data.coal_params.apply(pd.Series, index=['入炉煤低位热值_new', '燃煤挥发份Var_new', '燃煤灰份Aar_new'])], axis=1).drop(columns='coal_params')
In [82]:
norm_data
Out[82]:
地区 | 机组类型 | 参数分类 | 冷却方式 | 锅炉类型 | 机组容量 | CO2_em_air | 入炉煤低位热值_new | 燃煤挥发份Var_new | 燃煤灰份Aar_new | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | 0.266602 | 12771.00 | 21.26 | 33.55 |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | 0.266602 | 15000.00 | 23.46 | 19.04 |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | 0.266602 | 16100.00 | 23.33 | 18.73 |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | 0.266602 | 16190.00 | 23.33 | 18.73 |
0 | 上海 | 纯凝式 | 亚临界 | 水冷 | 煤粉 | 320 | 0.266602 | 16641.00 | 19.13 | 39.12 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | 0.278763 | 23253.68 | 23.72 | 18.45 |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | 0.278763 | 23380.00 | 27.59 | 9.94 |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | 0.278763 | 23487.51 | 29.27 | 20.97 |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | 0.278763 | 23650.00 | 28.87 | 7.91 |
646 | 黑龙江 | 纯凝式 | 超高压 | 水冷 | 煤粉 | 210 | 0.278763 | 23656.14 | 29.27 | 20.97 |
208875 rows × 10 columns
In [83]:
for col in num_cols: norm_data[col] = np.log1p(norm_data[col]) # total_data[col] = (total_data[col] - total_data[col].min()) / (total_data[col].max() - total_data[col].min()) norm_data_dummy = pd.get_dummies(norm_data, columns=object_cols)
In [84]:
norm_data_dummy
Out[84]:
机组容量 | CO2_em_air | 入炉煤低位热值_new | 燃煤挥发份Var_new | 燃煤灰份Aar_new | 地区_上海 | 地区_云南 | 地区_内蒙 | 地区_北京 | 地区_吉林 | ... | 机组类型_纯凝式 | 参数分类_亚临界 | 参数分类_超临界 | 参数分类_超超临界 | 参数分类_超高压 | 冷却方式_水冷 | 冷却方式_直接空冷 | 冷却方式_间接空冷 | 锅炉类型_循环流化床 | 锅炉类型_煤粉 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5.771441 | 0.236338 | 9.455011 | 3.102791 | 3.542408 | 1 | 0 | 0 | 0 | 0 | ... | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 5.771441 | 0.236338 | 9.615872 | 3.197039 | 2.997730 | 1 | 0 | 0 | 0 | 0 | ... | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 5.771441 | 0.236338 | 9.686637 | 3.191710 | 2.982140 | 1 | 0 | 0 | 0 | 0 | ... | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 5.771441 | 0.236338 | 9.692211 | 3.191710 | 2.982140 | 1 | 0 | 0 | 0 | 0 | ... | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 5.771441 | 0.236338 | 9.719685 | 3.002211 | 3.691875 | 1 | 0 | 0 | 0 | 0 | ... | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
646 | 5.351858 | 0.245893 | 10.054262 | 3.207613 | 2.967847 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
646 | 5.351858 | 0.245893 | 10.059679 | 3.353057 | 2.392426 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
646 | 5.351858 | 0.245893 | 10.064267 | 3.410157 | 3.089678 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
646 | 5.351858 | 0.245893 | 10.071161 | 3.396855 | 2.187174 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
646 | 5.351858 | 0.245893 | 10.071420 | 3.410157 | 3.089678 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
208875 rows × 45 columns
In [85]:
new_xgb_data = xgb.DMatrix(norm_data_dummy[feature_cols])
In [86]:
norm_data.drop(columns='CO2_em_air', inplace=True)
In [87]:
norm_data['co2_pred'] = gb_model.predict(new_xgb_data) normaled_data = norm_data.drop(columns=['入炉煤低位热值_new', '燃煤挥发份Var_new', '燃煤灰份Aar_new']).groupby([x for x in use_col if x not in ['CO2_em_air', '入炉煤低位热值_new', '燃煤挥发份Var_new', '燃煤灰份Aar_new']])['co2_pred'].mean()
In [ ]:
normaled_data.reset_index().to_csv('./data/去煤种化数据.csv', encoding='utf-8-sig', index=False)