initial commit
This commit is contained in:
commit
c8b8388df5
|
@ -0,0 +1,17 @@
|
||||||
|
FROM python:3.7.13-slim
|
||||||
|
|
||||||
|
WORKDIR /app
|
||||||
|
ADD . /app/
|
||||||
|
|
||||||
|
RUN pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
|
||||||
|
RUN pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 --no-cache-dir
|
||||||
|
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
|
||||||
|
RUN mim install mmcv-full
|
||||||
|
RUN pip install -e ./text2image/CLIP/
|
||||||
|
RUN pip install -e ./backbone/mmpose/
|
||||||
|
RUN pip install -e ./ocr/tr/
|
||||||
|
RUN rm -rf ./text2image/CLIP/
|
||||||
|
RUN rm -rf ./ocr/tr/
|
||||||
|
RUN rm -rf ./backbone/mmpose/
|
||||||
|
|
||||||
|
CMD ["python3", "run.py"]
|
|
@ -0,0 +1,7 @@
|
||||||
|
## 机器视觉模块
|
||||||
|
### backbone: 关键点检测
|
||||||
|
### detection: 目标检测
|
||||||
|
### mnist: mnist手写体识别
|
||||||
|
### ocr: 光学字符识别
|
||||||
|
### segmentation: (光伏)图像分割
|
||||||
|
### text2image: (文本)图像生成
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,13 @@
|
||||||
|
from mmpose.apis import inference_bottom_up_pose_model, vis_pose_result
|
||||||
|
import cv2
|
||||||
|
import os
|
||||||
|
|
||||||
|
def run_backbone_infer(img_ndarr, pose_model):
|
||||||
|
# test a single image
|
||||||
|
pose_results, _ = inference_bottom_up_pose_model(pose_model, img_ndarr)
|
||||||
|
rst = vis_pose_result(pose_model, img_ndarr, pose_results, dataset='TopDownCocoWholeBodyDataset', thickness=2, radius=8, bbox_color='white')
|
||||||
|
return pose_results, rst
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
pass
|
|
@ -0,0 +1,22 @@
|
||||||
|
import torch
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
def detector(img, model):
|
||||||
|
"""_summary_
|
||||||
|
|
||||||
|
Args:
|
||||||
|
img (str or numpy.ndarray): 图片路径或者像素矩阵
|
||||||
|
model (_type_): 预加载的模型
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
rtn(numpy.ndarray): 渲染后的图片像素点
|
||||||
|
pred(numpy.ndarray): 检测而出的目标的坐标点、置信度和类别,shape=[n, 6]
|
||||||
|
"""
|
||||||
|
result = model(img)
|
||||||
|
|
||||||
|
return result.render()[0], result.pred[0].cpu().numpy()
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# model = torch.hub.load('/home/zhaojh/workspace/git_space/yolov5/', 'yolov5x', source='local', pretrained=True)
|
||||||
|
pass
|
||||||
|
|
|
@ -0,0 +1,71 @@
|
||||||
|
import os.path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
physical_devices = tf.config.list_physical_devices('GPU')
|
||||||
|
tf.config.experimental.set_memory_growth(physical_devices[0], True)
|
||||||
|
|
||||||
|
num_classes = 10
|
||||||
|
input_shape = (28, 28, 1)
|
||||||
|
|
||||||
|
def pre_process():
|
||||||
|
|
||||||
|
# the data, split between train and test sets
|
||||||
|
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
|
||||||
|
|
||||||
|
|
||||||
|
# Scale images to the [0, 1] range
|
||||||
|
x_train = x_train.astype("float32") / 255
|
||||||
|
x_test = x_test.astype("float32") / 255
|
||||||
|
# Make sure images have shape (28, 28, 1)
|
||||||
|
x_train = np.expand_dims(x_train, -1)
|
||||||
|
x_test = np.expand_dims(x_test, -1)
|
||||||
|
|
||||||
|
# convert class vectors to binary class matrices
|
||||||
|
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
|
||||||
|
y_test = tf.keras.utils.to_categorical(y_test, num_classes)
|
||||||
|
|
||||||
|
return x_train, y_train, x_test, y_test
|
||||||
|
|
||||||
|
|
||||||
|
def createModel(neure, kernel_size, pool_size, activation):
|
||||||
|
model = tf.keras.Sequential(
|
||||||
|
[
|
||||||
|
tf.keras.Input(shape=(input_shape)),
|
||||||
|
tf.keras.layers.Conv2D(neure, kernel_size=(kernel_size, kernel_size), activation=activation),
|
||||||
|
tf.keras.layers.MaxPooling2D(pool_size=(pool_size, pool_size)),
|
||||||
|
tf.keras.layers.Flatten(),
|
||||||
|
tf.keras.layers.Dropout(0.5),
|
||||||
|
tf.keras.layers.Dense(num_classes, activation="softmax"),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
model.summary()
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def trainModel(model, x_train, y_train, epochs, loss):
|
||||||
|
batch_size = 128
|
||||||
|
epochs = epochs
|
||||||
|
|
||||||
|
model.compile(loss=loss, optimizer="adam", metrics=["accuracy"])
|
||||||
|
|
||||||
|
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
# 模型预测
|
||||||
|
def predictModel(x_test, model):
|
||||||
|
predicted_data = model.predict(x_test)
|
||||||
|
return predicted_data
|
||||||
|
|
||||||
|
def train(neure, kernel_size, pool_size, activation, epochs, loss):
|
||||||
|
x_train, y_train, x_test, y_test = pre_process()
|
||||||
|
model = createModel(neure, kernel_size, pool_size, activation)
|
||||||
|
model = trainModel(model, x_train, y_train, epochs, loss)
|
||||||
|
score = model.evaluate(x_test, y_test, verbose=0)
|
||||||
|
accuracy = score[1]
|
||||||
|
|
||||||
|
model.save(os.path.abspath("./appweb/self_model/mnist_cnn.h5"))
|
||||||
|
|
||||||
|
return accuracy
|
|
@ -0,0 +1,22 @@
|
||||||
|
import tr
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
def run_tr(image):
|
||||||
|
"""_summary_
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image (np.ndarray): 像素矩阵
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: 字组成的列表
|
||||||
|
"""
|
||||||
|
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
|
rst = tr.run(gray_image)
|
||||||
|
if len(rst) == 0:
|
||||||
|
return []
|
||||||
|
return [x[1] for x in rst]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
pass
|
||||||
|
|
|
@ -0,0 +1,17 @@
|
||||||
|
Flask==2.1.0
|
||||||
|
h5py
|
||||||
|
ftfy==6.1.1
|
||||||
|
logzero==1.7.0
|
||||||
|
lpips==0.1.4
|
||||||
|
numpy==1.21.6
|
||||||
|
pandas==1.3.5
|
||||||
|
parse==1.19.0
|
||||||
|
Pillow==9.2.0
|
||||||
|
scipy==1.4.1
|
||||||
|
six==1.15.0
|
||||||
|
tqdm==4.64.0
|
||||||
|
opencv-python==4.6.0.66
|
||||||
|
seaborn==0.11.2
|
||||||
|
segmentation-models-pytorch==0.2.1
|
||||||
|
albumentations==1.2.1
|
||||||
|
openmim==0.2.0
|
|
@ -0,0 +1,143 @@
|
||||||
|
# -*-coding:utf-8-*-
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from logzero import logger
|
||||||
|
current_path = os.path.dirname(__file__)
|
||||||
|
logger.info(current_path)
|
||||||
|
sys.path.append(f"{current_path}/text2image/")
|
||||||
|
sys.path.append(f"{current_path}/text2image/BigGAN_utils/")
|
||||||
|
import json
|
||||||
|
import base64
|
||||||
|
from flask import Flask, request, make_response
|
||||||
|
import cv2
|
||||||
|
# from io import BytesIO
|
||||||
|
# import torch
|
||||||
|
from mmpose.apis import init_pose_model
|
||||||
|
# from text2image.run_text2img import text2image
|
||||||
|
# from detection.detection import detector
|
||||||
|
# from segmentation.segment_pred import run_seg
|
||||||
|
# from ocr.ocr import run_tr
|
||||||
|
from backbone.backbone_infer import run_backbone_infer
|
||||||
|
|
||||||
|
DEVICE = 'cpu'
|
||||||
|
|
||||||
|
# model_5x = torch.hub.load(f'{current_path}/detection/yolov5/','yolov5x', source='local', pretrained=True)
|
||||||
|
# model_5s = torch.hub.load(f'{current_path}/detection/yolov5/','yolov5s', source='local', pretrained=True)
|
||||||
|
# model_seg = torch.load(f'{current_path}/segmentation/models/best_model_pvgc.pth', map_location=DEVICE)
|
||||||
|
pose_config_file = f'{current_path}/backbone/associative_embedding_hrnet_w32_coco_512x512.py'
|
||||||
|
pose_ckpt_file = f'{current_path}/backbone/models/hrnet_w32_coco_512x512-bcb8c247_20200816.pth'
|
||||||
|
pose_model = init_pose_model(pose_config_file, pose_ckpt_file, device='cpu') # or device='cuda:0'
|
||||||
|
|
||||||
|
app=Flask(__name__)
|
||||||
|
|
||||||
|
# @app.route('/text2image/',methods=["POST"])
|
||||||
|
# def run_text2img():
|
||||||
|
# if request.method == "POST":
|
||||||
|
# text = request.form.get('text')
|
||||||
|
# logger.info(f"{text}")
|
||||||
|
# img = text2image(text)
|
||||||
|
# output_buffer = BytesIO()
|
||||||
|
# img.save(output_buffer, format='png')
|
||||||
|
# byte_data = output_buffer.getvalue()
|
||||||
|
# b64_code = base64.b64encode(byte_data).decode('utf-8')
|
||||||
|
# resp = make_response(b64_code)
|
||||||
|
# resp.status_code = 200
|
||||||
|
# return resp
|
||||||
|
# else:
|
||||||
|
# resp = make_response()
|
||||||
|
# resp.status_code=405
|
||||||
|
# return resp
|
||||||
|
|
||||||
|
|
||||||
|
# @app.route('/detection/', methods=["POST"])
|
||||||
|
# def run_detection():
|
||||||
|
# if request.method == "POST":
|
||||||
|
# img = request.files.get('image')
|
||||||
|
# model_type = request.form.get('model_type')
|
||||||
|
# try:
|
||||||
|
# img = cv2.imread(img)
|
||||||
|
# except:
|
||||||
|
# resp = make_response()
|
||||||
|
# resp.status_code = 406
|
||||||
|
# return resp
|
||||||
|
# if model_type.lower().strip() == 'yolov5x':
|
||||||
|
# rst, _ = detector(img, model_5x)
|
||||||
|
# else:
|
||||||
|
# rst, _ = detector(img, model_5s)
|
||||||
|
# logger.info(rst.shape)
|
||||||
|
# img_str = cv2.imencode('.png', rst)[1].tobytes()
|
||||||
|
# b64_code = base64.b64encode(img_str).decode('utf-8')
|
||||||
|
# resp = make_response(b64_code)
|
||||||
|
# resp.status_code = 200
|
||||||
|
# return b64_code
|
||||||
|
# else:
|
||||||
|
# resp = make_response()
|
||||||
|
# resp.status_code=405
|
||||||
|
# return resp
|
||||||
|
|
||||||
|
# @app.route('/ocr/', methods=["POST"])
|
||||||
|
# def run_ocr():
|
||||||
|
# resp = make_response()
|
||||||
|
# if request.method == "POST":
|
||||||
|
# img = request.files.get('image')
|
||||||
|
# try:
|
||||||
|
# img = cv2.imread(img)
|
||||||
|
# except:
|
||||||
|
# resp.status_code = 406
|
||||||
|
# return resp
|
||||||
|
# text = run_tr(img)
|
||||||
|
# resp.status_code = 200
|
||||||
|
# resp.data = json.dumps({'result':text})
|
||||||
|
# return resp
|
||||||
|
# else:
|
||||||
|
# resp.status_code=405
|
||||||
|
# return resp
|
||||||
|
|
||||||
|
|
||||||
|
# @app.route('/segmentation/', methods=["POST"])
|
||||||
|
# def run_segmentation():
|
||||||
|
# if request.method == "POST":
|
||||||
|
# img_upload = request.files.get('image')
|
||||||
|
# try:
|
||||||
|
# img = cv2.imread(img_upload)
|
||||||
|
# except:
|
||||||
|
# resp = make_response()
|
||||||
|
# resp.status_code = 406
|
||||||
|
# return resp
|
||||||
|
# result = run_seg(img, model_seg)
|
||||||
|
# img_str = cv2.imencode('.png', result)[1].tobytes()
|
||||||
|
# b64_code = base64.b64encode(img_str).decode('utf-8')
|
||||||
|
# resp = make_response(b64_code)
|
||||||
|
# resp.status_code = 200
|
||||||
|
# return resp
|
||||||
|
# else:
|
||||||
|
# resp = make_response()
|
||||||
|
# resp.status_code=405
|
||||||
|
# return resp
|
||||||
|
|
||||||
|
@app.route('/backbone/', methods=["POST"])
|
||||||
|
def run_backbone():
|
||||||
|
if request.method == "POST":
|
||||||
|
img_upload = request.files.get('image')
|
||||||
|
try:
|
||||||
|
img = cv2.imread(img_upload)
|
||||||
|
except:
|
||||||
|
resp = make_response()
|
||||||
|
resp.status_code = 406
|
||||||
|
return resp
|
||||||
|
pose, result = run_backbone_infer(img, pose_model)
|
||||||
|
img_str = cv2.imencode('.png', result)[1].tobytes()
|
||||||
|
b64_code = base64.b64encode(img_str).decode('utf-8')
|
||||||
|
resp = make_response(b64_code)
|
||||||
|
resp.status_code = 200
|
||||||
|
return resp
|
||||||
|
else:
|
||||||
|
resp = make_response()
|
||||||
|
resp.status_code=405
|
||||||
|
return resp
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
img = cv2.imread('./1.jpg')
|
||||||
|
pose, rst = run_backbone_infer(img, pose_model)
|
||||||
|
cv2.imwrite('./1_bb.jpg', rst)
|
|
@ -0,0 +1,66 @@
|
||||||
|
from asyncio.log import logger
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import albumentations as albu
|
||||||
|
import torch
|
||||||
|
import segmentation_models_pytorch as smp
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.data import Dataset as BaseDataset
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
DEVICE = 'cpu'
|
||||||
|
ENCODER = 'se_resnext50_32x4d'
|
||||||
|
ENCODER_WEIGHTS = 'imagenet'
|
||||||
|
|
||||||
|
# ---------------------------------------------------------------
|
||||||
|
### 加载数据
|
||||||
|
|
||||||
|
def get_validation_augmentation():
|
||||||
|
"""调整图像使得图片的分辨率长宽能被32整除"""
|
||||||
|
test_transform = [
|
||||||
|
albu.PadIfNeeded(256, 256)
|
||||||
|
]
|
||||||
|
return albu.Compose(test_transform)
|
||||||
|
|
||||||
|
|
||||||
|
def to_tensor(x, **kwargs):
|
||||||
|
return x.transpose(2, 0, 1).astype('float32')
|
||||||
|
|
||||||
|
|
||||||
|
def get_preprocessing(preprocessing_fn):
|
||||||
|
"""进行图像预处理操作
|
||||||
|
|
||||||
|
Args:
|
||||||
|
preprocessing_fn (callbale): 数据规范化的函数
|
||||||
|
(针对每种预训练的神经网络)
|
||||||
|
Return:
|
||||||
|
transform: albumentations.Compose
|
||||||
|
"""
|
||||||
|
|
||||||
|
_transform = [
|
||||||
|
albu.Lambda(image=preprocessing_fn),
|
||||||
|
albu.Lambda(image=to_tensor),
|
||||||
|
]
|
||||||
|
return albu.Compose(_transform)
|
||||||
|
|
||||||
|
|
||||||
|
def run_seg(img, best_model):
|
||||||
|
# 测试集
|
||||||
|
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
|
||||||
|
augmentator = get_validation_augmentation()
|
||||||
|
preprocessor = get_preprocessing(preprocessing_fn)
|
||||||
|
# ---------------------------------------------------------------
|
||||||
|
img = augmentator(image=img)['image']
|
||||||
|
img = preprocessor(image=img)['image']
|
||||||
|
# 加载最佳模型
|
||||||
|
x_tensor = torch.from_numpy(img).to(DEVICE).unsqueeze(0)
|
||||||
|
pr_mask = best_model.predict(x_tensor)
|
||||||
|
pr_mask = (pr_mask.squeeze().cpu().numpy().round())
|
||||||
|
return (pr_mask - 1) * (-220)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
best_model = torch.load('/home/zhaojh/workspace/computer_vision/segmentation/models/best_model_pvgc.pth', map_location=DEVICE)
|
||||||
|
input_img = cv2.imread('/home/zhaojh/datasets/photovoltaic/PV03/PV03_Ground_Cropland/test/PV03_316626_1211836.bmp')
|
|
@ -0,0 +1,484 @@
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import functools
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import init
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn import Parameter as P
|
||||||
|
|
||||||
|
import layers
|
||||||
|
from sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d
|
||||||
|
|
||||||
|
|
||||||
|
# Architectures for G
|
||||||
|
# Attention is passed in in the format '32_64' to mean applying an attention
|
||||||
|
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.
|
||||||
|
def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
|
||||||
|
arch = {}
|
||||||
|
arch[512] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
|
||||||
|
'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
|
||||||
|
'upsample' : [True] * 7,
|
||||||
|
'resolution' : [8, 16, 32, 64, 128, 256, 512],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,10)}}
|
||||||
|
arch[256] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2]],
|
||||||
|
'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1]],
|
||||||
|
'upsample' : [True] * 6,
|
||||||
|
'resolution' : [8, 16, 32, 64, 128, 256],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,9)}}
|
||||||
|
arch[128] = {'in_channels' : [ch * item for item in [16, 16, 8, 4, 2]],
|
||||||
|
'out_channels' : [ch * item for item in [16, 8, 4, 2, 1]],
|
||||||
|
'upsample' : [True] * 5,
|
||||||
|
'resolution' : [8, 16, 32, 64, 128],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,8)}}
|
||||||
|
arch[64] = {'in_channels' : [ch * item for item in [16, 16, 8, 4]],
|
||||||
|
'out_channels' : [ch * item for item in [16, 8, 4, 2]],
|
||||||
|
'upsample' : [True] * 4,
|
||||||
|
'resolution' : [8, 16, 32, 64],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,7)}}
|
||||||
|
arch[32] = {'in_channels' : [ch * item for item in [4, 4, 4]],
|
||||||
|
'out_channels' : [ch * item for item in [4, 4, 4]],
|
||||||
|
'upsample' : [True] * 3,
|
||||||
|
'resolution' : [8, 16, 32],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,6)}}
|
||||||
|
|
||||||
|
return arch
|
||||||
|
|
||||||
|
class Generator(nn.Module):
|
||||||
|
def __init__(self, G_ch=64, dim_z=128, bottom_width=4, resolution=128,
|
||||||
|
G_kernel_size=3, G_attn='64', n_classes=1000,
|
||||||
|
num_G_SVs=1, num_G_SV_itrs=1,
|
||||||
|
G_shared=True, shared_dim=0, hier=False,
|
||||||
|
cross_replica=False, mybn=False,
|
||||||
|
G_activation=nn.ReLU(inplace=False),
|
||||||
|
G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8,
|
||||||
|
BN_eps=1e-5, SN_eps=1e-12, G_mixed_precision=False, G_fp16=False,
|
||||||
|
G_init='ortho', skip_init=False, no_optim=False,
|
||||||
|
G_param='SN', norm_style='bn',
|
||||||
|
**kwargs):
|
||||||
|
super(Generator, self).__init__()
|
||||||
|
# Channel width mulitplier
|
||||||
|
self.ch = G_ch
|
||||||
|
# Dimensionality of the latent space
|
||||||
|
self.dim_z = dim_z
|
||||||
|
# The initial spatial dimensions
|
||||||
|
self.bottom_width = bottom_width
|
||||||
|
# Resolution of the output
|
||||||
|
self.resolution = resolution
|
||||||
|
# Kernel size?
|
||||||
|
self.kernel_size = G_kernel_size
|
||||||
|
# Attention?
|
||||||
|
self.attention = G_attn
|
||||||
|
# number of classes, for use in categorical conditional generation
|
||||||
|
self.n_classes = n_classes
|
||||||
|
# Use shared embeddings?
|
||||||
|
self.G_shared = G_shared
|
||||||
|
# Dimensionality of the shared embedding? Unused if not using G_shared
|
||||||
|
self.shared_dim = shared_dim if shared_dim > 0 else dim_z
|
||||||
|
# Hierarchical latent space?
|
||||||
|
self.hier = hier
|
||||||
|
# Cross replica batchnorm?
|
||||||
|
self.cross_replica = cross_replica
|
||||||
|
# Use my batchnorm?
|
||||||
|
self.mybn = mybn
|
||||||
|
# nonlinearity for residual blocks
|
||||||
|
self.activation = G_activation
|
||||||
|
# Initialization style
|
||||||
|
self.init = G_init
|
||||||
|
# Parameterization style
|
||||||
|
self.G_param = G_param
|
||||||
|
# Normalization style
|
||||||
|
self.norm_style = norm_style
|
||||||
|
# Epsilon for BatchNorm?
|
||||||
|
self.BN_eps = BN_eps
|
||||||
|
# Epsilon for Spectral Norm?
|
||||||
|
self.SN_eps = SN_eps
|
||||||
|
# fp16?
|
||||||
|
self.fp16 = G_fp16
|
||||||
|
# Architecture dict
|
||||||
|
self.arch = G_arch(self.ch, self.attention)[resolution]
|
||||||
|
|
||||||
|
# If using hierarchical latents, adjust z
|
||||||
|
if self.hier:
|
||||||
|
# Number of places z slots into
|
||||||
|
self.num_slots = len(self.arch['in_channels']) + 1
|
||||||
|
self.z_chunk_size = (self.dim_z // self.num_slots)
|
||||||
|
# Recalculate latent dimensionality for even splitting into chunks
|
||||||
|
self.dim_z = self.z_chunk_size * self.num_slots
|
||||||
|
else:
|
||||||
|
self.num_slots = 1
|
||||||
|
self.z_chunk_size = 0
|
||||||
|
|
||||||
|
# Which convs, batchnorms, and linear layers to use
|
||||||
|
if self.G_param == 'SN':
|
||||||
|
self.which_conv = functools.partial(layers.SNConv2d,
|
||||||
|
kernel_size=3, padding=1,
|
||||||
|
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
self.which_linear = functools.partial(layers.SNLinear,
|
||||||
|
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
else:
|
||||||
|
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
|
||||||
|
self.which_linear = nn.Linear
|
||||||
|
|
||||||
|
# We use a non-spectral-normed embedding here regardless;
|
||||||
|
# For some reason applying SN to G's embedding seems to randomly cripple G
|
||||||
|
self.which_embedding = nn.Embedding
|
||||||
|
bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared
|
||||||
|
else self.which_embedding)
|
||||||
|
self.which_bn = functools.partial(layers.ccbn,
|
||||||
|
which_linear=bn_linear,
|
||||||
|
cross_replica=self.cross_replica,
|
||||||
|
mybn=self.mybn,
|
||||||
|
input_size=(self.shared_dim + self.z_chunk_size if self.G_shared
|
||||||
|
else self.n_classes),
|
||||||
|
norm_style=self.norm_style,
|
||||||
|
eps=self.BN_eps)
|
||||||
|
|
||||||
|
|
||||||
|
# Prepare model
|
||||||
|
# If not using shared embeddings, self.shared is just a passthrough
|
||||||
|
self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared
|
||||||
|
else layers.identity())
|
||||||
|
# First linear layer
|
||||||
|
self.linear = self.which_linear(self.dim_z // self.num_slots,
|
||||||
|
self.arch['in_channels'][0] * (self.bottom_width **2))
|
||||||
|
|
||||||
|
# self.blocks is a doubly-nested list of modules, the outer loop intended
|
||||||
|
# to be over blocks at a given resolution (resblocks and/or self-attention)
|
||||||
|
# while the inner loop is over a given block
|
||||||
|
self.blocks = []
|
||||||
|
for index in range(len(self.arch['out_channels'])):
|
||||||
|
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
|
||||||
|
out_channels=self.arch['out_channels'][index],
|
||||||
|
which_conv=self.which_conv,
|
||||||
|
which_bn=self.which_bn,
|
||||||
|
activation=self.activation,
|
||||||
|
upsample=(functools.partial(F.interpolate, scale_factor=2)
|
||||||
|
if self.arch['upsample'][index] else None))]]
|
||||||
|
|
||||||
|
# If attention on this block, attach it to the end
|
||||||
|
if self.arch['attention'][self.arch['resolution'][index]]:
|
||||||
|
print(self.arch['resolution'], self.arch['attention'])
|
||||||
|
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
|
||||||
|
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]
|
||||||
|
|
||||||
|
# Turn self.blocks into a ModuleList so that it's all properly registered.
|
||||||
|
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
|
||||||
|
|
||||||
|
# output layer: batchnorm-relu-conv.
|
||||||
|
# Consider using a non-spectral conv here
|
||||||
|
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
|
||||||
|
cross_replica=self.cross_replica,
|
||||||
|
mybn=self.mybn),
|
||||||
|
self.activation,
|
||||||
|
self.which_conv(self.arch['out_channels'][-1], 3))
|
||||||
|
|
||||||
|
# Initialize weights. Optionally skip init for testing.
|
||||||
|
if not skip_init:
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
# Set up optimizer
|
||||||
|
# If this is an EMA copy, no need for an optim, so just return now
|
||||||
|
if no_optim:
|
||||||
|
return
|
||||||
|
self.lr, self.B1, self.B2, self.adam_eps = G_lr, G_B1, G_B2, adam_eps
|
||||||
|
if G_mixed_precision:
|
||||||
|
print('Using fp16 adam in G...')
|
||||||
|
import utils
|
||||||
|
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0,
|
||||||
|
eps=self.adam_eps)
|
||||||
|
else:
|
||||||
|
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0,
|
||||||
|
eps=self.adam_eps)
|
||||||
|
|
||||||
|
# LR scheduling, left here for forward compatibility
|
||||||
|
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
|
||||||
|
# self.j = 0
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def init_weights(self):
|
||||||
|
self.param_count = 0
|
||||||
|
for module in self.modules():
|
||||||
|
if (isinstance(module, nn.Conv2d)
|
||||||
|
or isinstance(module, nn.Linear)
|
||||||
|
or isinstance(module, nn.Embedding)):
|
||||||
|
if self.init == 'ortho':
|
||||||
|
init.orthogonal_(module.weight)
|
||||||
|
elif self.init == 'N02':
|
||||||
|
init.normal_(module.weight, 0, 0.02)
|
||||||
|
elif self.init in ['glorot', 'xavier']:
|
||||||
|
init.xavier_uniform_(module.weight)
|
||||||
|
else:
|
||||||
|
print('Init style not recognized...')
|
||||||
|
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
||||||
|
print('Param count for G''s initialized parameters: %d' % self.param_count)
|
||||||
|
|
||||||
|
# Note on this forward function: we pass in a y vector which has
|
||||||
|
# already been passed through G.shared to enable easy class-wise
|
||||||
|
# interpolation later. If we passed in the one-hot and then ran it through
|
||||||
|
# G.shared in this forward function, it would be harder to handle.
|
||||||
|
def forward(self, z, y, w_y=None):
|
||||||
|
if w_y is not None:
|
||||||
|
s_y = torch.softmax(w_y, dim=1)
|
||||||
|
|
||||||
|
cur_y = s_y * y
|
||||||
|
y = cur_y.sum(dim=1, keepdim=False)
|
||||||
|
|
||||||
|
# If hierarchical, concatenate zs and ys
|
||||||
|
if self.hier:
|
||||||
|
zs = torch.split(z, self.z_chunk_size, 1)
|
||||||
|
z = zs[0]
|
||||||
|
ys = [torch.cat([y, item], 1) for item in zs[1:]]
|
||||||
|
else:
|
||||||
|
ys = [y] * len(self.blocks)
|
||||||
|
|
||||||
|
# First linear layer
|
||||||
|
h = self.linear(z)
|
||||||
|
# Reshape
|
||||||
|
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_width)
|
||||||
|
|
||||||
|
# Loop over blocks
|
||||||
|
for index, blocklist in enumerate(self.blocks):
|
||||||
|
# Second inner loop in case block has multiple layers
|
||||||
|
for block in blocklist:
|
||||||
|
h = block(h, ys[index])
|
||||||
|
|
||||||
|
# Apply batchnorm-relu-conv-tanh at output
|
||||||
|
return torch.tanh(self.output_layer(h))
|
||||||
|
|
||||||
|
# Note on this forward function: we pass in a y vector which has
|
||||||
|
# already been passed through G.shared to enable easy class-wise
|
||||||
|
# interpolation later. If we passed in the one-hot and then ran it through
|
||||||
|
# G.shared in this forward function, it would be harder to handle.
|
||||||
|
def forward_org(self, z, y):
|
||||||
|
# If hierarchical, concatenate zs and ys
|
||||||
|
if self.hier:
|
||||||
|
zs = torch.split(z, self.z_chunk_size, 1)
|
||||||
|
z = zs[0]
|
||||||
|
ys = [torch.cat([y, item], 1) for item in zs[1:]]
|
||||||
|
else:
|
||||||
|
ys = [y] * len(self.blocks)
|
||||||
|
|
||||||
|
# First linear layer
|
||||||
|
h = self.linear(z)
|
||||||
|
# Reshape
|
||||||
|
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_width)
|
||||||
|
|
||||||
|
# Loop over blocks
|
||||||
|
for index, blocklist in enumerate(self.blocks):
|
||||||
|
# Second inner loop in case block has multiple layers
|
||||||
|
for block in blocklist:
|
||||||
|
h = block(h, ys[index])
|
||||||
|
|
||||||
|
# Apply batchnorm-relu-conv-tanh at output
|
||||||
|
return torch.tanh(self.output_layer(h))
|
||||||
|
|
||||||
|
|
||||||
|
# Discriminator architecture, same paradigm as G's above
|
||||||
|
def D_arch(ch=64, attention='64',ksize='333333', dilation='111111'):
|
||||||
|
arch = {}
|
||||||
|
arch[256] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 8, 16]],
|
||||||
|
'out_channels' : [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
|
||||||
|
'downsample' : [True] * 6 + [False],
|
||||||
|
'resolution' : [128, 64, 32, 16, 8, 4, 4 ],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,8)}}
|
||||||
|
arch[128] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 16]],
|
||||||
|
'out_channels' : [item * ch for item in [1, 2, 4, 8, 16, 16]],
|
||||||
|
'downsample' : [True] * 5 + [False],
|
||||||
|
'resolution' : [64, 32, 16, 8, 4, 4],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,8)}}
|
||||||
|
arch[64] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8]],
|
||||||
|
'out_channels' : [item * ch for item in [1, 2, 4, 8, 16]],
|
||||||
|
'downsample' : [True] * 4 + [False],
|
||||||
|
'resolution' : [32, 16, 8, 4, 4],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,7)}}
|
||||||
|
arch[32] = {'in_channels' : [3] + [item * ch for item in [4, 4, 4]],
|
||||||
|
'out_channels' : [item * ch for item in [4, 4, 4, 4]],
|
||||||
|
'downsample' : [True, True, False, False],
|
||||||
|
'resolution' : [16, 16, 16, 16],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,6)}}
|
||||||
|
return arch
|
||||||
|
|
||||||
|
class Discriminator(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, D_ch=64, D_wide=True, resolution=128,
|
||||||
|
D_kernel_size=3, D_attn='64', n_classes=1000,
|
||||||
|
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
|
||||||
|
D_lr=2e-4, D_B1=0.0, D_B2=0.999, adam_eps=1e-8,
|
||||||
|
SN_eps=1e-12, output_dim=1, D_mixed_precision=False, D_fp16=False,
|
||||||
|
D_init='ortho', skip_init=False, D_param='SN', **kwargs):
|
||||||
|
super(Discriminator, self).__init__()
|
||||||
|
# Width multiplier
|
||||||
|
self.ch = D_ch
|
||||||
|
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
|
||||||
|
self.D_wide = D_wide
|
||||||
|
# Resolution
|
||||||
|
self.resolution = resolution
|
||||||
|
# Kernel size
|
||||||
|
self.kernel_size = D_kernel_size
|
||||||
|
# Attention?
|
||||||
|
self.attention = D_attn
|
||||||
|
# Number of classes
|
||||||
|
self.n_classes = n_classes
|
||||||
|
# Activation
|
||||||
|
self.activation = D_activation
|
||||||
|
# Initialization style
|
||||||
|
self.init = D_init
|
||||||
|
# Parameterization style
|
||||||
|
self.D_param = D_param
|
||||||
|
# Epsilon for Spectral Norm?
|
||||||
|
self.SN_eps = SN_eps
|
||||||
|
# Fp16?
|
||||||
|
self.fp16 = D_fp16
|
||||||
|
# Architecture
|
||||||
|
self.arch = D_arch(self.ch, self.attention)[resolution]
|
||||||
|
|
||||||
|
# Which convs, batchnorms, and linear layers to use
|
||||||
|
# No option to turn off SN in D right now
|
||||||
|
if self.D_param == 'SN':
|
||||||
|
self.which_conv = functools.partial(layers.SNConv2d,
|
||||||
|
kernel_size=3, padding=1,
|
||||||
|
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
self.which_linear = functools.partial(layers.SNLinear,
|
||||||
|
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
self.which_embedding = functools.partial(layers.SNEmbedding,
|
||||||
|
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
# Prepare model
|
||||||
|
# self.blocks is a doubly-nested list of modules, the outer loop intended
|
||||||
|
# to be over blocks at a given resolution (resblocks and/or self-attention)
|
||||||
|
self.blocks = []
|
||||||
|
for index in range(len(self.arch['out_channels'])):
|
||||||
|
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
|
||||||
|
out_channels=self.arch['out_channels'][index],
|
||||||
|
which_conv=self.which_conv,
|
||||||
|
wide=self.D_wide,
|
||||||
|
activation=self.activation,
|
||||||
|
preactivation=(index > 0),
|
||||||
|
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
|
||||||
|
# If attention on this block, attach it to the end
|
||||||
|
if self.arch['attention'][self.arch['resolution'][index]]:
|
||||||
|
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
|
||||||
|
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
|
||||||
|
self.which_conv)]
|
||||||
|
# Turn self.blocks into a ModuleList so that it's all properly registered.
|
||||||
|
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
|
||||||
|
# Linear output layer. The output dimension is typically 1, but may be
|
||||||
|
# larger if we're e.g. turning this into a VAE with an inference output
|
||||||
|
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
|
||||||
|
# Embedding for projection discrimination
|
||||||
|
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
|
||||||
|
|
||||||
|
# Initialize weights
|
||||||
|
if not skip_init:
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
# Set up optimizer
|
||||||
|
self.lr, self.B1, self.B2, self.adam_eps = D_lr, D_B1, D_B2, adam_eps
|
||||||
|
if D_mixed_precision:
|
||||||
|
print('Using fp16 adam in D...')
|
||||||
|
import utils
|
||||||
|
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
|
||||||
|
else:
|
||||||
|
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
|
||||||
|
# LR scheduling, left here for forward compatibility
|
||||||
|
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
|
||||||
|
# self.j = 0
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def init_weights(self):
|
||||||
|
self.param_count = 0
|
||||||
|
for module in self.modules():
|
||||||
|
if (isinstance(module, nn.Conv2d)
|
||||||
|
or isinstance(module, nn.Linear)
|
||||||
|
or isinstance(module, nn.Embedding)):
|
||||||
|
if self.init == 'ortho':
|
||||||
|
init.orthogonal_(module.weight)
|
||||||
|
elif self.init == 'N02':
|
||||||
|
init.normal_(module.weight, 0, 0.02)
|
||||||
|
elif self.init in ['glorot', 'xavier']:
|
||||||
|
init.xavier_uniform_(module.weight)
|
||||||
|
else:
|
||||||
|
print('Init style not recognized...')
|
||||||
|
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
||||||
|
print('Param count for D''s initialized parameters: %d' % self.param_count)
|
||||||
|
|
||||||
|
def forward(self, x, y=None):
|
||||||
|
# Stick x into h for cleaner for loops without flow control
|
||||||
|
h = x
|
||||||
|
# Loop over blocks
|
||||||
|
for index, blocklist in enumerate(self.blocks):
|
||||||
|
for block in blocklist:
|
||||||
|
h = block(h)
|
||||||
|
# Apply global sum pooling as in SN-GAN
|
||||||
|
h = torch.sum(self.activation(h), [2, 3])
|
||||||
|
# Get initial class-unconditional output
|
||||||
|
out = self.linear(h)
|
||||||
|
# Get projection of final featureset onto class vectors and add to evidence
|
||||||
|
out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
|
||||||
|
return out
|
||||||
|
|
||||||
|
# Parallelized G_D to minimize cross-gpu communication
|
||||||
|
# Without this, Generator outputs would get all-gathered and then rebroadcast.
|
||||||
|
class G_D(nn.Module):
|
||||||
|
def __init__(self, G, D):
|
||||||
|
super(G_D, self).__init__()
|
||||||
|
self.G = G
|
||||||
|
self.D = D
|
||||||
|
|
||||||
|
def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False,
|
||||||
|
split_D=False):
|
||||||
|
# If training G, enable grad tape
|
||||||
|
with torch.set_grad_enabled(train_G):
|
||||||
|
# Get Generator output given noise
|
||||||
|
G_z = self.G(z, self.G.shared(gy))
|
||||||
|
# Cast as necessary
|
||||||
|
if self.G.fp16 and not self.D.fp16:
|
||||||
|
G_z = G_z.float()
|
||||||
|
if self.D.fp16 and not self.G.fp16:
|
||||||
|
G_z = G_z.half()
|
||||||
|
# Split_D means to run D once with real data and once with fake,
|
||||||
|
# rather than concatenating along the batch dimension.
|
||||||
|
if split_D:
|
||||||
|
D_fake = self.D(G_z, gy)
|
||||||
|
if x is not None:
|
||||||
|
D_real = self.D(x, dy)
|
||||||
|
return D_fake, D_real
|
||||||
|
else:
|
||||||
|
if return_G_z:
|
||||||
|
return D_fake, G_z
|
||||||
|
else:
|
||||||
|
return D_fake
|
||||||
|
# If real data is provided, concatenate it with the Generator's output
|
||||||
|
# along the batch dimension for improved efficiency.
|
||||||
|
else:
|
||||||
|
D_input = torch.cat([G_z, x], 0) if x is not None else G_z
|
||||||
|
D_class = torch.cat([gy, dy], 0) if dy is not None else gy
|
||||||
|
# Get Discriminator output
|
||||||
|
D_out = self.D(D_input, D_class)
|
||||||
|
if x is not None:
|
||||||
|
return torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real
|
||||||
|
else:
|
||||||
|
if return_G_z:
|
||||||
|
return D_out, G_z
|
||||||
|
else:
|
||||||
|
return D_out
|
|
@ -0,0 +1,534 @@
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
import functools
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import init
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn import Parameter as P
|
||||||
|
|
||||||
|
import layers
|
||||||
|
from sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d
|
||||||
|
|
||||||
|
# BigGAN-deep: uses a different resblock and pattern
|
||||||
|
|
||||||
|
|
||||||
|
# Architectures for G
|
||||||
|
# Attention is passed in in the format '32_64' to mean applying an attention
|
||||||
|
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.
|
||||||
|
|
||||||
|
# Channel ratio is the ratio of
|
||||||
|
class GBlock(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels,
|
||||||
|
which_conv=nn.Conv2d, which_bn=layers.bn, activation=None,
|
||||||
|
upsample=None, channel_ratio=4):
|
||||||
|
super(GBlock, self).__init__()
|
||||||
|
|
||||||
|
self.in_channels, self.out_channels = in_channels, out_channels
|
||||||
|
self.hidden_channels = self.in_channels // channel_ratio
|
||||||
|
self.which_conv, self.which_bn = which_conv, which_bn
|
||||||
|
self.activation = activation
|
||||||
|
# Conv layers
|
||||||
|
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels,
|
||||||
|
kernel_size=1, padding=0)
|
||||||
|
self.conv2 = self.which_conv(self.hidden_channels, self.hidden_channels)
|
||||||
|
self.conv3 = self.which_conv(self.hidden_channels, self.hidden_channels)
|
||||||
|
self.conv4 = self.which_conv(self.hidden_channels, self.out_channels,
|
||||||
|
kernel_size=1, padding=0)
|
||||||
|
# Batchnorm layers
|
||||||
|
self.bn1 = self.which_bn(self.in_channels)
|
||||||
|
self.bn2 = self.which_bn(self.hidden_channels)
|
||||||
|
self.bn3 = self.which_bn(self.hidden_channels)
|
||||||
|
self.bn4 = self.which_bn(self.hidden_channels)
|
||||||
|
# upsample layers
|
||||||
|
self.upsample = upsample
|
||||||
|
|
||||||
|
def forward(self, x, y):
|
||||||
|
# Project down to channel ratio
|
||||||
|
h = self.conv1(self.activation(self.bn1(x, y)))
|
||||||
|
# Apply next BN-ReLU
|
||||||
|
h = self.activation(self.bn2(h, y))
|
||||||
|
# Drop channels in x if necessary
|
||||||
|
if self.in_channels != self.out_channels:
|
||||||
|
x = x[:, :self.out_channels]
|
||||||
|
# Upsample both h and x at this point
|
||||||
|
if self.upsample:
|
||||||
|
h = self.upsample(h)
|
||||||
|
x = self.upsample(x)
|
||||||
|
# 3x3 convs
|
||||||
|
h = self.conv2(h)
|
||||||
|
h = self.conv3(self.activation(self.bn3(h, y)))
|
||||||
|
# Final 1x1 conv
|
||||||
|
h = self.conv4(self.activation(self.bn4(h, y)))
|
||||||
|
return h + x
|
||||||
|
|
||||||
|
def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
|
||||||
|
arch = {}
|
||||||
|
arch[256] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2]],
|
||||||
|
'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1]],
|
||||||
|
'upsample' : [True] * 6,
|
||||||
|
'resolution' : [8, 16, 32, 64, 128, 256],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,9)}}
|
||||||
|
arch[128] = {'in_channels' : [ch * item for item in [16, 16, 8, 4, 2]],
|
||||||
|
'out_channels' : [ch * item for item in [16, 8, 4, 2, 1]],
|
||||||
|
'upsample' : [True] * 5,
|
||||||
|
'resolution' : [8, 16, 32, 64, 128],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,8)}}
|
||||||
|
arch[64] = {'in_channels' : [ch * item for item in [16, 16, 8, 4]],
|
||||||
|
'out_channels' : [ch * item for item in [16, 8, 4, 2]],
|
||||||
|
'upsample' : [True] * 4,
|
||||||
|
'resolution' : [8, 16, 32, 64],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,7)}}
|
||||||
|
arch[32] = {'in_channels' : [ch * item for item in [4, 4, 4]],
|
||||||
|
'out_channels' : [ch * item for item in [4, 4, 4]],
|
||||||
|
'upsample' : [True] * 3,
|
||||||
|
'resolution' : [8, 16, 32],
|
||||||
|
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
|
||||||
|
for i in range(3,6)}}
|
||||||
|
|
||||||
|
return arch
|
||||||
|
|
||||||
|
class Generator(nn.Module):
|
||||||
|
def __init__(self, G_ch=64, G_depth=2, dim_z=128, bottom_width=4, resolution=128,
|
||||||
|
G_kernel_size=3, G_attn='64', n_classes=1000,
|
||||||
|
num_G_SVs=1, num_G_SV_itrs=1,
|
||||||
|
G_shared=True, shared_dim=0, hier=False,
|
||||||
|
cross_replica=False, mybn=False,
|
||||||
|
G_activation=nn.ReLU(inplace=False),
|
||||||
|
G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8,
|
||||||
|
BN_eps=1e-5, SN_eps=1e-12, G_mixed_precision=False, G_fp16=False,
|
||||||
|
G_init='ortho', skip_init=False, no_optim=False,
|
||||||
|
G_param='SN', norm_style='bn',
|
||||||
|
**kwargs):
|
||||||
|
super(Generator, self).__init__()
|
||||||
|
# Channel width mulitplier
|
||||||
|
self.ch = G_ch
|
||||||
|
# Number of resblocks per stage
|
||||||
|
self.G_depth = G_depth
|
||||||
|
# Dimensionality of the latent space
|
||||||
|
self.dim_z = dim_z
|
||||||
|
# The initial spatial dimensions
|
||||||
|
self.bottom_width = bottom_width
|
||||||
|
# Resolution of the output
|
||||||
|
self.resolution = resolution
|
||||||
|
# Kernel size?
|
||||||
|
self.kernel_size = G_kernel_size
|
||||||
|
# Attention?
|
||||||
|
self.attention = G_attn
|
||||||
|
# number of classes, for use in categorical conditional generation
|
||||||
|
self.n_classes = n_classes
|
||||||
|
# Use shared embeddings?
|
||||||
|
self.G_shared = G_shared
|
||||||
|
# Dimensionality of the shared embedding? Unused if not using G_shared
|
||||||
|
self.shared_dim = shared_dim if shared_dim > 0 else dim_z
|
||||||
|
# Hierarchical latent space?
|
||||||
|
self.hier = hier
|
||||||
|
# Cross replica batchnorm?
|
||||||
|
self.cross_replica = cross_replica
|
||||||
|
# Use my batchnorm?
|
||||||
|
self.mybn = mybn
|
||||||
|
# nonlinearity for residual blocks
|
||||||
|
self.activation = G_activation
|
||||||
|
# Initialization style
|
||||||
|
self.init = G_init
|
||||||
|
# Parameterization style
|
||||||
|
self.G_param = G_param
|
||||||
|
# Normalization style
|
||||||
|
self.norm_style = norm_style
|
||||||
|
# Epsilon for BatchNorm?
|
||||||
|
self.BN_eps = BN_eps
|
||||||
|
# Epsilon for Spectral Norm?
|
||||||
|
self.SN_eps = SN_eps
|
||||||
|
# fp16?
|
||||||
|
self.fp16 = G_fp16
|
||||||
|
# Architecture dict
|
||||||
|
self.arch = G_arch(self.ch, self.attention)[resolution]
|
||||||
|
|
||||||
|
|
||||||
|
# Which convs, batchnorms, and linear layers to use
|
||||||
|
if self.G_param == 'SN':
|
||||||
|
self.which_conv = functools.partial(layers.SNConv2d,
|
||||||
|
kernel_size=3, padding=1,
|
||||||
|
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
self.which_linear = functools.partial(layers.SNLinear,
|
||||||
|
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
else:
|
||||||
|
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
|
||||||
|
self.which_linear = nn.Linear
|
||||||
|
|
||||||
|
# We use a non-spectral-normed embedding here regardless;
|
||||||
|
# For some reason applying SN to G's embedding seems to randomly cripple G
|
||||||
|
self.which_embedding = nn.Embedding
|
||||||
|
bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared
|
||||||
|
else self.which_embedding)
|
||||||
|
self.which_bn = functools.partial(layers.ccbn,
|
||||||
|
which_linear=bn_linear,
|
||||||
|
cross_replica=self.cross_replica,
|
||||||
|
mybn=self.mybn,
|
||||||
|
input_size=(self.shared_dim + self.dim_z if self.G_shared
|
||||||
|
else self.n_classes),
|
||||||
|
norm_style=self.norm_style,
|
||||||
|
eps=self.BN_eps)
|
||||||
|
|
||||||
|
|
||||||
|
# Prepare model
|
||||||
|
# If not using shared embeddings, self.shared is just a passthrough
|
||||||
|
self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared
|
||||||
|
else layers.identity())
|
||||||
|
# First linear layer
|
||||||
|
self.linear = self.which_linear(self.dim_z + self.shared_dim, self.arch['in_channels'][0] * (self.bottom_width **2))
|
||||||
|
|
||||||
|
# self.blocks is a doubly-nested list of modules, the outer loop intended
|
||||||
|
# to be over blocks at a given resolution (resblocks and/or self-attention)
|
||||||
|
# while the inner loop is over a given block
|
||||||
|
self.blocks = []
|
||||||
|
for index in range(len(self.arch['out_channels'])):
|
||||||
|
self.blocks += [[GBlock(in_channels=self.arch['in_channels'][index],
|
||||||
|
out_channels=self.arch['in_channels'][index] if g_index==0 else self.arch['out_channels'][index],
|
||||||
|
which_conv=self.which_conv,
|
||||||
|
which_bn=self.which_bn,
|
||||||
|
activation=self.activation,
|
||||||
|
upsample=(functools.partial(F.interpolate, scale_factor=2)
|
||||||
|
if self.arch['upsample'][index] and g_index == (self.G_depth-1) else None))]
|
||||||
|
for g_index in range(self.G_depth)]
|
||||||
|
|
||||||
|
# If attention on this block, attach it to the end
|
||||||
|
if self.arch['attention'][self.arch['resolution'][index]]:
|
||||||
|
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
|
||||||
|
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]
|
||||||
|
|
||||||
|
# Turn self.blocks into a ModuleList so that it's all properly registered.
|
||||||
|
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
|
||||||
|
|
||||||
|
# output layer: batchnorm-relu-conv.
|
||||||
|
# Consider using a non-spectral conv here
|
||||||
|
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
|
||||||
|
cross_replica=self.cross_replica,
|
||||||
|
mybn=self.mybn),
|
||||||
|
self.activation,
|
||||||
|
self.which_conv(self.arch['out_channels'][-1], 3))
|
||||||
|
|
||||||
|
# Initialize weights. Optionally skip init for testing.
|
||||||
|
if not skip_init:
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
# Set up optimizer
|
||||||
|
# If this is an EMA copy, no need for an optim, so just return now
|
||||||
|
if no_optim:
|
||||||
|
return
|
||||||
|
self.lr, self.B1, self.B2, self.adam_eps = G_lr, G_B1, G_B2, adam_eps
|
||||||
|
if G_mixed_precision:
|
||||||
|
print('Using fp16 adam in G...')
|
||||||
|
import utils
|
||||||
|
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0,
|
||||||
|
eps=self.adam_eps)
|
||||||
|
else:
|
||||||
|
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0,
|
||||||
|
eps=self.adam_eps)
|
||||||
|
|
||||||
|
# LR scheduling, left here for forward compatibility
|
||||||
|
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
|
||||||
|
# self.j = 0
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def init_weights(self):
|
||||||
|
self.param_count = 0
|
||||||
|
for module in self.modules():
|
||||||
|
if (isinstance(module, nn.Conv2d)
|
||||||
|
or isinstance(module, nn.Linear)
|
||||||
|
or isinstance(module, nn.Embedding)):
|
||||||
|
if self.init == 'ortho':
|
||||||
|
init.orthogonal_(module.weight)
|
||||||
|
elif self.init == 'N02':
|
||||||
|
init.normal_(module.weight, 0, 0.02)
|
||||||
|
elif self.init in ['glorot', 'xavier']:
|
||||||
|
init.xavier_uniform_(module.weight)
|
||||||
|
else:
|
||||||
|
print('Init style not recognized...')
|
||||||
|
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
||||||
|
print('Param count for G''s initialized parameters: %d' % self.param_count)
|
||||||
|
|
||||||
|
# Note on this forward function: we pass in a y vector which has
|
||||||
|
# already been passed through G.shared to enable easy class-wise
|
||||||
|
# interpolation later. If we passed in the one-hot and then ran it through
|
||||||
|
# G.shared in this forward function, it would be harder to handle.
|
||||||
|
# NOTE: The z vs y dichotomy here is for compatibility with not-y
|
||||||
|
def forward(self, z, y):
|
||||||
|
# If hierarchical, concatenate zs and ys
|
||||||
|
if self.hier:
|
||||||
|
z = torch.cat([y, z], 1)
|
||||||
|
y = z
|
||||||
|
# First linear layer
|
||||||
|
h = self.linear(z)
|
||||||
|
# Reshape
|
||||||
|
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_width)
|
||||||
|
# Loop over blocks
|
||||||
|
for index, blocklist in enumerate(self.blocks):
|
||||||
|
# Second inner loop in case block has multiple layers
|
||||||
|
for block in blocklist:
|
||||||
|
h = block(h, y)
|
||||||
|
|
||||||
|
# Apply batchnorm-relu-conv-tanh at output
|
||||||
|
return torch.tanh(self.output_layer(h))
|
||||||
|
|
||||||
|
class DBlock(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, which_conv=layers.SNConv2d, wide=True,
|
||||||
|
preactivation=True, activation=None, downsample=None,
|
||||||
|
channel_ratio=4):
|
||||||
|
super(DBlock, self).__init__()
|
||||||
|
self.in_channels, self.out_channels = in_channels, out_channels
|
||||||
|
# If using wide D (as in SA-GAN and BigGAN), change the channel pattern
|
||||||
|
self.hidden_channels = self.out_channels // channel_ratio
|
||||||
|
self.which_conv = which_conv
|
||||||
|
self.preactivation = preactivation
|
||||||
|
self.activation = activation
|
||||||
|
self.downsample = downsample
|
||||||
|
|
||||||
|
# Conv layers
|
||||||
|
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels,
|
||||||
|
kernel_size=1, padding=0)
|
||||||
|
self.conv2 = self.which_conv(self.hidden_channels, self.hidden_channels)
|
||||||
|
self.conv3 = self.which_conv(self.hidden_channels, self.hidden_channels)
|
||||||
|
self.conv4 = self.which_conv(self.hidden_channels, self.out_channels,
|
||||||
|
kernel_size=1, padding=0)
|
||||||
|
|
||||||
|
self.learnable_sc = True if (in_channels != out_channels) else False
|
||||||
|
if self.learnable_sc:
|
||||||
|
self.conv_sc = self.which_conv(in_channels, out_channels - in_channels,
|
||||||
|
kernel_size=1, padding=0)
|
||||||
|
def shortcut(self, x):
|
||||||
|
if self.downsample:
|
||||||
|
x = self.downsample(x)
|
||||||
|
if self.learnable_sc:
|
||||||
|
x = torch.cat([x, self.conv_sc(x)], 1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# 1x1 bottleneck conv
|
||||||
|
h = self.conv1(F.relu(x))
|
||||||
|
# 3x3 convs
|
||||||
|
h = self.conv2(self.activation(h))
|
||||||
|
h = self.conv3(self.activation(h))
|
||||||
|
# relu before downsample
|
||||||
|
h = self.activation(h)
|
||||||
|
# downsample
|
||||||
|
if self.downsample:
|
||||||
|
h = self.downsample(h)
|
||||||
|
# final 1x1 conv
|
||||||
|
h = self.conv4(h)
|
||||||
|
return h + self.shortcut(x)
|
||||||
|
|
||||||
|
# Discriminator architecture, same paradigm as G's above
|
||||||
|
def D_arch(ch=64, attention='64',ksize='333333', dilation='111111'):
|
||||||
|
arch = {}
|
||||||
|
arch[256] = {'in_channels' : [item * ch for item in [1, 2, 4, 8, 8, 16]],
|
||||||
|
'out_channels' : [item * ch for item in [2, 4, 8, 8, 16, 16]],
|
||||||
|
'downsample' : [True] * 6 + [False],
|
||||||
|
'resolution' : [128, 64, 32, 16, 8, 4, 4 ],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,8)}}
|
||||||
|
arch[128] = {'in_channels' : [item * ch for item in [1, 2, 4, 8, 16]],
|
||||||
|
'out_channels' : [item * ch for item in [2, 4, 8, 16, 16]],
|
||||||
|
'downsample' : [True] * 5 + [False],
|
||||||
|
'resolution' : [64, 32, 16, 8, 4, 4],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,8)}}
|
||||||
|
arch[64] = {'in_channels' : [item * ch for item in [1, 2, 4, 8]],
|
||||||
|
'out_channels' : [item * ch for item in [2, 4, 8, 16]],
|
||||||
|
'downsample' : [True] * 4 + [False],
|
||||||
|
'resolution' : [32, 16, 8, 4, 4],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,7)}}
|
||||||
|
arch[32] = {'in_channels' : [item * ch for item in [4, 4, 4]],
|
||||||
|
'out_channels' : [item * ch for item in [4, 4, 4]],
|
||||||
|
'downsample' : [True, True, False, False],
|
||||||
|
'resolution' : [16, 16, 16, 16],
|
||||||
|
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
|
||||||
|
for i in range(2,6)}}
|
||||||
|
return arch
|
||||||
|
|
||||||
|
class Discriminator(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, D_ch=64, D_wide=True, D_depth=2, resolution=128,
|
||||||
|
D_kernel_size=3, D_attn='64', n_classes=1000,
|
||||||
|
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
|
||||||
|
D_lr=2e-4, D_B1=0.0, D_B2=0.999, adam_eps=1e-8,
|
||||||
|
SN_eps=1e-12, output_dim=1, D_mixed_precision=False, D_fp16=False,
|
||||||
|
D_init='ortho', skip_init=False, D_param='SN', **kwargs):
|
||||||
|
super(Discriminator, self).__init__()
|
||||||
|
# Width multiplier
|
||||||
|
self.ch = D_ch
|
||||||
|
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
|
||||||
|
self.D_wide = D_wide
|
||||||
|
# How many resblocks per stage?
|
||||||
|
self.D_depth = D_depth
|
||||||
|
# Resolution
|
||||||
|
self.resolution = resolution
|
||||||
|
# Kernel size
|
||||||
|
self.kernel_size = D_kernel_size
|
||||||
|
# Attention?
|
||||||
|
self.attention = D_attn
|
||||||
|
# Number of classes
|
||||||
|
self.n_classes = n_classes
|
||||||
|
# Activation
|
||||||
|
self.activation = D_activation
|
||||||
|
# Initialization style
|
||||||
|
self.init = D_init
|
||||||
|
# Parameterization style
|
||||||
|
self.D_param = D_param
|
||||||
|
# Epsilon for Spectral Norm?
|
||||||
|
self.SN_eps = SN_eps
|
||||||
|
# Fp16?
|
||||||
|
self.fp16 = D_fp16
|
||||||
|
# Architecture
|
||||||
|
self.arch = D_arch(self.ch, self.attention)[resolution]
|
||||||
|
|
||||||
|
|
||||||
|
# Which convs, batchnorms, and linear layers to use
|
||||||
|
# No option to turn off SN in D right now
|
||||||
|
if self.D_param == 'SN':
|
||||||
|
self.which_conv = functools.partial(layers.SNConv2d,
|
||||||
|
kernel_size=3, padding=1,
|
||||||
|
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
self.which_linear = functools.partial(layers.SNLinear,
|
||||||
|
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
self.which_embedding = functools.partial(layers.SNEmbedding,
|
||||||
|
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
|
||||||
|
eps=self.SN_eps)
|
||||||
|
|
||||||
|
|
||||||
|
# Prepare model
|
||||||
|
# Stem convolution
|
||||||
|
self.input_conv = self.which_conv(3, self.arch['in_channels'][0])
|
||||||
|
# self.blocks is a doubly-nested list of modules, the outer loop intended
|
||||||
|
# to be over blocks at a given resolution (resblocks and/or self-attention)
|
||||||
|
self.blocks = []
|
||||||
|
for index in range(len(self.arch['out_channels'])):
|
||||||
|
self.blocks += [[DBlock(in_channels=self.arch['in_channels'][index] if d_index==0 else self.arch['out_channels'][index],
|
||||||
|
out_channels=self.arch['out_channels'][index],
|
||||||
|
which_conv=self.which_conv,
|
||||||
|
wide=self.D_wide,
|
||||||
|
activation=self.activation,
|
||||||
|
preactivation=True,
|
||||||
|
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] and d_index==0 else None))
|
||||||
|
for d_index in range(self.D_depth)]]
|
||||||
|
# If attention on this block, attach it to the end
|
||||||
|
if self.arch['attention'][self.arch['resolution'][index]]:
|
||||||
|
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
|
||||||
|
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
|
||||||
|
self.which_conv)]
|
||||||
|
# Turn self.blocks into a ModuleList so that it's all properly registered.
|
||||||
|
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
|
||||||
|
# Linear output layer. The output dimension is typically 1, but may be
|
||||||
|
# larger if we're e.g. turning this into a VAE with an inference output
|
||||||
|
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
|
||||||
|
# Embedding for projection discrimination
|
||||||
|
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
|
||||||
|
|
||||||
|
# Initialize weights
|
||||||
|
if not skip_init:
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
# Set up optimizer
|
||||||
|
self.lr, self.B1, self.B2, self.adam_eps = D_lr, D_B1, D_B2, adam_eps
|
||||||
|
if D_mixed_precision:
|
||||||
|
print('Using fp16 adam in D...')
|
||||||
|
import utils
|
||||||
|
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
|
||||||
|
else:
|
||||||
|
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
|
||||||
|
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
|
||||||
|
# LR scheduling, left here for forward compatibility
|
||||||
|
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
|
||||||
|
# self.j = 0
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
def init_weights(self):
|
||||||
|
self.param_count = 0
|
||||||
|
for module in self.modules():
|
||||||
|
if (isinstance(module, nn.Conv2d)
|
||||||
|
or isinstance(module, nn.Linear)
|
||||||
|
or isinstance(module, nn.Embedding)):
|
||||||
|
if self.init == 'ortho':
|
||||||
|
init.orthogonal_(module.weight)
|
||||||
|
elif self.init == 'N02':
|
||||||
|
init.normal_(module.weight, 0, 0.02)
|
||||||
|
elif self.init in ['glorot', 'xavier']:
|
||||||
|
init.xavier_uniform_(module.weight)
|
||||||
|
else:
|
||||||
|
print('Init style not recognized...')
|
||||||
|
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
||||||
|
print('Param count for D''s initialized parameters: %d' % self.param_count)
|
||||||
|
|
||||||
|
def forward(self, x, y=None):
|
||||||
|
# Run input conv
|
||||||
|
h = self.input_conv(x)
|
||||||
|
# Loop over blocks
|
||||||
|
for index, blocklist in enumerate(self.blocks):
|
||||||
|
for block in blocklist:
|
||||||
|
h = block(h)
|
||||||
|
# Apply global sum pooling as in SN-GAN
|
||||||
|
h = torch.sum(self.activation(h), [2, 3])
|
||||||
|
# Get initial class-unconditional output
|
||||||
|
out = self.linear(h)
|
||||||
|
# Get projection of final featureset onto class vectors and add to evidence
|
||||||
|
out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
|
||||||
|
return out
|
||||||
|
|
||||||
|
# Parallelized G_D to minimize cross-gpu communication
|
||||||
|
# Without this, Generator outputs would get all-gathered and then rebroadcast.
|
||||||
|
class G_D(nn.Module):
|
||||||
|
def __init__(self, G, D):
|
||||||
|
super(G_D, self).__init__()
|
||||||
|
self.G = G
|
||||||
|
self.D = D
|
||||||
|
|
||||||
|
def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False,
|
||||||
|
split_D=False):
|
||||||
|
# If training G, enable grad tape
|
||||||
|
with torch.set_grad_enabled(train_G):
|
||||||
|
# Get Generator output given noise
|
||||||
|
G_z = self.G(z, self.G.shared(gy))
|
||||||
|
# Cast as necessary
|
||||||
|
if self.G.fp16 and not self.D.fp16:
|
||||||
|
G_z = G_z.float()
|
||||||
|
if self.D.fp16 and not self.G.fp16:
|
||||||
|
G_z = G_z.half()
|
||||||
|
# Split_D means to run D once with real data and once with fake,
|
||||||
|
# rather than concatenating along the batch dimension.
|
||||||
|
if split_D:
|
||||||
|
D_fake = self.D(G_z, gy)
|
||||||
|
if x is not None:
|
||||||
|
D_real = self.D(x, dy)
|
||||||
|
return D_fake, D_real
|
||||||
|
else:
|
||||||
|
if return_G_z:
|
||||||
|
return D_fake, G_z
|
||||||
|
else:
|
||||||
|
return D_fake
|
||||||
|
# If real data is provided, concatenate it with the Generator's output
|
||||||
|
# along the batch dimension for improved efficiency.
|
||||||
|
else:
|
||||||
|
D_input = torch.cat([G_z, x], 0) if x is not None else G_z
|
||||||
|
D_class = torch.cat([gy, dy], 0) if dy is not None else gy
|
||||||
|
# Get Discriminator output
|
||||||
|
D_out = self.D(D_input, D_class)
|
||||||
|
if x is not None:
|
||||||
|
return torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real
|
||||||
|
else:
|
||||||
|
if return_G_z:
|
||||||
|
return D_out, G_z
|
||||||
|
else:
|
||||||
|
return D_out
|
|
@ -0,0 +1,21 @@
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2019 Andy Brock
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
|
@ -0,0 +1 @@
|
||||||
|
Download pre-trained weights from (https://drive.google.com/drive/folders/1nJ3HmgYgeA9NZr-oU-enqbYeO7zBaANs?usp=sharing) and put them in `./weights/`
|
Binary file not shown.
|
@ -0,0 +1,389 @@
|
||||||
|
# BigGAN V1:
|
||||||
|
# This is now deprecated code used for porting the TFHub modules to pytorch,
|
||||||
|
# included here for reference only.
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from scipy.stats import truncnorm
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import Parameter
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
|
||||||
|
def l2normalize(v, eps=1e-4):
|
||||||
|
return v / (v.norm() + eps)
|
||||||
|
|
||||||
|
|
||||||
|
def truncated_z_sample(batch_size, z_dim, truncation=0.5, seed=None):
|
||||||
|
state = None if seed is None else np.random.RandomState(seed)
|
||||||
|
values = truncnorm.rvs(-2, 2, size=(batch_size, z_dim), random_state=state)
|
||||||
|
return truncation * values
|
||||||
|
|
||||||
|
|
||||||
|
def denorm(x):
|
||||||
|
out = (x + 1) / 2
|
||||||
|
return out.clamp_(0, 1)
|
||||||
|
|
||||||
|
|
||||||
|
class SpectralNorm(nn.Module):
|
||||||
|
def __init__(self, module, name='weight', power_iterations=1):
|
||||||
|
super(SpectralNorm, self).__init__()
|
||||||
|
self.module = module
|
||||||
|
self.name = name
|
||||||
|
self.power_iterations = power_iterations
|
||||||
|
if not self._made_params():
|
||||||
|
self._make_params()
|
||||||
|
|
||||||
|
def _update_u_v(self):
|
||||||
|
u = getattr(self.module, self.name + "_u")
|
||||||
|
v = getattr(self.module, self.name + "_v")
|
||||||
|
w = getattr(self.module, self.name + "_bar")
|
||||||
|
|
||||||
|
height = w.data.shape[0]
|
||||||
|
_w = w.view(height, -1)
|
||||||
|
for _ in range(self.power_iterations):
|
||||||
|
v = l2normalize(torch.matmul(_w.t(), u))
|
||||||
|
u = l2normalize(torch.matmul(_w, v))
|
||||||
|
|
||||||
|
sigma = u.dot((_w).mv(v))
|
||||||
|
setattr(self.module, self.name, w / sigma.expand_as(w))
|
||||||
|
|
||||||
|
def _made_params(self):
|
||||||
|
try:
|
||||||
|
getattr(self.module, self.name + "_u")
|
||||||
|
getattr(self.module, self.name + "_v")
|
||||||
|
getattr(self.module, self.name + "_bar")
|
||||||
|
return True
|
||||||
|
except AttributeError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _make_params(self):
|
||||||
|
w = getattr(self.module, self.name)
|
||||||
|
|
||||||
|
height = w.data.shape[0]
|
||||||
|
width = w.view(height, -1).data.shape[1]
|
||||||
|
|
||||||
|
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
|
||||||
|
v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
|
||||||
|
u.data = l2normalize(u.data)
|
||||||
|
v.data = l2normalize(v.data)
|
||||||
|
w_bar = Parameter(w.data)
|
||||||
|
|
||||||
|
del self.module._parameters[self.name]
|
||||||
|
self.module.register_parameter(self.name + "_u", u)
|
||||||
|
self.module.register_parameter(self.name + "_v", v)
|
||||||
|
self.module.register_parameter(self.name + "_bar", w_bar)
|
||||||
|
|
||||||
|
def forward(self, *args):
|
||||||
|
self._update_u_v()
|
||||||
|
return self.module.forward(*args)
|
||||||
|
|
||||||
|
|
||||||
|
class SelfAttention(nn.Module):
|
||||||
|
""" Self Attention Layer"""
|
||||||
|
|
||||||
|
def __init__(self, in_dim, activation=F.relu):
|
||||||
|
super().__init__()
|
||||||
|
self.chanel_in = in_dim
|
||||||
|
self.activation = activation
|
||||||
|
|
||||||
|
self.theta = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1, bias=False))
|
||||||
|
self.phi = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1, bias=False))
|
||||||
|
self.pool = nn.MaxPool2d(2, 2)
|
||||||
|
self.g = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 2, kernel_size=1, bias=False))
|
||||||
|
self.o_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim // 2, out_channels=in_dim, kernel_size=1, bias=False))
|
||||||
|
self.gamma = nn.Parameter(torch.zeros(1))
|
||||||
|
|
||||||
|
self.softmax = nn.Softmax(dim=-1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
m_batchsize, C, width, height = x.size()
|
||||||
|
N = height * width
|
||||||
|
|
||||||
|
theta = self.theta(x)
|
||||||
|
phi = self.phi(x)
|
||||||
|
phi = self.pool(phi)
|
||||||
|
phi = phi.view(m_batchsize, -1, N // 4)
|
||||||
|
theta = theta.view(m_batchsize, -1, N)
|
||||||
|
theta = theta.permute(0, 2, 1)
|
||||||
|
attention = self.softmax(torch.bmm(theta, phi))
|
||||||
|
g = self.pool(self.g(x)).view(m_batchsize, -1, N // 4)
|
||||||
|
attn_g = torch.bmm(g, attention.permute(0, 2, 1)).view(m_batchsize, -1, width, height)
|
||||||
|
out = self.o_conv(attn_g)
|
||||||
|
return self.gamma * out + x
|
||||||
|
|
||||||
|
|
||||||
|
class ConditionalBatchNorm2d(nn.Module):
|
||||||
|
def __init__(self, num_features, num_classes, eps=1e-4, momentum=0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.num_features = num_features
|
||||||
|
self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps, momentum=momentum)
|
||||||
|
self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False))
|
||||||
|
self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False))
|
||||||
|
|
||||||
|
def forward(self, x, y):
|
||||||
|
out = self.bn(x)
|
||||||
|
gamma = self.gamma_embed(y) + 1
|
||||||
|
beta = self.beta_embed(y)
|
||||||
|
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class GBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
in_channel,
|
||||||
|
out_channel,
|
||||||
|
kernel_size=[3, 3],
|
||||||
|
padding=1,
|
||||||
|
stride=1,
|
||||||
|
n_class=None,
|
||||||
|
bn=True,
|
||||||
|
activation=F.relu,
|
||||||
|
upsample=True,
|
||||||
|
downsample=False,
|
||||||
|
z_dim=148,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.conv0 = SpectralNorm(
|
||||||
|
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, bias=True if bn else True)
|
||||||
|
)
|
||||||
|
self.conv1 = SpectralNorm(
|
||||||
|
nn.Conv2d(out_channel, out_channel, kernel_size, stride, padding, bias=True if bn else True)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.skip_proj = False
|
||||||
|
if in_channel != out_channel or upsample or downsample:
|
||||||
|
self.conv_sc = SpectralNorm(nn.Conv2d(in_channel, out_channel, 1, 1, 0))
|
||||||
|
self.skip_proj = True
|
||||||
|
|
||||||
|
self.upsample = upsample
|
||||||
|
self.downsample = downsample
|
||||||
|
self.activation = activation
|
||||||
|
self.bn = bn
|
||||||
|
if bn:
|
||||||
|
self.HyperBN = ConditionalBatchNorm2d(in_channel, z_dim)
|
||||||
|
self.HyperBN_1 = ConditionalBatchNorm2d(out_channel, z_dim)
|
||||||
|
|
||||||
|
def forward(self, input, condition=None):
|
||||||
|
out = input
|
||||||
|
|
||||||
|
if self.bn:
|
||||||
|
out = self.HyperBN(out, condition)
|
||||||
|
out = self.activation(out)
|
||||||
|
if self.upsample:
|
||||||
|
out = F.interpolate(out, scale_factor=2)
|
||||||
|
out = self.conv0(out)
|
||||||
|
if self.bn:
|
||||||
|
out = self.HyperBN_1(out, condition)
|
||||||
|
out = self.activation(out)
|
||||||
|
out = self.conv1(out)
|
||||||
|
|
||||||
|
if self.downsample:
|
||||||
|
out = F.avg_pool2d(out, 2)
|
||||||
|
|
||||||
|
if self.skip_proj:
|
||||||
|
skip = input
|
||||||
|
if self.upsample:
|
||||||
|
skip = F.interpolate(skip, scale_factor=2)
|
||||||
|
skip = self.conv_sc(skip)
|
||||||
|
if self.downsample:
|
||||||
|
skip = F.avg_pool2d(skip, 2)
|
||||||
|
else:
|
||||||
|
skip = input
|
||||||
|
return out + skip
|
||||||
|
|
||||||
|
|
||||||
|
class Generator128(nn.Module):
|
||||||
|
def __init__(self, code_dim=120, n_class=1000, chn=96, debug=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.linear = nn.Linear(n_class, 128, bias=False)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
chn = 8
|
||||||
|
|
||||||
|
self.first_view = 16 * chn
|
||||||
|
|
||||||
|
self.G_linear = SpectralNorm(nn.Linear(20, 4 * 4 * 16 * chn))
|
||||||
|
|
||||||
|
z_dim = code_dim + 28
|
||||||
|
|
||||||
|
self.GBlock = nn.ModuleList([
|
||||||
|
GBlock(16 * chn, 16 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(16 * chn, 8 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(8 * chn, 4 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(4 * chn, 2 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(2 * chn, 1 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
])
|
||||||
|
|
||||||
|
self.sa_id = 4
|
||||||
|
self.num_split = len(self.GBlock) + 1
|
||||||
|
self.attention = SelfAttention(2 * chn)
|
||||||
|
self.ScaledCrossReplicaBN = nn.BatchNorm2d(1 * chn, eps=1e-4)
|
||||||
|
self.colorize = SpectralNorm(nn.Conv2d(1 * chn, 3, [3, 3], padding=1))
|
||||||
|
|
||||||
|
def forward(self, input, class_id):
|
||||||
|
codes = torch.chunk(input, self.num_split, 1)
|
||||||
|
class_emb = self.linear(class_id) # 128
|
||||||
|
|
||||||
|
out = self.G_linear(codes[0])
|
||||||
|
out = out.view(-1, 4, 4, self.first_view).permute(0, 3, 1, 2)
|
||||||
|
for i, (code, GBlock) in enumerate(zip(codes[1:], self.GBlock)):
|
||||||
|
if i == self.sa_id:
|
||||||
|
out = self.attention(out)
|
||||||
|
condition = torch.cat([code, class_emb], 1)
|
||||||
|
out = GBlock(out, condition)
|
||||||
|
|
||||||
|
out = self.ScaledCrossReplicaBN(out)
|
||||||
|
out = F.relu(out)
|
||||||
|
out = self.colorize(out)
|
||||||
|
return torch.tanh(out)
|
||||||
|
|
||||||
|
|
||||||
|
class Generator256(nn.Module):
|
||||||
|
def __init__(self, code_dim=140, n_class=1000, chn=96, debug=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.linear = nn.Linear(n_class, 128, bias=False)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
chn = 8
|
||||||
|
|
||||||
|
self.first_view = 16 * chn
|
||||||
|
|
||||||
|
self.G_linear = SpectralNorm(nn.Linear(20, 4 * 4 * 16 * chn))
|
||||||
|
|
||||||
|
self.GBlock = nn.ModuleList([
|
||||||
|
GBlock(16 * chn, 16 * chn, n_class=n_class),
|
||||||
|
GBlock(16 * chn, 8 * chn, n_class=n_class),
|
||||||
|
GBlock(8 * chn, 8 * chn, n_class=n_class),
|
||||||
|
GBlock(8 * chn, 4 * chn, n_class=n_class),
|
||||||
|
GBlock(4 * chn, 2 * chn, n_class=n_class),
|
||||||
|
GBlock(2 * chn, 1 * chn, n_class=n_class),
|
||||||
|
])
|
||||||
|
|
||||||
|
self.sa_id = 5
|
||||||
|
self.num_split = len(self.GBlock) + 1
|
||||||
|
self.attention = SelfAttention(2 * chn)
|
||||||
|
self.ScaledCrossReplicaBN = nn.BatchNorm2d(1 * chn, eps=1e-4)
|
||||||
|
self.colorize = SpectralNorm(nn.Conv2d(1 * chn, 3, [3, 3], padding=1))
|
||||||
|
|
||||||
|
def forward(self, input, class_id):
|
||||||
|
codes = torch.chunk(input, self.num_split, 1)
|
||||||
|
class_emb = self.linear(class_id) # 128
|
||||||
|
|
||||||
|
out = self.G_linear(codes[0])
|
||||||
|
out = out.view(-1, 4, 4, self.first_view).permute(0, 3, 1, 2)
|
||||||
|
for i, (code, GBlock) in enumerate(zip(codes[1:], self.GBlock)):
|
||||||
|
if i == self.sa_id:
|
||||||
|
out = self.attention(out)
|
||||||
|
condition = torch.cat([code, class_emb], 1)
|
||||||
|
out = GBlock(out, condition)
|
||||||
|
|
||||||
|
out = self.ScaledCrossReplicaBN(out)
|
||||||
|
out = F.relu(out)
|
||||||
|
out = self.colorize(out)
|
||||||
|
return torch.tanh(out)
|
||||||
|
|
||||||
|
|
||||||
|
class Generator512(nn.Module):
|
||||||
|
def __init__(self, code_dim=128, n_class=1000, chn=96, debug=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.linear = nn.Linear(n_class, 128, bias=False)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
chn = 8
|
||||||
|
|
||||||
|
self.first_view = 16 * chn
|
||||||
|
|
||||||
|
self.G_linear = SpectralNorm(nn.Linear(16, 4 * 4 * 16 * chn))
|
||||||
|
|
||||||
|
z_dim = code_dim + 16
|
||||||
|
|
||||||
|
self.GBlock = nn.ModuleList([
|
||||||
|
GBlock(16 * chn, 16 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(16 * chn, 8 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(8 * chn, 8 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(8 * chn, 4 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(4 * chn, 2 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(2 * chn, 1 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
GBlock(1 * chn, 1 * chn, n_class=n_class, z_dim=z_dim),
|
||||||
|
])
|
||||||
|
|
||||||
|
self.sa_id = 4
|
||||||
|
self.num_split = len(self.GBlock) + 1
|
||||||
|
self.attention = SelfAttention(4 * chn)
|
||||||
|
self.ScaledCrossReplicaBN = nn.BatchNorm2d(1 * chn)
|
||||||
|
self.colorize = SpectralNorm(nn.Conv2d(1 * chn, 3, [3, 3], padding=1))
|
||||||
|
|
||||||
|
def forward(self, input, class_id):
|
||||||
|
codes = torch.chunk(input, self.num_split, 1)
|
||||||
|
class_emb = self.linear(class_id) # 128
|
||||||
|
|
||||||
|
out = self.G_linear(codes[0])
|
||||||
|
out = out.view(-1, 4, 4, self.first_view).permute(0, 3, 1, 2)
|
||||||
|
for i, (code, GBlock) in enumerate(zip(codes[1:], self.GBlock)):
|
||||||
|
if i == self.sa_id:
|
||||||
|
out = self.attention(out)
|
||||||
|
condition = torch.cat([code, class_emb], 1)
|
||||||
|
out = GBlock(out, condition)
|
||||||
|
|
||||||
|
out = self.ScaledCrossReplicaBN(out)
|
||||||
|
out = F.relu(out)
|
||||||
|
out = self.colorize(out)
|
||||||
|
return torch.tanh(out)
|
||||||
|
|
||||||
|
|
||||||
|
class Discriminator(nn.Module):
|
||||||
|
def __init__(self, n_class=1000, chn=96, debug=False):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def conv(in_channel, out_channel, downsample=True):
|
||||||
|
return GBlock(in_channel, out_channel, bn=False, upsample=False, downsample=downsample)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
chn = 8
|
||||||
|
self.debug = debug
|
||||||
|
|
||||||
|
self.pre_conv = nn.Sequential(
|
||||||
|
SpectralNorm(nn.Conv2d(3, 1 * chn, 3, padding=1)),
|
||||||
|
nn.ReLU(),
|
||||||
|
SpectralNorm(nn.Conv2d(1 * chn, 1 * chn, 3, padding=1)),
|
||||||
|
nn.AvgPool2d(2),
|
||||||
|
)
|
||||||
|
self.pre_skip = SpectralNorm(nn.Conv2d(3, 1 * chn, 1))
|
||||||
|
|
||||||
|
self.conv = nn.Sequential(
|
||||||
|
conv(1 * chn, 1 * chn, downsample=True),
|
||||||
|
conv(1 * chn, 2 * chn, downsample=True),
|
||||||
|
SelfAttention(2 * chn),
|
||||||
|
conv(2 * chn, 2 * chn, downsample=True),
|
||||||
|
conv(2 * chn, 4 * chn, downsample=True),
|
||||||
|
conv(4 * chn, 8 * chn, downsample=True),
|
||||||
|
conv(8 * chn, 8 * chn, downsample=True),
|
||||||
|
conv(8 * chn, 16 * chn, downsample=True),
|
||||||
|
conv(16 * chn, 16 * chn, downsample=False),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.linear = SpectralNorm(nn.Linear(16 * chn, 1))
|
||||||
|
|
||||||
|
self.embed = nn.Embedding(n_class, 16 * chn)
|
||||||
|
self.embed.weight.data.uniform_(-0.1, 0.1)
|
||||||
|
self.embed = SpectralNorm(self.embed)
|
||||||
|
|
||||||
|
def forward(self, input, class_id):
|
||||||
|
|
||||||
|
out = self.pre_conv(input)
|
||||||
|
out += self.pre_skip(F.avg_pool2d(input, 2))
|
||||||
|
out = self.conv(out)
|
||||||
|
out = F.relu(out)
|
||||||
|
out = out.view(out.size(0), out.size(1), -1)
|
||||||
|
out = out.sum(2)
|
||||||
|
out_linear = self.linear(out).squeeze(1)
|
||||||
|
embed = self.embed(class_id)
|
||||||
|
|
||||||
|
prod = (out * embed).sum(1)
|
||||||
|
|
||||||
|
return out_linear + prod
|
|
@ -0,0 +1,396 @@
|
||||||
|
"""Utilities for converting TFHub BigGAN generator weights to PyTorch.
|
||||||
|
Recommended usage:
|
||||||
|
To convert all BigGAN variants and generate test samples, use:
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 python converter.py --generate_samples
|
||||||
|
```
|
||||||
|
See `parse_args` for additional options.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import h5py
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torchvision.utils import save_image
|
||||||
|
import tensorflow as tf
|
||||||
|
import tensorflow_hub as hub
|
||||||
|
import parse
|
||||||
|
|
||||||
|
# import reference biggan from this folder
|
||||||
|
import biggan_v1 as biggan_for_conversion
|
||||||
|
|
||||||
|
# Import model from main folder
|
||||||
|
sys.path.append('..')
|
||||||
|
import BigGAN
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
DEVICE = 'cuda'
|
||||||
|
HDF5_TMPL = 'biggan-{}.h5'
|
||||||
|
PTH_TMPL = 'biggan-{}.pth'
|
||||||
|
MODULE_PATH_TMPL = 'https://tfhub.dev/deepmind/biggan-{}/2'
|
||||||
|
Z_DIMS = {
|
||||||
|
128: 120,
|
||||||
|
256: 140,
|
||||||
|
512: 128}
|
||||||
|
RESOLUTIONS = list(Z_DIMS)
|
||||||
|
|
||||||
|
|
||||||
|
def dump_tfhub_to_hdf5(module_path, hdf5_path, redownload=False):
|
||||||
|
"""Loads TFHub weights and saves them to intermediate HDF5 file.
|
||||||
|
Args:
|
||||||
|
module_path ([Path-like]): Path to TFHub module.
|
||||||
|
hdf5_path ([Path-like]): Path to output HDF5 file.
|
||||||
|
Returns:
|
||||||
|
[h5py.File]: Loaded hdf5 file containing module weights.
|
||||||
|
"""
|
||||||
|
if os.path.exists(hdf5_path) and (not redownload):
|
||||||
|
print('Loading BigGAN hdf5 file from:', hdf5_path)
|
||||||
|
return h5py.File(hdf5_path, 'r')
|
||||||
|
|
||||||
|
print('Loading BigGAN module from:', module_path)
|
||||||
|
tf.reset_default_graph()
|
||||||
|
hub.Module(module_path)
|
||||||
|
print('Loaded BigGAN module from:', module_path)
|
||||||
|
|
||||||
|
initializer = tf.global_variables_initializer()
|
||||||
|
sess = tf.Session()
|
||||||
|
sess.run(initializer)
|
||||||
|
|
||||||
|
print('Saving BigGAN weights to :', hdf5_path)
|
||||||
|
h5f = h5py.File(hdf5_path, 'w')
|
||||||
|
for var in tf.global_variables():
|
||||||
|
val = sess.run(var)
|
||||||
|
h5f.create_dataset(var.name, data=val)
|
||||||
|
print(f'Saving {var.name} with shape {val.shape}')
|
||||||
|
h5f.close()
|
||||||
|
return h5py.File(hdf5_path, 'r')
|
||||||
|
|
||||||
|
|
||||||
|
class TFHub2Pytorch(object):
|
||||||
|
|
||||||
|
TF_ROOT = 'module'
|
||||||
|
|
||||||
|
NUM_GBLOCK = {
|
||||||
|
128: 5,
|
||||||
|
256: 6,
|
||||||
|
512: 7
|
||||||
|
}
|
||||||
|
|
||||||
|
w = 'w'
|
||||||
|
b = 'b'
|
||||||
|
u = 'u0'
|
||||||
|
v = 'u1'
|
||||||
|
gamma = 'gamma'
|
||||||
|
beta = 'beta'
|
||||||
|
|
||||||
|
def __init__(self, state_dict, tf_weights, resolution=256, load_ema=True, verbose=False):
|
||||||
|
self.state_dict = state_dict
|
||||||
|
self.tf_weights = tf_weights
|
||||||
|
self.resolution = resolution
|
||||||
|
self.verbose = verbose
|
||||||
|
if load_ema:
|
||||||
|
for name in ['w', 'b', 'gamma', 'beta']:
|
||||||
|
setattr(self, name, getattr(self, name) + '/ema_b999900')
|
||||||
|
|
||||||
|
def load(self):
|
||||||
|
self.load_generator()
|
||||||
|
return self.state_dict
|
||||||
|
|
||||||
|
def load_generator(self):
|
||||||
|
GENERATOR_ROOT = os.path.join(self.TF_ROOT, 'Generator')
|
||||||
|
|
||||||
|
for i in range(self.NUM_GBLOCK[self.resolution]):
|
||||||
|
name_tf = os.path.join(GENERATOR_ROOT, 'GBlock')
|
||||||
|
name_tf += f'_{i}' if i != 0 else ''
|
||||||
|
self.load_GBlock(f'GBlock.{i}.', name_tf)
|
||||||
|
|
||||||
|
self.load_attention('attention.', os.path.join(GENERATOR_ROOT, 'attention'))
|
||||||
|
self.load_linear('linear', os.path.join(self.TF_ROOT, 'linear'), bias=False)
|
||||||
|
self.load_snlinear('G_linear', os.path.join(GENERATOR_ROOT, 'G_Z', 'G_linear'))
|
||||||
|
self.load_colorize('colorize', os.path.join(GENERATOR_ROOT, 'conv_2d'))
|
||||||
|
self.load_ScaledCrossReplicaBNs('ScaledCrossReplicaBN',
|
||||||
|
os.path.join(GENERATOR_ROOT, 'ScaledCrossReplicaBN'))
|
||||||
|
|
||||||
|
def load_linear(self, name_pth, name_tf, bias=True):
|
||||||
|
self.state_dict[name_pth + '.weight'] = self.load_tf_tensor(name_tf, self.w).permute(1, 0)
|
||||||
|
if bias:
|
||||||
|
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.b)
|
||||||
|
|
||||||
|
def load_snlinear(self, name_pth, name_tf, bias=True):
|
||||||
|
self.state_dict[name_pth + '.module.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
|
||||||
|
self.state_dict[name_pth + '.module.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
|
||||||
|
self.state_dict[name_pth + '.module.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(1, 0)
|
||||||
|
if bias:
|
||||||
|
self.state_dict[name_pth + '.module.bias'] = self.load_tf_tensor(name_tf, self.b)
|
||||||
|
|
||||||
|
def load_colorize(self, name_pth, name_tf):
|
||||||
|
self.load_snconv(name_pth, name_tf)
|
||||||
|
|
||||||
|
def load_GBlock(self, name_pth, name_tf):
|
||||||
|
self.load_convs(name_pth, name_tf)
|
||||||
|
self.load_HyperBNs(name_pth, name_tf)
|
||||||
|
|
||||||
|
def load_convs(self, name_pth, name_tf):
|
||||||
|
self.load_snconv(name_pth + 'conv0', os.path.join(name_tf, 'conv0'))
|
||||||
|
self.load_snconv(name_pth + 'conv1', os.path.join(name_tf, 'conv1'))
|
||||||
|
self.load_snconv(name_pth + 'conv_sc', os.path.join(name_tf, 'conv_sc'))
|
||||||
|
|
||||||
|
def load_snconv(self, name_pth, name_tf, bias=True):
|
||||||
|
if self.verbose:
|
||||||
|
print(f'loading: {name_pth} from {name_tf}')
|
||||||
|
self.state_dict[name_pth + '.module.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
|
||||||
|
self.state_dict[name_pth + '.module.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
|
||||||
|
self.state_dict[name_pth + '.module.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(3, 2, 0, 1)
|
||||||
|
if bias:
|
||||||
|
self.state_dict[name_pth + '.module.bias'] = self.load_tf_tensor(name_tf, self.b).squeeze()
|
||||||
|
|
||||||
|
def load_conv(self, name_pth, name_tf, bias=True):
|
||||||
|
|
||||||
|
self.state_dict[name_pth + '.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
|
||||||
|
self.state_dict[name_pth + '.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
|
||||||
|
self.state_dict[name_pth + '.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(3, 2, 0, 1)
|
||||||
|
if bias:
|
||||||
|
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.b)
|
||||||
|
|
||||||
|
def load_HyperBNs(self, name_pth, name_tf):
|
||||||
|
self.load_HyperBN(name_pth + 'HyperBN', os.path.join(name_tf, 'HyperBN'))
|
||||||
|
self.load_HyperBN(name_pth + 'HyperBN_1', os.path.join(name_tf, 'HyperBN_1'))
|
||||||
|
|
||||||
|
def load_ScaledCrossReplicaBNs(self, name_pth, name_tf):
|
||||||
|
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.beta).squeeze()
|
||||||
|
self.state_dict[name_pth + '.weight'] = self.load_tf_tensor(name_tf, self.gamma).squeeze()
|
||||||
|
self.state_dict[name_pth + '.running_mean'] = self.load_tf_tensor(name_tf + 'bn', 'accumulated_mean')
|
||||||
|
self.state_dict[name_pth + '.running_var'] = self.load_tf_tensor(name_tf + 'bn', 'accumulated_var')
|
||||||
|
self.state_dict[name_pth + '.num_batches_tracked'] = torch.tensor(
|
||||||
|
self.tf_weights[os.path.join(name_tf + 'bn', 'accumulation_counter:0')][()], dtype=torch.float32)
|
||||||
|
|
||||||
|
def load_HyperBN(self, name_pth, name_tf):
|
||||||
|
if self.verbose:
|
||||||
|
print(f'loading: {name_pth} from {name_tf}')
|
||||||
|
beta = name_pth + '.beta_embed.module'
|
||||||
|
gamma = name_pth + '.gamma_embed.module'
|
||||||
|
self.state_dict[beta + '.weight_u'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.u).squeeze()
|
||||||
|
self.state_dict[gamma + '.weight_u'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.u).squeeze()
|
||||||
|
self.state_dict[beta + '.weight_v'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.v).squeeze()
|
||||||
|
self.state_dict[gamma + '.weight_v'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.v).squeeze()
|
||||||
|
self.state_dict[beta + '.weight_bar'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.w).permute(1, 0)
|
||||||
|
self.state_dict[gamma +
|
||||||
|
'.weight_bar'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.w).permute(1, 0)
|
||||||
|
|
||||||
|
cr_bn_name = name_tf.replace('HyperBN', 'CrossReplicaBN')
|
||||||
|
self.state_dict[name_pth + '.bn.running_mean'] = self.load_tf_tensor(cr_bn_name, 'accumulated_mean')
|
||||||
|
self.state_dict[name_pth + '.bn.running_var'] = self.load_tf_tensor(cr_bn_name, 'accumulated_var')
|
||||||
|
self.state_dict[name_pth + '.bn.num_batches_tracked'] = torch.tensor(
|
||||||
|
self.tf_weights[os.path.join(cr_bn_name, 'accumulation_counter:0')][()], dtype=torch.float32)
|
||||||
|
|
||||||
|
def load_attention(self, name_pth, name_tf):
|
||||||
|
|
||||||
|
self.load_snconv(name_pth + 'theta', os.path.join(name_tf, 'theta'), bias=False)
|
||||||
|
self.load_snconv(name_pth + 'phi', os.path.join(name_tf, 'phi'), bias=False)
|
||||||
|
self.load_snconv(name_pth + 'g', os.path.join(name_tf, 'g'), bias=False)
|
||||||
|
self.load_snconv(name_pth + 'o_conv', os.path.join(name_tf, 'o_conv'), bias=False)
|
||||||
|
self.state_dict[name_pth + 'gamma'] = self.load_tf_tensor(name_tf, self.gamma)
|
||||||
|
|
||||||
|
def load_tf_tensor(self, prefix, var, device='0'):
|
||||||
|
name = os.path.join(prefix, var) + f':{device}'
|
||||||
|
return torch.from_numpy(self.tf_weights[name][:])
|
||||||
|
|
||||||
|
# Convert from v1: This function maps
|
||||||
|
def convert_from_v1(hub_dict, resolution=128):
|
||||||
|
weightname_dict = {'weight_u': 'u0', 'weight_bar': 'weight', 'bias': 'bias'}
|
||||||
|
convnum_dict = {'conv0': 'conv1', 'conv1': 'conv2', 'conv_sc': 'conv_sc'}
|
||||||
|
attention_blocknum = {128: 3, 256: 4, 512: 3}[resolution]
|
||||||
|
hub2me = {'linear.weight': 'shared.weight', # This is actually the shared weight
|
||||||
|
# Linear stuff
|
||||||
|
'G_linear.module.weight_bar': 'linear.weight',
|
||||||
|
'G_linear.module.bias': 'linear.bias',
|
||||||
|
'G_linear.module.weight_u': 'linear.u0',
|
||||||
|
# output layer stuff
|
||||||
|
'ScaledCrossReplicaBN.weight': 'output_layer.0.gain',
|
||||||
|
'ScaledCrossReplicaBN.bias': 'output_layer.0.bias',
|
||||||
|
'ScaledCrossReplicaBN.running_mean': 'output_layer.0.stored_mean',
|
||||||
|
'ScaledCrossReplicaBN.running_var': 'output_layer.0.stored_var',
|
||||||
|
'colorize.module.weight_bar': 'output_layer.2.weight',
|
||||||
|
'colorize.module.bias': 'output_layer.2.bias',
|
||||||
|
'colorize.module.weight_u': 'output_layer.2.u0',
|
||||||
|
# Attention stuff
|
||||||
|
'attention.gamma': 'blocks.%d.1.gamma' % attention_blocknum,
|
||||||
|
'attention.theta.module.weight_u': 'blocks.%d.1.theta.u0' % attention_blocknum,
|
||||||
|
'attention.theta.module.weight_bar': 'blocks.%d.1.theta.weight' % attention_blocknum,
|
||||||
|
'attention.phi.module.weight_u': 'blocks.%d.1.phi.u0' % attention_blocknum,
|
||||||
|
'attention.phi.module.weight_bar': 'blocks.%d.1.phi.weight' % attention_blocknum,
|
||||||
|
'attention.g.module.weight_u': 'blocks.%d.1.g.u0' % attention_blocknum,
|
||||||
|
'attention.g.module.weight_bar': 'blocks.%d.1.g.weight' % attention_blocknum,
|
||||||
|
'attention.o_conv.module.weight_u': 'blocks.%d.1.o.u0' % attention_blocknum,
|
||||||
|
'attention.o_conv.module.weight_bar':'blocks.%d.1.o.weight' % attention_blocknum,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Loop over the hub dict and build the hub2me map
|
||||||
|
for name in hub_dict.keys():
|
||||||
|
if 'GBlock' in name:
|
||||||
|
if 'HyperBN' not in name: # it's a conv
|
||||||
|
out = parse.parse('GBlock.{:d}.{}.module.{}',name)
|
||||||
|
blocknum, convnum, weightname = out
|
||||||
|
if weightname not in weightname_dict:
|
||||||
|
continue # else hyperBN in
|
||||||
|
out_name = 'blocks.%d.0.%s.%s' % (blocknum, convnum_dict[convnum], weightname_dict[weightname]) # Increment conv number by 1
|
||||||
|
else: # hyperbn not conv
|
||||||
|
BNnum = 2 if 'HyperBN_1' in name else 1
|
||||||
|
if 'embed' in name:
|
||||||
|
out = parse.parse('GBlock.{:d}.{}.module.{}',name)
|
||||||
|
blocknum, gamma_or_beta, weightname = out
|
||||||
|
if weightname not in weightname_dict: # Ignore weight_v
|
||||||
|
continue
|
||||||
|
out_name = 'blocks.%d.0.bn%d.%s.%s' % (blocknum, BNnum, 'gain' if 'gamma' in gamma_or_beta else 'bias', weightname_dict[weightname])
|
||||||
|
else:
|
||||||
|
out = parse.parse('GBlock.{:d}.{}.bn.{}',name)
|
||||||
|
blocknum, dummy, mean_or_var = out
|
||||||
|
if 'num_batches_tracked' in mean_or_var:
|
||||||
|
continue
|
||||||
|
out_name = 'blocks.%d.0.bn%d.%s' % (blocknum, BNnum, 'stored_mean' if 'mean' in mean_or_var else 'stored_var')
|
||||||
|
hub2me[name] = out_name
|
||||||
|
|
||||||
|
|
||||||
|
# Invert the hub2me map
|
||||||
|
me2hub = {hub2me[item]: item for item in hub2me}
|
||||||
|
new_dict = {}
|
||||||
|
dimz_dict = {128: 20, 256: 20, 512:16}
|
||||||
|
for item in me2hub:
|
||||||
|
# Swap input dim ordering on batchnorm bois to account for my arbitrary change of ordering when concatenating Ys and Zs
|
||||||
|
if ('bn' in item and 'weight' in item) and ('gain' in item or 'bias' in item) and ('output_layer' not in item):
|
||||||
|
new_dict[item] = torch.cat([hub_dict[me2hub[item]][:, -128:], hub_dict[me2hub[item]][:, :dimz_dict[resolution]]], 1)
|
||||||
|
# Reshape the first linear weight, bias, and u0
|
||||||
|
elif item == 'linear.weight':
|
||||||
|
new_dict[item] = hub_dict[me2hub[item]].contiguous().view(4, 4, 96 * 16, -1).permute(2,0,1,3).contiguous().view(-1,dimz_dict[resolution])
|
||||||
|
elif item == 'linear.bias':
|
||||||
|
new_dict[item] = hub_dict[me2hub[item]].view(4, 4, 96 * 16).permute(2,0,1).contiguous().view(-1)
|
||||||
|
elif item == 'linear.u0':
|
||||||
|
new_dict[item] = hub_dict[me2hub[item]].view(4, 4, 96 * 16).permute(2,0,1).contiguous().view(1, -1)
|
||||||
|
elif me2hub[item] == 'linear.weight': # THIS IS THE SHARED WEIGHT NOT THE FIRST LINEAR LAYER
|
||||||
|
# Transpose shared weight so that it's an embedding
|
||||||
|
new_dict[item] = hub_dict[me2hub[item]].t()
|
||||||
|
elif 'weight_u' in me2hub[item]: # Unsqueeze u0s
|
||||||
|
new_dict[item] = hub_dict[me2hub[item]].unsqueeze(0)
|
||||||
|
else:
|
||||||
|
new_dict[item] = hub_dict[me2hub[item]]
|
||||||
|
return new_dict
|
||||||
|
|
||||||
|
def get_config(resolution):
|
||||||
|
attn_dict = {128: '64', 256: '128', 512: '64'}
|
||||||
|
dim_z_dict = {128: 120, 256: 140, 512: 128}
|
||||||
|
config = {'G_param': 'SN', 'D_param': 'SN',
|
||||||
|
'G_ch': 96, 'D_ch': 96,
|
||||||
|
'D_wide': True, 'G_shared': True,
|
||||||
|
'shared_dim': 128, 'dim_z': dim_z_dict[resolution],
|
||||||
|
'hier': True, 'cross_replica': False,
|
||||||
|
'mybn': False, 'G_activation': nn.ReLU(inplace=True),
|
||||||
|
'G_attn': attn_dict[resolution],
|
||||||
|
'norm_style': 'bn',
|
||||||
|
'G_init': 'ortho', 'skip_init': True, 'no_optim': True,
|
||||||
|
'G_fp16': False, 'G_mixed_precision': False,
|
||||||
|
'accumulate_stats': False, 'num_standing_accumulations': 16,
|
||||||
|
'G_eval_mode': True,
|
||||||
|
'BN_eps': 1e-04, 'SN_eps': 1e-04,
|
||||||
|
'num_G_SVs': 1, 'num_G_SV_itrs': 1, 'resolution': resolution,
|
||||||
|
'n_classes': 1000}
|
||||||
|
return config
|
||||||
|
|
||||||
|
|
||||||
|
def convert_biggan(resolution, weight_dir, redownload=False, no_ema=False, verbose=False):
|
||||||
|
module_path = MODULE_PATH_TMPL.format(resolution)
|
||||||
|
hdf5_path = os.path.join(weight_dir, HDF5_TMPL.format(resolution))
|
||||||
|
pth_path = os.path.join(weight_dir, PTH_TMPL.format(resolution))
|
||||||
|
|
||||||
|
tf_weights = dump_tfhub_to_hdf5(module_path, hdf5_path, redownload=redownload)
|
||||||
|
G_temp = getattr(biggan_for_conversion, f'Generator{resolution}')()
|
||||||
|
state_dict_temp = G_temp.state_dict()
|
||||||
|
|
||||||
|
converter = TFHub2Pytorch(state_dict_temp, tf_weights, resolution=resolution,
|
||||||
|
load_ema=(not no_ema), verbose=verbose)
|
||||||
|
state_dict_v1 = converter.load()
|
||||||
|
state_dict = convert_from_v1(state_dict_v1, resolution)
|
||||||
|
# Get the config, build the model
|
||||||
|
config = get_config(resolution)
|
||||||
|
G = BigGAN.Generator(**config)
|
||||||
|
G.load_state_dict(state_dict, strict=False) # Ignore missing sv0 entries
|
||||||
|
torch.save(state_dict, pth_path)
|
||||||
|
|
||||||
|
# output_location ='pretrained_weights/TFHub-PyTorch-128.pth'
|
||||||
|
|
||||||
|
return G
|
||||||
|
|
||||||
|
|
||||||
|
def generate_sample(G, z_dim, batch_size, filename, parallel=False):
|
||||||
|
|
||||||
|
G.eval()
|
||||||
|
G.to(DEVICE)
|
||||||
|
with torch.no_grad():
|
||||||
|
z = torch.randn(batch_size, G.dim_z).to(DEVICE)
|
||||||
|
y = torch.randint(low=0, high=1000, size=(batch_size,),
|
||||||
|
device=DEVICE, dtype=torch.int64, requires_grad=False)
|
||||||
|
if parallel:
|
||||||
|
images = nn.parallel.data_parallel(G, (z, G.shared(y)))
|
||||||
|
else:
|
||||||
|
images = G(z, G.shared(y))
|
||||||
|
save_image(images, filename, scale_each=True, normalize=True)
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
usage = 'Parser for conversion script.'
|
||||||
|
parser = argparse.ArgumentParser(description=usage)
|
||||||
|
parser.add_argument(
|
||||||
|
'--resolution', '-r', type=int, default=None, choices=[128, 256, 512],
|
||||||
|
help='Resolution of TFHub module to convert. Converts all resolutions if None.')
|
||||||
|
parser.add_argument(
|
||||||
|
'--redownload', action='store_true', default=False,
|
||||||
|
help='Redownload weights and overwrite current hdf5 file, if present.')
|
||||||
|
parser.add_argument(
|
||||||
|
'--weights_dir', type=str, default='pretrained_weights')
|
||||||
|
parser.add_argument(
|
||||||
|
'--samples_dir', type=str, default='pretrained_samples')
|
||||||
|
parser.add_argument(
|
||||||
|
'--no_ema', action='store_true', default=False,
|
||||||
|
help='Do not load ema weights.')
|
||||||
|
parser.add_argument(
|
||||||
|
'--verbose', action='store_true', default=False,
|
||||||
|
help='Additionally logging.')
|
||||||
|
parser.add_argument(
|
||||||
|
'--generate_samples', action='store_true', default=False,
|
||||||
|
help='Generate test sample with pretrained model.')
|
||||||
|
parser.add_argument(
|
||||||
|
'--batch_size', type=int, default=64,
|
||||||
|
help='Batch size used for test sample.')
|
||||||
|
parser.add_argument(
|
||||||
|
'--parallel', action='store_true', default=False,
|
||||||
|
help='Parallelize G?')
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
args = parse_args()
|
||||||
|
os.makedirs(args.weights_dir, exist_ok=True)
|
||||||
|
os.makedirs(args.samples_dir, exist_ok=True)
|
||||||
|
|
||||||
|
if args.resolution is not None:
|
||||||
|
G = convert_biggan(args.resolution, args.weights_dir,
|
||||||
|
redownload=args.redownload,
|
||||||
|
no_ema=args.no_ema, verbose=args.verbose)
|
||||||
|
if args.generate_samples:
|
||||||
|
filename = os.path.join(args.samples_dir, f'biggan{args.resolution}_samples.jpg')
|
||||||
|
print('Generating samples...')
|
||||||
|
generate_sample(G, Z_DIMS[args.resolution], args.batch_size, filename, args.parallel)
|
||||||
|
else:
|
||||||
|
for res in RESOLUTIONS:
|
||||||
|
G = convert_biggan(res, args.weights_dir,
|
||||||
|
redownload=args.redownload,
|
||||||
|
no_ema=args.no_ema, verbose=args.verbose)
|
||||||
|
if args.generate_samples:
|
||||||
|
filename = os.path.join(args.samples_dir, f'biggan{res}_samples.jpg')
|
||||||
|
print('Generating samples...')
|
||||||
|
generate_sample(G, Z_DIMS[res], args.batch_size, filename, args.parallel)
|
|
@ -0,0 +1,2 @@
|
||||||
|
import sys
|
||||||
|
sys.path.append('./BigGAN_utils/')
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,439 @@
|
||||||
|
c = ['Aardvark', 'Abyssinian', 'Affenpinscher', 'Akbash', 'Akita', 'Albatross',
|
||||||
|
'Alligator', 'Alpaca', 'Angelfish', 'Ant', 'Anteater', 'Antelope', 'Ape',
|
||||||
|
'Armadillo', 'Ass', 'Avocet', 'Axolotl', 'Baboon', 'Badger', 'Balinese',
|
||||||
|
'Bandicoot', 'Barb', 'Barnacle', 'Barracuda', 'Bat', 'Beagle', 'Bear',
|
||||||
|
'Beaver', 'Bee', 'Beetle', 'Binturong', 'Bird', 'Birman', 'Bison',
|
||||||
|
'Bloodhound', 'Boar', 'Bobcat', 'Bombay', 'Bongo', 'Bonobo', 'Booby',
|
||||||
|
'Budgerigar', 'Buffalo', 'Bulldog', 'Bullfrog', 'Burmese', 'Butterfly',
|
||||||
|
'Caiman', 'Camel', 'Capybara', 'Caracal', 'Caribou', 'Cassowary', 'Cat',
|
||||||
|
'Caterpillar', 'Catfish', 'Cattle', 'Centipede', 'Chameleon', 'Chamois',
|
||||||
|
'Cheetah', 'Chicken', 'Chihuahua', 'Chimpanzee', 'Chinchilla', 'Chinook',
|
||||||
|
'Chipmunk', 'Chough', 'Cichlid', 'Clam', 'Coati', 'Cobra', 'Cockroach',
|
||||||
|
'Cod', 'Collie', 'Coral', 'Cormorant', 'Cougar', 'Cow', 'Coyote',
|
||||||
|
'Crab', 'Crane', 'Crocodile', 'Crow', 'Curlew', 'Cuscus', 'Cuttlefish',
|
||||||
|
'Dachshund', 'Dalmatian', 'Deer', 'Dhole', 'Dingo', 'Dinosaur', 'Discus',
|
||||||
|
'Dodo', 'Dog', 'Dogball', 'Dogfish', 'Dolphin', 'Donkey', 'Dormouse',
|
||||||
|
'Dove', 'Dragonfly', 'Drever', 'Duck', 'Dugong', 'Dunker', 'Dunlin',
|
||||||
|
'Eagle', 'Earwig', 'Echidna', 'Eel', 'Eland', 'Elephant', 'ElephantSeal',
|
||||||
|
'Elk', 'Emu', 'Falcon', 'Ferret', 'Finch', 'Fish', 'Flamingo', 'Flounder',
|
||||||
|
'Fly', 'Fossa', 'Fox', 'Frigatebird', 'Frog', 'Galago', 'Gar', 'Gaur',
|
||||||
|
'Gazelle', 'Gecko', 'Gerbil', 'Gharial', 'GiantPanda', 'Gibbon', 'Giraffe',
|
||||||
|
'Gnat', 'Gnu', 'Goat', 'Goldfinch', 'Goldfish', 'Goose', 'Gopher',
|
||||||
|
'Gorilla', 'Goshawk', 'Grasshopper', 'Greyhound', 'Grouse', 'Guanaco',
|
||||||
|
'GuineaFowl', 'GuineaPig', 'Gull', 'Guppy', 'Hamster', 'Hare', 'Harrier',
|
||||||
|
'Havanese', 'Hawk', 'Hedgehog', 'Heron', 'Herring', 'Himalayan',
|
||||||
|
'Hippopotamus', 'Hornet', 'Horse', 'Human', 'Hummingbird', 'Hyena',
|
||||||
|
'Ibis', 'Iguana', 'Impala', 'Indri', 'Insect', 'Jackal', 'Jaguar',
|
||||||
|
'Javanese', 'Jay', 'Jellyfish', 'Kakapo', 'Kangaroo', 'Kingfisher',
|
||||||
|
'Kiwi', 'Koala', 'KomodoDragon', 'Kouprey', 'Kudu', 'Labradoodle',
|
||||||
|
'Ladybird', 'Lapwing', 'Lark', 'Lemming', 'Lemur', 'Leopard', 'Liger',
|
||||||
|
'Lion', 'Lionfish', 'Lizard', 'Llama', 'Lobster', 'Locust', 'Loris',
|
||||||
|
'Louse', 'Lynx', 'Lyrebird', 'Macaw', 'Magpie', 'Mallard', 'Maltese',
|
||||||
|
'Manatee', 'Mandrill', 'Markhor', 'Marten', 'Mastiff', 'Mayfly', 'Meerkat',
|
||||||
|
'Millipede', 'Mink', 'Mole', 'Molly', 'Mongoose', 'Mongrel', 'Monkey',
|
||||||
|
'Moorhen', 'Moose', 'Mosquito', 'Moth', 'Mouse', 'Mule', 'Narwhal',
|
||||||
|
'Neanderthal', 'Newfoundland', 'Newt', 'Nightingale', 'Numbat', 'Ocelot',
|
||||||
|
'Octopus', 'Okapi', 'Olm', 'Opossum', 'Orang-utan', 'Oryx', 'Ostrich',
|
||||||
|
'Otter', 'Owl', 'Ox', 'Oyster', 'Pademelon', 'Panther', 'Parrot',
|
||||||
|
'Partridge', 'Peacock', 'Peafowl', 'Pekingese', 'Pelican', 'Penguin',
|
||||||
|
'Persian', 'Pheasant', 'Pig', 'Pigeon', 'Pika', 'Pike', 'Piranha',
|
||||||
|
'Platypus', 'Pointer', 'Pony', 'Poodle', 'Porcupine', 'Porpoise',
|
||||||
|
'Possum', 'PrairieDog', 'Prawn', 'Puffin', 'Pug', 'Puma', 'Quail',
|
||||||
|
'Quelea', 'Quetzal', 'Quokka', 'Quoll', 'Rabbit', 'Raccoon', 'Ragdoll',
|
||||||
|
'Rail', 'Ram', 'Rat', 'Rattlesnake', 'Raven', 'RedDeer', 'RedPanda',
|
||||||
|
'Reindeer', 'Rhinoceros', 'Robin', 'Rook', 'Rottweiler', 'Ruff',
|
||||||
|
'Salamander', 'Salmon', 'SandDollar', 'Sandpiper', 'Saola',
|
||||||
|
'Sardine', 'Scorpion', 'SeaLion', 'SeaUrchin', 'Seahorse',
|
||||||
|
'Seal', 'Serval', 'Shark', 'Sheep', 'Shrew', 'Shrimp', 'Siamese',
|
||||||
|
'Siberian', 'Skunk', 'Sloth', 'Snail', 'Snake', 'Snowshoe', 'Somali',
|
||||||
|
'Sparrow', 'Spider', 'Sponge', 'Squid', 'Squirrel', 'Starfish', 'Starling',
|
||||||
|
'Stingray', 'Stinkbug', 'Stoat', 'Stork', 'Swallow', 'Swan', 'Tang',
|
||||||
|
'Tapir', 'Tarsier', 'Termite', 'Tetra', 'Tiffany', 'Tiger', 'Toad',
|
||||||
|
'Tortoise', 'Toucan', 'Tropicbird', 'Trout', 'Tuatara', 'Turkey',
|
||||||
|
'Turtle', 'Uakari', 'Uguisu', 'Umbrellabird', 'Viper', 'Vulture',
|
||||||
|
'Wallaby', 'Walrus', 'Warthog', 'Wasp', 'WaterBuffalo', 'Weasel',
|
||||||
|
'Whale', 'Whippet', 'Wildebeest', 'Wolf', 'Wolverine', 'Wombat',
|
||||||
|
'Woodcock', 'Woodlouse', 'Woodpecker', 'Worm', 'Wrasse', 'Wren',
|
||||||
|
'Yak', 'Zebra', 'Zebu', 'Zonkey']
|
||||||
|
a = ['able', 'above', 'absent', 'absolute', 'abstract', 'abundant', 'academic',
|
||||||
|
'acceptable', 'accepted', 'accessible', 'accurate', 'accused', 'active',
|
||||||
|
'actual', 'acute', 'added', 'additional', 'adequate', 'adjacent',
|
||||||
|
'administrative', 'adorable', 'advanced', 'adverse', 'advisory',
|
||||||
|
'aesthetic', 'afraid', 'african', 'aggregate', 'aggressive', 'agreeable',
|
||||||
|
'agreed', 'agricultural', 'alert', 'alive', 'alleged', 'allied', 'alone',
|
||||||
|
'alright', 'alternative', 'amateur', 'amazing', 'ambitious', 'american',
|
||||||
|
'amused', 'ancient', 'angry', 'annoyed', 'annual', 'anonymous', 'anxious',
|
||||||
|
'appalling', 'apparent', 'applicable', 'appropriate', 'arab', 'arbitrary',
|
||||||
|
'architectural', 'armed', 'arrogant', 'artificial', 'artistic', 'ashamed',
|
||||||
|
'asian', 'asleep', 'assistant', 'associated', 'atomic', 'attractive',
|
||||||
|
'australian', 'automatic', 'autonomous', 'available', 'average',
|
||||||
|
'awake', 'aware', 'awful', 'awkward', 'back', 'bad', 'balanced', 'bare',
|
||||||
|
'basic', 'beautiful', 'beneficial', 'better', 'bewildered', 'big',
|
||||||
|
'binding', 'biological', 'bitter', 'bizarre', 'black', 'blank', 'blind',
|
||||||
|
'blonde', 'bloody', 'blue', 'blushing', 'boiling', 'bold', 'bored',
|
||||||
|
'boring', 'bottom', 'brainy', 'brave', 'breakable', 'breezy', 'brief',
|
||||||
|
'bright', 'brilliant', 'british', 'broad', 'broken', 'brown', 'bumpy',
|
||||||
|
'burning', 'busy', 'calm', 'canadian', 'capable', 'capitalist', 'careful',
|
||||||
|
'casual', 'catholic', 'causal', 'cautious', 'central', 'certain',
|
||||||
|
'changing', 'characteristic', 'charming', 'cheap', 'cheerful', 'chemical',
|
||||||
|
'chief', 'chilly', 'chinese', 'chosen', 'christian', 'chronic', 'chubby',
|
||||||
|
'circular', 'civic', 'civil', 'civilian', 'classic', 'classical', 'clean',
|
||||||
|
'clear', 'clever', 'clinical', 'close', 'closed', 'cloudy', 'clumsy',
|
||||||
|
'coastal', 'cognitive', 'coherent', 'cold', 'collective', 'colonial',
|
||||||
|
'colorful', 'colossal', 'coloured', 'colourful', 'combative', 'combined',
|
||||||
|
'comfortable', 'coming', 'commercial', 'common', 'communist', 'compact',
|
||||||
|
'comparable', 'comparative', 'compatible', 'competent', 'competitive',
|
||||||
|
'complete', 'complex', 'complicated', 'comprehensive', 'compulsory',
|
||||||
|
'conceptual', 'concerned', 'concrete', 'condemned', 'confident',
|
||||||
|
'confidential', 'confused', 'conscious', 'conservation', 'conservative',
|
||||||
|
'considerable', 'consistent', 'constant', 'constitutional',
|
||||||
|
'contemporary', 'content', 'continental', 'continued', 'continuing',
|
||||||
|
'continuous', 'controlled', 'controversial', 'convenient', 'conventional',
|
||||||
|
'convinced', 'convincing', 'cooing', 'cool', 'cooperative', 'corporate',
|
||||||
|
'correct', 'corresponding', 'costly', 'courageous', 'crazy', 'creative',
|
||||||
|
'creepy', 'criminal', 'critical', 'crooked', 'crowded', 'crucial',
|
||||||
|
'crude', 'cruel', 'cuddly', 'cultural', 'curious', 'curly', 'current',
|
||||||
|
'curved', 'cute', 'daily', 'damaged', 'damp', 'dangerous', 'dark', 'dead',
|
||||||
|
'deaf', 'deafening', 'dear', 'decent', 'decisive', 'deep', 'defeated',
|
||||||
|
'defensive', 'defiant', 'definite', 'deliberate', 'delicate', 'delicious',
|
||||||
|
'delighted', 'delightful', 'democratic', 'dependent', 'depressed',
|
||||||
|
'desirable', 'desperate', 'detailed', 'determined', 'developed',
|
||||||
|
'developing', 'devoted', 'different', 'difficult', 'digital', 'diplomatic',
|
||||||
|
'direct', 'dirty', 'disabled', 'disappointed', 'disastrous',
|
||||||
|
'disciplinary', 'disgusted', 'distant', 'distinct', 'distinctive',
|
||||||
|
'distinguished', 'disturbed', 'disturbing', 'diverse', 'divine', 'dizzy',
|
||||||
|
'domestic', 'dominant', 'double', 'doubtful', 'drab', 'dramatic',
|
||||||
|
'dreadful', 'driving', 'drunk', 'dry', 'dual', 'due', 'dull', 'dusty',
|
||||||
|
'dutch', 'dying', 'dynamic', 'eager', 'early', 'eastern', 'easy',
|
||||||
|
'economic', 'educational', 'eerie', 'effective', 'efficient',
|
||||||
|
'elaborate', 'elated', 'elderly', 'eldest', 'electoral', 'electric',
|
||||||
|
'electrical', 'electronic', 'elegant', 'eligible', 'embarrassed',
|
||||||
|
'embarrassing', 'emotional', 'empirical', 'empty', 'enchanting',
|
||||||
|
'encouraging', 'endless', 'energetic', 'english', 'enormous',
|
||||||
|
'enthusiastic', 'entire', 'entitled', 'envious', 'environmental', 'equal',
|
||||||
|
'equivalent', 'essential', 'established', 'estimated', 'ethical',
|
||||||
|
'ethnic', 'european', 'eventual', 'everyday', 'evident', 'evil',
|
||||||
|
'evolutionary', 'exact', 'excellent', 'exceptional', 'excess',
|
||||||
|
'excessive', 'excited', 'exciting', 'exclusive', 'existing', 'exotic',
|
||||||
|
'expected', 'expensive', 'experienced', 'experimental', 'explicit',
|
||||||
|
'extended', 'extensive', 'external', 'extra', 'extraordinary', 'extreme',
|
||||||
|
'exuberant', 'faint', 'fair', 'faithful', 'familiar', 'famous', 'fancy',
|
||||||
|
'fantastic', 'far', 'fascinating', 'fashionable', 'fast', 'fat', 'fatal',
|
||||||
|
'favourable', 'favourite', 'federal', 'fellow', 'female', 'feminist',
|
||||||
|
'few', 'fierce', 'filthy', 'final', 'financial', 'fine', 'firm', 'fiscal',
|
||||||
|
'fit', 'fixed', 'flaky', 'flat', 'flexible', 'fluffy', 'fluttering',
|
||||||
|
'flying', 'following', 'fond', 'foolish', 'foreign', 'formal',
|
||||||
|
'formidable', 'forthcoming', 'fortunate', 'forward', 'fragile',
|
||||||
|
'frail', 'frantic', 'free', 'french', 'frequent', 'fresh', 'friendly',
|
||||||
|
'frightened', 'front', 'frozen', 'fucking', 'full', 'full-time', 'fun',
|
||||||
|
'functional', 'fundamental', 'funny', 'furious', 'future', 'fuzzy',
|
||||||
|
'gastric', 'gay', 'general', 'generous', 'genetic', 'gentle', 'genuine',
|
||||||
|
'geographical', 'german', 'giant', 'gigantic', 'given', 'glad',
|
||||||
|
'glamorous', 'gleaming', 'global', 'glorious', 'golden', 'good',
|
||||||
|
'gorgeous', 'gothic', 'governing', 'graceful', 'gradual', 'grand',
|
||||||
|
'grateful', 'greasy', 'great', 'greek', 'green', 'grey', 'grieving',
|
||||||
|
'grim', 'gross', 'grotesque', 'growing', 'grubby', 'grumpy', 'guilty',
|
||||||
|
'handicapped', 'handsome', 'happy', 'hard', 'harsh', 'head', 'healthy',
|
||||||
|
'heavy', 'helpful', 'helpless', 'hidden', 'high', 'high-pitched',
|
||||||
|
'hilarious', 'hissing', 'historic', 'historical', 'hollow', 'holy',
|
||||||
|
'homeless', 'homely', 'hon', 'honest', 'horizontal', 'horrible',
|
||||||
|
'hostile', 'hot', 'huge', 'human', 'hungry', 'hurt', 'hushed', 'husky',
|
||||||
|
'icy', 'ideal', 'identical', 'ideological', 'ill', 'illegal',
|
||||||
|
'imaginative', 'immediate', 'immense', 'imperial', 'implicit',
|
||||||
|
'important', 'impossible', 'impressed', 'impressive', 'improved',
|
||||||
|
'inadequate', 'inappropriate', 'inc', 'inclined', 'increased',
|
||||||
|
'increasing', 'incredible', 'independent', 'indian', 'indirect',
|
||||||
|
'individual', 'industrial', 'inevitable', 'influential', 'informal',
|
||||||
|
'inherent', 'initial', 'injured', 'inland', 'inner', 'innocent',
|
||||||
|
'innovative', 'inquisitive', 'instant', 'institutional', 'insufficient',
|
||||||
|
'intact', 'integral', 'integrated', 'intellectual', 'intelligent',
|
||||||
|
'intense', 'intensive', 'interested', 'interesting', 'interim',
|
||||||
|
'interior', 'intermediate', 'internal', 'international', 'intimate',
|
||||||
|
'invisible', 'involved', 'iraqi', 'irish', 'irrelevant', 'islamic',
|
||||||
|
'isolated', 'israeli', 'italian', 'itchy', 'japanese', 'jealous',
|
||||||
|
'jewish', 'jittery', 'joint', 'jolly', 'joyous', 'judicial', 'juicy',
|
||||||
|
'junior', 'just', 'keen', 'key', 'kind', 'known', 'korean', 'labour',
|
||||||
|
'large', 'large-scale', 'late', 'latin', 'lazy', 'leading', 'left',
|
||||||
|
'legal', 'legislative', 'legitimate', 'lengthy', 'lesser', 'level',
|
||||||
|
'lexical', 'liable', 'liberal', 'light', 'like', 'likely', 'limited',
|
||||||
|
'linear', 'linguistic', 'liquid', 'literary', 'little', 'live', 'lively',
|
||||||
|
'living', 'local', 'logical', 'lonely', 'long', 'long-term', 'loose',
|
||||||
|
'lost', 'loud', 'lovely', 'low', 'loyal', 'ltd', 'lucky', 'mad',
|
||||||
|
'magenta', 'magic', 'magnetic', 'magnificent', 'main', 'major', 'male',
|
||||||
|
'mammoth', 'managerial', 'managing', 'manual', 'many', 'marginal',
|
||||||
|
'marine', 'marked', 'married', 'marvellous', 'marxist', 'mass', 'massive',
|
||||||
|
'mathematical', 'mature', 'maximum', 'mean', 'meaningful', 'mechanical',
|
||||||
|
'medical', 'medieval', 'melodic', 'melted', 'mental', 'mere',
|
||||||
|
'metropolitan', 'mid', 'middle', 'middle-class', 'mighty', 'mild',
|
||||||
|
'military', 'miniature', 'minimal', 'minimum', 'ministerial', 'minor',
|
||||||
|
'miserable', 'misleading', 'missing', 'misty', 'mixed', 'moaning',
|
||||||
|
'mobile', 'moderate', 'modern', 'modest', 'molecular', 'monetary',
|
||||||
|
'monthly', 'moral', 'motionless', 'muddy', 'multiple', 'mushy',
|
||||||
|
'musical', 'mute', 'mutual', 'mysterious', 'naked', 'narrow', 'nasty',
|
||||||
|
'national', 'native', 'natural', 'naughty', 'naval', 'near', 'nearby',
|
||||||
|
'neat', 'necessary', 'negative', 'neighbouring', 'nervous', 'net',
|
||||||
|
'neutral', 'new', 'nice', 'nineteenth-century', 'noble', 'noisy',
|
||||||
|
'normal', 'northern', 'nosy', 'notable', 'novel', 'nuclear', 'numerous',
|
||||||
|
'nursing', 'nutritious', 'nutty', 'obedient', 'objective', 'obliged',
|
||||||
|
'obnoxious', 'obvious', 'occasional', 'occupational', 'odd', 'official',
|
||||||
|
'ok', 'okay', 'old', 'old-fashioned', 'olympic', 'only', 'open',
|
||||||
|
'operational', 'opposite', 'optimistic', 'oral', 'orange', 'ordinary',
|
||||||
|
'organic', 'organisational', 'original', 'orthodox', 'other', 'outdoor',
|
||||||
|
'outer', 'outrageous', 'outside', 'outstanding', 'overall', 'overseas',
|
||||||
|
'overwhelming', 'painful', 'pale', 'palestinian', 'panicky', 'parallel',
|
||||||
|
'parental', 'parliamentary', 'part-time', 'partial', 'particular',
|
||||||
|
'passing', 'passive', 'past', 'patient', 'payable', 'peaceful',
|
||||||
|
'peculiar', 'perfect', 'permanent', 'persistent', 'personal', 'petite',
|
||||||
|
'philosophical', 'physical', 'pink', 'plain', 'planned', 'plastic',
|
||||||
|
'pleasant', 'pleased', 'poised', 'polish', 'polite', 'political', 'poor',
|
||||||
|
'popular', 'positive', 'possible', 'post-war', 'potential', 'powerful',
|
||||||
|
'practical', 'precious', 'precise', 'preferred', 'pregnant',
|
||||||
|
'preliminary', 'premier', 'prepared', 'present', 'presidential',
|
||||||
|
'pretty', 'previous', 'prickly', 'primary', 'prime', 'primitive',
|
||||||
|
'principal', 'printed', 'prior', 'private', 'probable', 'productive',
|
||||||
|
'professional', 'profitable', 'profound', 'progressive', 'prominent',
|
||||||
|
'promising', 'proper', 'proposed', 'prospective', 'protective',
|
||||||
|
'protestant', 'proud', 'provincial', 'psychiatric', 'psychological',
|
||||||
|
'public', 'puny', 'pure', 'purple', 'purring', 'puzzled', 'quaint',
|
||||||
|
'qualified', 'quick', 'quickest', 'quiet', 'racial', 'radical', 'rainy',
|
||||||
|
'random', 'rapid', 'rare', 'raspy', 'rational', 'ratty', 'raw', 'ready',
|
||||||
|
'real', 'realistic', 'rear', 'reasonable', 'recent', 'red', 'reduced',
|
||||||
|
'redundant', 'regional', 'registered', 'regular', 'regulatory', 'related',
|
||||||
|
'relative', 'relaxed', 'relevant', 'reliable', 'relieved', 'religious',
|
||||||
|
'reluctant', 'remaining', 'remarkable', 'remote', 'renewed',
|
||||||
|
'representative', 'repulsive', 'required', 'resident', 'residential',
|
||||||
|
'resonant', 'respectable', 'respective', 'responsible', 'resulting',
|
||||||
|
'retail', 'retired', 'revolutionary', 'rich', 'ridiculous', 'right',
|
||||||
|
'rigid', 'ripe', 'rising', 'rival', 'roasted', 'robust', 'rolling',
|
||||||
|
'roman', 'romantic', 'rotten', 'rough', 'round', 'royal', 'rubber',
|
||||||
|
'rude', 'ruling', 'running', 'rural', 'russian', 'sacred', 'sad', 'safe',
|
||||||
|
'salty', 'satisfactory', 'satisfied', 'scared', 'scary', 'scattered',
|
||||||
|
'scientific', 'scornful', 'scottish', 'scrawny', 'screeching',
|
||||||
|
'secondary', 'secret', 'secure', 'select', 'selected', 'selective',
|
||||||
|
'selfish', 'semantic', 'senior', 'sensible', 'sensitive', 'separate',
|
||||||
|
'serious', 'severe', 'sexual', 'shaggy', 'shaky', 'shallow', 'shared',
|
||||||
|
'sharp', 'sheer', 'shiny', 'shivering', 'shocked', 'short', 'short-term',
|
||||||
|
'shrill', 'shy', 'sick', 'significant', 'silent', 'silky', 'silly',
|
||||||
|
'similar', 'simple', 'single', 'skilled', 'skinny', 'sleepy', 'slight',
|
||||||
|
'slim', 'slimy', 'slippery', 'slow', 'small', 'smart', 'smiling',
|
||||||
|
'smoggy', 'smooth', 'so-called', 'social', 'socialist', 'soft', 'solar',
|
||||||
|
'sole', 'solid', 'sophisticated', 'sore', 'sorry', 'sound', 'sour',
|
||||||
|
'southern', 'soviet', 'spanish', 'spare', 'sparkling', 'spatial',
|
||||||
|
'special', 'specific', 'specified', 'spectacular', 'spicy', 'spiritual',
|
||||||
|
'splendid', 'spontaneous', 'sporting', 'spotless', 'spotty', 'square',
|
||||||
|
'squealing', 'stable', 'stale', 'standard', 'static', 'statistical',
|
||||||
|
'statutory', 'steady', 'steep', 'sticky', 'stiff', 'still', 'stingy',
|
||||||
|
'stormy', 'straight', 'straightforward', 'strange', 'strategic',
|
||||||
|
'strict', 'striking', 'striped', 'strong', 'structural', 'stuck',
|
||||||
|
'stupid', 'subjective', 'subsequent', 'substantial', 'subtle',
|
||||||
|
'successful', 'successive', 'sudden', 'sufficient', 'suitable',
|
||||||
|
'sunny', 'super', 'superb', 'superior', 'supporting', 'supposed',
|
||||||
|
'supreme', 'sure', 'surprised', 'surprising', 'surrounding',
|
||||||
|
'surviving', 'suspicious', 'sweet', 'swift', 'swiss', 'symbolic',
|
||||||
|
'sympathetic', 'systematic', 'tall', 'tame', 'tan', 'tart',
|
||||||
|
'tasteless', 'tasty', 'technical', 'technological', 'teenage',
|
||||||
|
'temporary', 'tender', 'tense', 'terrible', 'territorial', 'testy',
|
||||||
|
'then', 'theoretical', 'thick', 'thin', 'thirsty', 'thorough',
|
||||||
|
'thoughtful', 'thoughtless', 'thundering', 'tight', 'tiny', 'tired',
|
||||||
|
'top', 'tory', 'total', 'tough', 'toxic', 'traditional', 'tragic',
|
||||||
|
'tremendous', 'tricky', 'tropical', 'troubled', 'turkish', 'typical',
|
||||||
|
'ugliest', 'ugly', 'ultimate', 'unable', 'unacceptable', 'unaware',
|
||||||
|
'uncertain', 'unchanged', 'uncomfortable', 'unconscious', 'underground',
|
||||||
|
'underlying', 'unemployed', 'uneven', 'unexpected', 'unfair',
|
||||||
|
'unfortunate', 'unhappy', 'uniform', 'uninterested', 'unique', 'united',
|
||||||
|
'universal', 'unknown', 'unlikely', 'unnecessary', 'unpleasant',
|
||||||
|
'unsightly', 'unusual', 'unwilling', 'upper', 'upset', 'uptight',
|
||||||
|
'urban', 'urgent', 'used', 'useful', 'useless', 'usual', 'vague',
|
||||||
|
'valid', 'valuable', 'variable', 'varied', 'various', 'varying', 'vast',
|
||||||
|
'verbal', 'vertical', 'very', 'victorian', 'victorious', 'video-taped',
|
||||||
|
'violent', 'visible', 'visiting', 'visual', 'vital', 'vivacious',
|
||||||
|
'vivid', 'vocational', 'voiceless', 'voluntary', 'vulnerable',
|
||||||
|
'wandering', 'warm', 'wasteful', 'watery', 'weak', 'wealthy', 'weary',
|
||||||
|
'wee', 'weekly', 'weird', 'welcome', 'well', 'well-known', 'welsh',
|
||||||
|
'western', 'wet', 'whispering', 'white', 'whole', 'wicked', 'wide',
|
||||||
|
'wide-eyed', 'widespread', 'wild', 'willing', 'wise', 'witty',
|
||||||
|
'wonderful', 'wooden', 'working', 'working-class', 'worldwide',
|
||||||
|
'worried', 'worrying', 'worthwhile', 'worthy', 'written', 'wrong',
|
||||||
|
'yellow', 'young', 'yummy', 'zany', 'zealous']
|
||||||
|
b = ['abiding', 'accelerating', 'accepting', 'accomplishing', 'achieving',
|
||||||
|
'acquiring', 'acteding', 'activating', 'adapting', 'adding', 'addressing',
|
||||||
|
'administering', 'admiring', 'admiting', 'adopting', 'advising', 'affording',
|
||||||
|
'agreeing', 'alerting', 'alighting', 'allowing', 'altereding', 'amusing',
|
||||||
|
'analyzing', 'announcing', 'annoying', 'answering', 'anticipating',
|
||||||
|
'apologizing', 'appearing', 'applauding', 'applieding', 'appointing',
|
||||||
|
'appraising', 'appreciating', 'approving', 'arbitrating', 'arguing',
|
||||||
|
'arising', 'arranging', 'arresting', 'arriving', 'ascertaining', 'asking',
|
||||||
|
'assembling', 'assessing', 'assisting', 'assuring', 'attaching', 'attacking',
|
||||||
|
'attaining', 'attempting', 'attending', 'attracting', 'auditeding', 'avoiding',
|
||||||
|
'awaking', 'backing', 'baking', 'balancing', 'baning', 'banging', 'baring',
|
||||||
|
'bating', 'bathing', 'battling', 'bing', 'beaming', 'bearing', 'beating',
|
||||||
|
'becoming', 'beging', 'begining', 'behaving', 'beholding', 'belonging',
|
||||||
|
'bending', 'beseting', 'beting', 'biding', 'binding', 'biting', 'bleaching',
|
||||||
|
'bleeding', 'blessing', 'blinding', 'blinking', 'bloting', 'blowing',
|
||||||
|
'blushing', 'boasting', 'boiling', 'bolting', 'bombing', 'booking',
|
||||||
|
'boring', 'borrowing', 'bouncing', 'bowing', 'boxing', 'braking',
|
||||||
|
'branching', 'breaking', 'breathing', 'breeding', 'briefing', 'bringing',
|
||||||
|
'broadcasting', 'bruising', 'brushing', 'bubbling', 'budgeting', 'building',
|
||||||
|
'bumping', 'burning', 'bursting', 'burying', 'busting', 'buying', 'buzing',
|
||||||
|
'calculating', 'calling', 'camping', 'caring', 'carrying', 'carving',
|
||||||
|
'casting', 'cataloging', 'catching', 'causing', 'challenging', 'changing',
|
||||||
|
'charging', 'charting', 'chasing', 'cheating', 'checking', 'cheering',
|
||||||
|
'chewing', 'choking', 'choosing', 'choping', 'claiming', 'claping',
|
||||||
|
'clarifying', 'classifying', 'cleaning', 'clearing', 'clinging', 'cliping',
|
||||||
|
'closing', 'clothing', 'coaching', 'coiling', 'collecting', 'coloring',
|
||||||
|
'combing', 'coming', 'commanding', 'communicating', 'comparing', 'competing',
|
||||||
|
'compiling', 'complaining', 'completing', 'composing', 'computing',
|
||||||
|
'conceiving', 'concentrating', 'conceptualizing', 'concerning', 'concluding',
|
||||||
|
'conducting', 'confessing', 'confronting', 'confusing', 'connecting',
|
||||||
|
'conserving', 'considering', 'consisting', 'consolidating', 'constructing',
|
||||||
|
'consulting', 'containing', 'continuing', 'contracting', 'controling',
|
||||||
|
'converting', 'coordinating', 'copying', 'correcting', 'correlating',
|
||||||
|
'costing', 'coughing', 'counseling', 'counting', 'covering', 'cracking',
|
||||||
|
'crashing', 'crawling', 'creating', 'creeping', 'critiquing', 'crossing',
|
||||||
|
'crushing', 'crying', 'curing', 'curling', 'curving', 'cuting', 'cycling',
|
||||||
|
'daming', 'damaging', 'dancing', 'daring', 'dealing', 'decaying', 'deceiving',
|
||||||
|
'deciding', 'decorating', 'defining', 'delaying', 'delegating', 'delighting',
|
||||||
|
'delivering', 'demonstrating', 'depending', 'describing', 'deserting',
|
||||||
|
'deserving', 'designing', 'destroying', 'detailing', 'detecting',
|
||||||
|
'determining', 'developing', 'devising', 'diagnosing', 'diging',
|
||||||
|
'directing', 'disagreing', 'disappearing', 'disapproving', 'disarming',
|
||||||
|
'discovering', 'disliking', 'dispensing', 'displaying', 'disproving',
|
||||||
|
'dissecting', 'distributing', 'diving', 'diverting', 'dividing', 'doing',
|
||||||
|
'doubling', 'doubting', 'drafting', 'draging', 'draining', 'dramatizing',
|
||||||
|
'drawing', 'dreaming', 'dressing', 'drinking', 'driping', 'driving',
|
||||||
|
'dropping', 'drowning', 'druming', 'drying', 'dusting', 'dwelling',
|
||||||
|
'earning', 'eating', 'editeding', 'educating', 'eliminating',
|
||||||
|
'embarrassing', 'employing', 'emptying', 'enacteding', 'encouraging',
|
||||||
|
'ending', 'enduring', 'enforcing', 'engineering', 'enhancing',
|
||||||
|
'enjoying', 'enlisting', 'ensuring', 'entering', 'entertaining',
|
||||||
|
'escaping', 'establishing', 'estimating', 'evaluating', 'examining',
|
||||||
|
'exceeding', 'exciting', 'excusing', 'executing', 'exercising', 'exhibiting',
|
||||||
|
'existing', 'expanding', 'expecting', 'expediting', 'experimenting',
|
||||||
|
'explaining', 'exploding', 'expressing', 'extending', 'extracting',
|
||||||
|
'facing', 'facilitating', 'fading', 'failing', 'fancying', 'fastening',
|
||||||
|
'faxing', 'fearing', 'feeding', 'feeling', 'fencing', 'fetching', 'fighting',
|
||||||
|
'filing', 'filling', 'filming', 'finalizing', 'financing', 'finding',
|
||||||
|
'firing', 'fiting', 'fixing', 'flaping', 'flashing', 'fleing', 'flinging',
|
||||||
|
'floating', 'flooding', 'flowing', 'flowering', 'flying', 'folding',
|
||||||
|
'following', 'fooling', 'forbiding', 'forcing', 'forecasting', 'foregoing',
|
||||||
|
'foreseing', 'foretelling', 'forgeting', 'forgiving', 'forming',
|
||||||
|
'formulating', 'forsaking', 'framing', 'freezing', 'frightening', 'frying',
|
||||||
|
'gathering', 'gazing', 'generating', 'geting', 'giving', 'glowing', 'gluing',
|
||||||
|
'going', 'governing', 'grabing', 'graduating', 'grating', 'greasing', 'greeting',
|
||||||
|
'grinning', 'grinding', 'griping', 'groaning', 'growing', 'guaranteeing',
|
||||||
|
'guarding', 'guessing', 'guiding', 'hammering', 'handing', 'handling',
|
||||||
|
'handwriting', 'hanging', 'happening', 'harassing', 'harming', 'hating',
|
||||||
|
'haunting', 'heading', 'healing', 'heaping', 'hearing', 'heating', 'helping',
|
||||||
|
'hiding', 'hitting', 'holding', 'hooking', 'hoping', 'hopping', 'hovering',
|
||||||
|
'hugging', 'hmuming', 'hunting', 'hurrying', 'hurting', 'hypothesizing',
|
||||||
|
'identifying', 'ignoring', 'illustrating', 'imagining', 'implementing',
|
||||||
|
'impressing', 'improving', 'improvising', 'including', 'increasing',
|
||||||
|
'inducing', 'influencing', 'informing', 'initiating', 'injecting',
|
||||||
|
'injuring', 'inlaying', 'innovating', 'inputing', 'inspecting',
|
||||||
|
'inspiring', 'installing', 'instituting', 'instructing', 'insuring',
|
||||||
|
'integrating', 'intending', 'intensifying', 'interesting',
|
||||||
|
'interfering', 'interlaying', 'interpreting', 'interrupting',
|
||||||
|
'interviewing', 'introducing', 'inventing', 'inventorying',
|
||||||
|
'investigating', 'inviting', 'irritating', 'itching', 'jailing',
|
||||||
|
'jamming', 'jogging', 'joining', 'joking', 'judging', 'juggling', 'jumping',
|
||||||
|
'justifying', 'keeping', 'kepting', 'kicking', 'killing', 'kissing', 'kneeling',
|
||||||
|
'kniting', 'knocking', 'knotting', 'knowing', 'labeling', 'landing', 'lasting',
|
||||||
|
'laughing', 'launching', 'laying', 'leading', 'leaning', 'leaping', 'learning',
|
||||||
|
'leaving', 'lecturing', 'leding', 'lending', 'leting', 'leveling',
|
||||||
|
'licensing', 'licking', 'lying', 'lifteding', 'lighting', 'lightening',
|
||||||
|
'liking', 'listing', 'listening', 'living', 'loading', 'locating',
|
||||||
|
'locking', 'loging', 'longing', 'looking', 'losing', 'loving',
|
||||||
|
'maintaining', 'making', 'maning', 'managing', 'manipulating',
|
||||||
|
'manufacturing', 'mapping', 'marching', 'marking', 'marketing',
|
||||||
|
'marrying', 'matching', 'mating', 'mattering', 'meaning', 'measuring',
|
||||||
|
'meddling', 'mediating', 'meeting', 'melting', 'melting', 'memorizing',
|
||||||
|
'mending', 'mentoring', 'milking', 'mining', 'misleading', 'missing',
|
||||||
|
'misspelling', 'mistaking', 'misunderstanding', 'mixing', 'moaning',
|
||||||
|
'modeling', 'modifying', 'monitoring', 'mooring', 'motivating',
|
||||||
|
'mourning', 'moving', 'mowing', 'muddling', 'muging', 'multiplying',
|
||||||
|
'murdering', 'nailing', 'naming', 'navigating', 'needing', 'negotiating',
|
||||||
|
'nesting', 'noding', 'nominating', 'normalizing', 'noting', 'noticing',
|
||||||
|
'numbering', 'obeying', 'objecting', 'observing', 'obtaining', 'occuring',
|
||||||
|
'offending', 'offering', 'officiating', 'opening', 'operating', 'ordering',
|
||||||
|
'organizing', 'orienteding', 'originating', 'overcoming', 'overdoing',
|
||||||
|
'overdrawing', 'overflowing', 'overhearing', 'overtaking', 'overthrowing',
|
||||||
|
'owing', 'owning', 'packing', 'paddling', 'painting', 'parking', 'parting',
|
||||||
|
'participating', 'passing', 'pasting', 'pating', 'pausing', 'paying',
|
||||||
|
'pecking', 'pedaling', 'peeling', 'peeping', 'perceiving', 'perfecting',
|
||||||
|
'performing', 'permiting', 'persuading', 'phoning', 'photographing',
|
||||||
|
'picking', 'piloting', 'pinching', 'pining', 'pinpointing', 'pioneering',
|
||||||
|
'placing', 'planing', 'planting', 'playing', 'pleading', 'pleasing',
|
||||||
|
'plugging', 'pointing', 'poking', 'polishing', 'poping', 'possessing',
|
||||||
|
'posting', 'pouring', 'practicing', 'praiseding', 'praying', 'preaching',
|
||||||
|
'preceding', 'predicting', 'prefering', 'preparing', 'prescribing',
|
||||||
|
'presenting', 'preserving', 'preseting', 'presiding', 'pressing',
|
||||||
|
'pretending', 'preventing', 'pricking', 'printing', 'processing',
|
||||||
|
'procuring', 'producing', 'professing', 'programing', 'progressing',
|
||||||
|
'projecting', 'promising', 'promoting', 'proofreading', 'proposing',
|
||||||
|
'protecting', 'proving', 'providing', 'publicizing', 'pulling', 'pumping',
|
||||||
|
'punching', 'puncturing', 'punishing', 'purchasing', 'pushing', 'puting',
|
||||||
|
'qualifying', 'questioning', 'queuing', 'quiting', 'racing', 'radiating',
|
||||||
|
'raining', 'raising', 'ranking', 'rating', 'reaching', 'reading',
|
||||||
|
'realigning', 'realizing', 'reasoning', 'receiving', 'recognizing',
|
||||||
|
'recommending', 'reconciling', 'recording', 'recruiting', 'reducing',
|
||||||
|
'referring', 'reflecting', 'refusing', 'regreting', 'regulating',
|
||||||
|
'rehabilitating', 'reigning', 'reinforcing', 'rejecting', 'rejoicing',
|
||||||
|
'relating', 'relaxing', 'releasing', 'relying', 'remaining', 'remembering',
|
||||||
|
'reminding', 'removing', 'rendering', 'reorganizing', 'repairing',
|
||||||
|
'repeating', 'replacing', 'replying', 'reporting', 'representing',
|
||||||
|
'reproducing', 'requesting', 'rescuing', 'researching', 'resolving',
|
||||||
|
'responding', 'restoreding', 'restructuring', 'retiring', 'retrieving',
|
||||||
|
'returning', 'reviewing', 'revising', 'rhyming', 'riding', 'riding',
|
||||||
|
'ringing', 'rinsing', 'rising', 'risking', 'robing', 'rocking', 'rolling',
|
||||||
|
'roting', 'rubing', 'ruining', 'ruling', 'runing', 'rushing', 'sacking',
|
||||||
|
'sailing', 'satisfying', 'saving', 'sawing', 'saying', 'scaring',
|
||||||
|
'scattering', 'scheduling', 'scolding', 'scorching', 'scraping',
|
||||||
|
'scratching', 'screaming', 'screwing', 'scribbling', 'scrubing',
|
||||||
|
'sealing', 'searching', 'securing', 'seing', 'seeking', 'selecting',
|
||||||
|
'selling', 'sending', 'sensing', 'separating', 'serving', 'servicing',
|
||||||
|
'seting', 'settling', 'sewing', 'shading', 'shaking', 'shaping',
|
||||||
|
'sharing', 'shaving', 'shearing', 'sheding', 'sheltering', 'shining',
|
||||||
|
'shivering', 'shocking', 'shoing', 'shooting', 'shoping', 'showing',
|
||||||
|
'shrinking', 'shruging', 'shuting', 'sighing', 'signing', 'signaling',
|
||||||
|
'simplifying', 'sining', 'singing', 'sinking', 'siping', 'siting',
|
||||||
|
'sketching', 'skiing', 'skiping', 'slaping', 'slaying', 'sleeping',
|
||||||
|
'sliding', 'slinging', 'slinking', 'sliping', 'sliting', 'slowing',
|
||||||
|
'smashing', 'smelling', 'smiling', 'smiting', 'smoking', 'snatching',
|
||||||
|
'sneaking', 'sneezing', 'sniffing', 'snoring', 'snowing', 'soaking',
|
||||||
|
'solving', 'soothing', 'soothsaying', 'sorting', 'sounding', 'sowing',
|
||||||
|
'sparing', 'sparking', 'sparkling', 'speaking', 'specifying', 'speeding',
|
||||||
|
'spelling', 'spending', 'spilling', 'spining', 'spiting', 'spliting',
|
||||||
|
'spoiling', 'spoting', 'spraying', 'spreading', 'springing', 'sprouting',
|
||||||
|
'squashing', 'squeaking', 'squealing', 'squeezing', 'staining', 'stamping',
|
||||||
|
'standing', 'staring', 'starting', 'staying', 'stealing', 'steering',
|
||||||
|
'stepping', 'sticking', 'stimulating', 'stinging', 'stinking', 'stirring',
|
||||||
|
'stitching', 'stoping', 'storing', 'straping', 'streamlining',
|
||||||
|
'strengthening', 'stretching', 'striding', 'striking', 'stringing',
|
||||||
|
'stripping', 'striving', 'stroking', 'structuring', 'studying',
|
||||||
|
'stuffing', 'subleting', 'subtracting', 'succeeding', 'sucking',
|
||||||
|
'suffering', 'suggesting', 'suiting', 'summarizing', 'supervising',
|
||||||
|
'supplying', 'supporting', 'supposing', 'surprising', 'surrounding',
|
||||||
|
'suspecting', 'suspending', 'swearing', 'sweating', 'sweeping', 'swelling',
|
||||||
|
'swimming', 'swinging', 'switching', 'symbolizing', 'synthesizing',
|
||||||
|
'systemizing', 'tabulating', 'taking', 'talking', 'taming', 'taping',
|
||||||
|
'targeting', 'tasting', 'teaching', 'tearing', 'teasing', 'telephoning',
|
||||||
|
'telling', 'tempting', 'terrifying', 'testing', 'thanking', 'thawing',
|
||||||
|
'thinking', 'thriving', 'throwing', 'thrusting', 'ticking', 'tickling',
|
||||||
|
'tying', 'timing', 'tiping', 'tiring', 'touching', 'touring', 'towing',
|
||||||
|
'tracing', 'trading', 'training', 'transcribing', 'transfering',
|
||||||
|
'transforming', 'translating', 'transporting', 'traping', 'traveling',
|
||||||
|
'treading', 'treating', 'trembling', 'tricking', 'triping', 'troting',
|
||||||
|
'troubling', 'troubleshooting', 'trusting', 'trying', 'tuging', 'tumbling',
|
||||||
|
'turning', 'tutoring', 'twisting', 'typing', 'undergoing', 'understanding',
|
||||||
|
'undertaking', 'undressing', 'unfastening', 'unifying', 'uniting',
|
||||||
|
'unlocking', 'unpacking', 'untidying', 'updating', 'upgrading',
|
||||||
|
'upholding', 'upseting', 'using', 'utilizing', 'vanishing', 'verbalizing',
|
||||||
|
'verifying', 'vexing', 'visiting', 'wailing', 'waiting', 'waking',
|
||||||
|
'walking', 'wandering', 'wanting', 'warming', 'warning', 'washing',
|
||||||
|
'wasting', 'watching', 'watering', 'waving', 'wearing', 'weaving',
|
||||||
|
'wedding', 'weeping', 'weighing', 'welcoming', 'wending', 'weting',
|
||||||
|
'whining', 'whiping', 'whirling', 'whispering', 'whistling', 'wining',
|
||||||
|
'winding', 'winking', 'wiping', 'wishing', 'withdrawing', 'withholding',
|
||||||
|
'withstanding', 'wobbling', 'wondering', 'working', 'worrying', 'wrapping',
|
||||||
|
'wrecking', 'wrestling', 'wriggling', 'wringing', 'writing', 'x-raying',
|
||||||
|
'yawning', 'yelling', 'zipping', 'zooming']
|
|
@ -0,0 +1,14 @@
|
||||||
|
from torch.autograd import Function
|
||||||
|
from torch.optim import SGD
|
||||||
|
|
||||||
|
|
||||||
|
class BinaryActivation(Function):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return (x.sign() + 1.) / 2.
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
return grad_output.clone()
|
|
@ -0,0 +1,91 @@
|
||||||
|
''' Calculate Inception Moments
|
||||||
|
This script iterates over the dataset and calculates the moments of the
|
||||||
|
activations of the Inception net (needed for FID), and also returns
|
||||||
|
the Inception Score of the training data.
|
||||||
|
|
||||||
|
Note that if you don't shuffle the data, the IS of true data will be under-
|
||||||
|
estimated as it is label-ordered. By default, the data is not shuffled
|
||||||
|
so as to reduce non-determinism. '''
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
import utils
|
||||||
|
import inception_utils
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
|
||||||
|
def prepare_parser():
|
||||||
|
usage = 'Calculate and store inception metrics.'
|
||||||
|
parser = ArgumentParser(description=usage)
|
||||||
|
parser.add_argument(
|
||||||
|
'--dataset', type=str, default='I128_hdf5',
|
||||||
|
help='Which Dataset to train on, out of I128, I256, C10, C100...'
|
||||||
|
'Append _hdf5 to use the hdf5 version of the dataset. (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--data_root', type=str, default='data',
|
||||||
|
help='Default location where data is stored (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--batch_size', type=int, default=64,
|
||||||
|
help='Default overall batchsize (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--parallel', action='store_true', default=False,
|
||||||
|
help='Train with multiple GPUs (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--augment', action='store_true', default=False,
|
||||||
|
help='Augment with random crops and flips (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--num_workers', type=int, default=8,
|
||||||
|
help='Number of dataloader workers (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--shuffle', action='store_true', default=False,
|
||||||
|
help='Shuffle the data? (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--seed', type=int, default=0,
|
||||||
|
help='Random seed to use.')
|
||||||
|
return parser
|
||||||
|
|
||||||
|
def run(config):
|
||||||
|
# Get loader
|
||||||
|
config['drop_last'] = False
|
||||||
|
loaders = utils.get_data_loaders(**config)
|
||||||
|
|
||||||
|
# Load inception net
|
||||||
|
net = inception_utils.load_inception_net(parallel=config['parallel'])
|
||||||
|
pool, logits, labels = [], [], []
|
||||||
|
device = 'cuda'
|
||||||
|
for i, (x, y) in enumerate(tqdm(loaders[0])):
|
||||||
|
x = x.to(device)
|
||||||
|
with torch.no_grad():
|
||||||
|
pool_val, logits_val = net(x)
|
||||||
|
pool += [np.asarray(pool_val.cpu())]
|
||||||
|
logits += [np.asarray(F.softmax(logits_val, 1).cpu())]
|
||||||
|
labels += [np.asarray(y.cpu())]
|
||||||
|
|
||||||
|
pool, logits, labels = [np.concatenate(item, 0) for item in [pool, logits, labels]]
|
||||||
|
# uncomment to save pool, logits, and labels to disk
|
||||||
|
# print('Saving pool, logits, and labels to disk...')
|
||||||
|
# np.savez(config['dataset']+'_inception_activations.npz',
|
||||||
|
# {'pool': pool, 'logits': logits, 'labels': labels})
|
||||||
|
# Calculate inception metrics and report them
|
||||||
|
print('Calculating inception metrics...')
|
||||||
|
IS_mean, IS_std = inception_utils.calculate_inception_score(logits)
|
||||||
|
print('Training data from dataset %s has IS of %5.5f +/- %5.5f' % (config['dataset'], IS_mean, IS_std))
|
||||||
|
# Prepare mu and sigma, save to disk. Remove "hdf5" by default
|
||||||
|
# (the FID code also knows to strip "hdf5")
|
||||||
|
print('Calculating means and covariances...')
|
||||||
|
mu, sigma = np.mean(pool, axis=0), np.cov(pool, rowvar=False)
|
||||||
|
print('Saving calculated means and covariances to disk...')
|
||||||
|
np.savez(config['dataset'].strip('_hdf5')+'_inception_moments.npz', **{'mu' : mu, 'sigma' : sigma})
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# parse command line
|
||||||
|
parser = prepare_parser()
|
||||||
|
config = vars(parser.parse_args())
|
||||||
|
print(config)
|
||||||
|
run(config)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -0,0 +1,362 @@
|
||||||
|
''' Datasets
|
||||||
|
This file contains definitions for our CIFAR, ImageFolder, and HDF5 datasets
|
||||||
|
'''
|
||||||
|
import os
|
||||||
|
import os.path
|
||||||
|
import sys
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
|
||||||
|
import torchvision.datasets as dset
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from torchvision.datasets.utils import download_url, check_integrity
|
||||||
|
import torch.utils.data as data
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm']
|
||||||
|
|
||||||
|
|
||||||
|
def is_image_file(filename):
|
||||||
|
"""Checks if a file is an image.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename (string): path to a file
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
bool: True if the filename ends with a known image extension
|
||||||
|
"""
|
||||||
|
filename_lower = filename.lower()
|
||||||
|
return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)
|
||||||
|
|
||||||
|
|
||||||
|
def find_classes(dir):
|
||||||
|
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
|
||||||
|
classes.sort()
|
||||||
|
class_to_idx = {classes[i]: i for i in range(len(classes))}
|
||||||
|
return classes, class_to_idx
|
||||||
|
|
||||||
|
|
||||||
|
def make_dataset(dir, class_to_idx):
|
||||||
|
images = []
|
||||||
|
dir = os.path.expanduser(dir)
|
||||||
|
for target in tqdm(sorted(os.listdir(dir))):
|
||||||
|
d = os.path.join(dir, target)
|
||||||
|
if not os.path.isdir(d):
|
||||||
|
continue
|
||||||
|
|
||||||
|
for root, _, fnames in sorted(os.walk(d)):
|
||||||
|
for fname in sorted(fnames):
|
||||||
|
if is_image_file(fname):
|
||||||
|
path = os.path.join(root, fname)
|
||||||
|
item = (path, class_to_idx[target])
|
||||||
|
images.append(item)
|
||||||
|
|
||||||
|
return images
|
||||||
|
|
||||||
|
|
||||||
|
def pil_loader(path):
|
||||||
|
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
|
||||||
|
with open(path, 'rb') as f:
|
||||||
|
img = Image.open(f)
|
||||||
|
return img.convert('RGB')
|
||||||
|
|
||||||
|
|
||||||
|
def accimage_loader(path):
|
||||||
|
import accimage
|
||||||
|
try:
|
||||||
|
return accimage.Image(path)
|
||||||
|
except IOError:
|
||||||
|
# Potentially a decoding problem, fall back to PIL.Image
|
||||||
|
return pil_loader(path)
|
||||||
|
|
||||||
|
|
||||||
|
def default_loader(path):
|
||||||
|
from torchvision import get_image_backend
|
||||||
|
if get_image_backend() == 'accimage':
|
||||||
|
return accimage_loader(path)
|
||||||
|
else:
|
||||||
|
return pil_loader(path)
|
||||||
|
|
||||||
|
|
||||||
|
class ImageFolder(data.Dataset):
|
||||||
|
"""A generic data loader where the images are arranged in this way: ::
|
||||||
|
|
||||||
|
root/dogball/xxx.png
|
||||||
|
root/dogball/xxy.png
|
||||||
|
root/dogball/xxz.png
|
||||||
|
|
||||||
|
root/cat/123.png
|
||||||
|
root/cat/nsdf3.png
|
||||||
|
root/cat/asd932_.png
|
||||||
|
|
||||||
|
Args:
|
||||||
|
root (string): Root directory path.
|
||||||
|
transform (callable, optional): A function/transform that takes in an PIL image
|
||||||
|
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
||||||
|
target_transform (callable, optional): A function/transform that takes in the
|
||||||
|
target and transforms it.
|
||||||
|
loader (callable, optional): A function to load an image given its path.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
classes (list): List of the class names.
|
||||||
|
class_to_idx (dict): Dict with items (class_name, class_index).
|
||||||
|
imgs (list): List of (image path, class_index) tuples
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, root, transform=None, target_transform=None,
|
||||||
|
loader=default_loader, load_in_mem=False,
|
||||||
|
index_filename='imagenet_imgs.npz', **kwargs):
|
||||||
|
classes, class_to_idx = find_classes(root)
|
||||||
|
# Load pre-computed image directory walk
|
||||||
|
if os.path.exists(index_filename):
|
||||||
|
print('Loading pre-saved Index file %s...' % index_filename)
|
||||||
|
imgs = np.load(index_filename)['imgs']
|
||||||
|
# If first time, walk the folder directory and save the
|
||||||
|
# results to a pre-computed file.
|
||||||
|
else:
|
||||||
|
print('Generating Index file %s...' % index_filename)
|
||||||
|
imgs = make_dataset(root, class_to_idx)
|
||||||
|
np.savez_compressed(index_filename, **{'imgs' : imgs})
|
||||||
|
if len(imgs) == 0:
|
||||||
|
raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
|
||||||
|
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
|
||||||
|
|
||||||
|
self.root = root
|
||||||
|
self.imgs = imgs
|
||||||
|
self.classes = classes
|
||||||
|
self.class_to_idx = class_to_idx
|
||||||
|
self.transform = transform
|
||||||
|
self.target_transform = target_transform
|
||||||
|
self.loader = loader
|
||||||
|
self.load_in_mem = load_in_mem
|
||||||
|
|
||||||
|
if self.load_in_mem:
|
||||||
|
print('Loading all images into memory...')
|
||||||
|
self.data, self.labels = [], []
|
||||||
|
for index in tqdm(range(len(self.imgs))):
|
||||||
|
path, target = imgs[index][0], imgs[index][1]
|
||||||
|
self.data.append(self.transform(self.loader(path)))
|
||||||
|
self.labels.append(target)
|
||||||
|
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
index (int): Index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (image, target) where target is class_index of the target class.
|
||||||
|
"""
|
||||||
|
if self.load_in_mem:
|
||||||
|
img = self.data[index]
|
||||||
|
target = self.labels[index]
|
||||||
|
else:
|
||||||
|
path, target = self.imgs[index]
|
||||||
|
img = self.loader(str(path))
|
||||||
|
if self.transform is not None:
|
||||||
|
img = self.transform(img)
|
||||||
|
|
||||||
|
if self.target_transform is not None:
|
||||||
|
target = self.target_transform(target)
|
||||||
|
|
||||||
|
# print(img.size(), target)
|
||||||
|
return img, int(target)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.imgs)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
|
||||||
|
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
|
||||||
|
fmt_str += ' Root Location: {}\n'.format(self.root)
|
||||||
|
tmp = ' Transforms (if any): '
|
||||||
|
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
|
||||||
|
tmp = ' Target Transforms (if any): '
|
||||||
|
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
|
||||||
|
return fmt_str
|
||||||
|
|
||||||
|
|
||||||
|
''' ILSVRC_HDF5: A dataset to support I/O from an HDF5 to avoid
|
||||||
|
having to load individual images all the time. '''
|
||||||
|
import h5py as h5
|
||||||
|
import torch
|
||||||
|
class ILSVRC_HDF5(data.Dataset):
|
||||||
|
def __init__(self, root, transform=None, target_transform=None,
|
||||||
|
load_in_mem=False, train=True,download=False, validate_seed=0,
|
||||||
|
val_split=0, **kwargs): # last four are dummies
|
||||||
|
|
||||||
|
self.root = root
|
||||||
|
self.num_imgs = len(h5.File(root, 'r')['labels'])
|
||||||
|
|
||||||
|
# self.transform = transform
|
||||||
|
self.target_transform = target_transform
|
||||||
|
|
||||||
|
# Set the transform here
|
||||||
|
self.transform = transform
|
||||||
|
|
||||||
|
# load the entire dataset into memory?
|
||||||
|
self.load_in_mem = load_in_mem
|
||||||
|
|
||||||
|
# If loading into memory, do so now
|
||||||
|
if self.load_in_mem:
|
||||||
|
print('Loading %s into memory...' % root)
|
||||||
|
with h5.File(root,'r') as f:
|
||||||
|
self.data = f['imgs'][:]
|
||||||
|
self.labels = f['labels'][:]
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
index (int): Index
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: (image, target) where target is class_index of the target class.
|
||||||
|
"""
|
||||||
|
# If loaded the entire dataset in RAM, get image from memory
|
||||||
|
if self.load_in_mem:
|
||||||
|
img = self.data[index]
|
||||||
|
target = self.labels[index]
|
||||||
|
|
||||||
|
# Else load it from disk
|
||||||
|
else:
|
||||||
|
with h5.File(self.root,'r') as f:
|
||||||
|
img = f['imgs'][index]
|
||||||
|
target = f['labels'][index]
|
||||||
|
|
||||||
|
|
||||||
|
# if self.transform is not None:
|
||||||
|
# img = self.transform(img)
|
||||||
|
# Apply my own transform
|
||||||
|
img = ((torch.from_numpy(img).float() / 255) - 0.5) * 2
|
||||||
|
|
||||||
|
if self.target_transform is not None:
|
||||||
|
target = self.target_transform(target)
|
||||||
|
|
||||||
|
return img, int(target)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.num_imgs
|
||||||
|
# return len(self.f['imgs'])
|
||||||
|
|
||||||
|
import pickle
|
||||||
|
class CIFAR10(dset.CIFAR10):
|
||||||
|
|
||||||
|
def __init__(self, root, train=True,
|
||||||
|
transform=None, target_transform=None,
|
||||||
|
download=True, validate_seed=0,
|
||||||
|
val_split=0, load_in_mem=True, **kwargs):
|
||||||
|
self.root = os.path.expanduser(root)
|
||||||
|
self.transform = transform
|
||||||
|
self.target_transform = target_transform
|
||||||
|
self.train = train # training set or test set
|
||||||
|
self.val_split = val_split
|
||||||
|
|
||||||
|
if download:
|
||||||
|
self.download()
|
||||||
|
|
||||||
|
if not self._check_integrity():
|
||||||
|
raise RuntimeError('Dataset not found or corrupted.' +
|
||||||
|
' You can use download=True to download it')
|
||||||
|
|
||||||
|
# now load the picked numpy arrays
|
||||||
|
self.data = []
|
||||||
|
self.labels= []
|
||||||
|
for fentry in self.train_list:
|
||||||
|
f = fentry[0]
|
||||||
|
file = os.path.join(self.root, self.base_folder, f)
|
||||||
|
fo = open(file, 'rb')
|
||||||
|
if sys.version_info[0] == 2:
|
||||||
|
entry = pickle.load(fo)
|
||||||
|
else:
|
||||||
|
entry = pickle.load(fo, encoding='latin1')
|
||||||
|
self.data.append(entry['data'])
|
||||||
|
if 'labels' in entry:
|
||||||
|
self.labels += entry['labels']
|
||||||
|
else:
|
||||||
|
self.labels += entry['fine_labels']
|
||||||
|
fo.close()
|
||||||
|
|
||||||
|
self.data = np.concatenate(self.data)
|
||||||
|
# Randomly select indices for validation
|
||||||
|
if self.val_split > 0:
|
||||||
|
label_indices = [[] for _ in range(max(self.labels)+1)]
|
||||||
|
for i,l in enumerate(self.labels):
|
||||||
|
label_indices[l] += [i]
|
||||||
|
label_indices = np.asarray(label_indices)
|
||||||
|
|
||||||
|
# randomly grab 500 elements of each class
|
||||||
|
np.random.seed(validate_seed)
|
||||||
|
self.val_indices = []
|
||||||
|
for l_i in label_indices:
|
||||||
|
self.val_indices += list(l_i[np.random.choice(len(l_i), int(len(self.data) * val_split) // (max(self.labels) + 1) ,replace=False)])
|
||||||
|
|
||||||
|
if self.train=='validate':
|
||||||
|
self.data = self.data[self.val_indices]
|
||||||
|
self.labels = list(np.asarray(self.labels)[self.val_indices])
|
||||||
|
|
||||||
|
self.data = self.data.reshape((int(50e3 * self.val_split), 3, 32, 32))
|
||||||
|
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
||||||
|
|
||||||
|
elif self.train:
|
||||||
|
print(np.shape(self.data))
|
||||||
|
if self.val_split > 0:
|
||||||
|
self.data = np.delete(self.data,self.val_indices,axis=0)
|
||||||
|
self.labels = list(np.delete(np.asarray(self.labels),self.val_indices,axis=0))
|
||||||
|
|
||||||
|
self.data = self.data.reshape((int(50e3 * (1.-self.val_split)), 3, 32, 32))
|
||||||
|
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
||||||
|
else:
|
||||||
|
f = self.test_list[0][0]
|
||||||
|
file = os.path.join(self.root, self.base_folder, f)
|
||||||
|
fo = open(file, 'rb')
|
||||||
|
if sys.version_info[0] == 2:
|
||||||
|
entry = pickle.load(fo)
|
||||||
|
else:
|
||||||
|
entry = pickle.load(fo, encoding='latin1')
|
||||||
|
self.data = entry['data']
|
||||||
|
if 'labels' in entry:
|
||||||
|
self.labels = entry['labels']
|
||||||
|
else:
|
||||||
|
self.labels = entry['fine_labels']
|
||||||
|
fo.close()
|
||||||
|
self.data = self.data.reshape((10000, 3, 32, 32))
|
||||||
|
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
index (int): Index
|
||||||
|
Returns:
|
||||||
|
tuple: (image, target) where target is index of the target class.
|
||||||
|
"""
|
||||||
|
img, target = self.data[index], self.labels[index]
|
||||||
|
|
||||||
|
# doing this so that it is consistent with all other datasets
|
||||||
|
# to return a PIL Image
|
||||||
|
img = Image.fromarray(img)
|
||||||
|
|
||||||
|
if self.transform is not None:
|
||||||
|
img = self.transform(img)
|
||||||
|
|
||||||
|
if self.target_transform is not None:
|
||||||
|
target = self.target_transform(target)
|
||||||
|
|
||||||
|
return img, target
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
|
||||||
|
class CIFAR100(CIFAR10):
|
||||||
|
base_folder = 'cifar-100-python'
|
||||||
|
url = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
|
||||||
|
filename = "cifar-100-python.tar.gz"
|
||||||
|
tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
||||||
|
train_list = [
|
||||||
|
['train', '16019d7e3df5f24257cddd939b257f8d'],
|
||||||
|
]
|
||||||
|
|
||||||
|
test_list = [
|
||||||
|
['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
|
||||||
|
]
|
|
@ -0,0 +1,138 @@
|
||||||
|
''' Tensorflow inception score code
|
||||||
|
Derived from https://github.com/openai/improved-gan
|
||||||
|
Code derived from tensorflow/tensorflow/models/image/imagenet/classify_image.py
|
||||||
|
THIS CODE REQUIRES TENSORFLOW 1.3 or EARLIER to run in PARALLEL BATCH MODE
|
||||||
|
|
||||||
|
To use this code, run sample.py on your model with --sample_npz, and then
|
||||||
|
pass the experiment name in the --experiment_name.
|
||||||
|
This code also saves pool3 stats to an npz file for FID calculation
|
||||||
|
'''
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os.path
|
||||||
|
import sys
|
||||||
|
import tarfile
|
||||||
|
import math
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from six.moves import urllib
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
MODEL_DIR = ''
|
||||||
|
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
|
||||||
|
softmax = None
|
||||||
|
|
||||||
|
def prepare_parser():
|
||||||
|
usage = 'Parser for TF1.3- Inception Score scripts.'
|
||||||
|
parser = ArgumentParser(description=usage)
|
||||||
|
parser.add_argument(
|
||||||
|
'--experiment_name', type=str, default='',
|
||||||
|
help='Which experiment''s samples.npz file to pull and evaluate')
|
||||||
|
parser.add_argument(
|
||||||
|
'--experiment_root', type=str, default='samples',
|
||||||
|
help='Default location where samples are stored (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--batch_size', type=int, default=500,
|
||||||
|
help='Default overall batchsize (default: %(default)s)')
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def run(config):
|
||||||
|
# Inception with TF1.3 or earlier.
|
||||||
|
# Call this function with list of images. Each of elements should be a
|
||||||
|
# numpy array with values ranging from 0 to 255.
|
||||||
|
def get_inception_score(images, splits=10):
|
||||||
|
assert(type(images) == list)
|
||||||
|
assert(type(images[0]) == np.ndarray)
|
||||||
|
assert(len(images[0].shape) == 3)
|
||||||
|
assert(np.max(images[0]) > 10)
|
||||||
|
assert(np.min(images[0]) >= 0.0)
|
||||||
|
inps = []
|
||||||
|
for img in images:
|
||||||
|
img = img.astype(np.float32)
|
||||||
|
inps.append(np.expand_dims(img, 0))
|
||||||
|
bs = config['batch_size']
|
||||||
|
with tf.Session() as sess:
|
||||||
|
preds, pools = [], []
|
||||||
|
n_batches = int(math.ceil(float(len(inps)) / float(bs)))
|
||||||
|
for i in trange(n_batches):
|
||||||
|
inp = inps[(i * bs):min((i + 1) * bs, len(inps))]
|
||||||
|
inp = np.concatenate(inp, 0)
|
||||||
|
pred, pool = sess.run([softmax, pool3], {'ExpandDims:0': inp})
|
||||||
|
preds.append(pred)
|
||||||
|
pools.append(pool)
|
||||||
|
preds = np.concatenate(preds, 0)
|
||||||
|
scores = []
|
||||||
|
for i in range(splits):
|
||||||
|
part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :]
|
||||||
|
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
|
||||||
|
kl = np.mean(np.sum(kl, 1))
|
||||||
|
scores.append(np.exp(kl))
|
||||||
|
return np.mean(scores), np.std(scores), np.squeeze(np.concatenate(pools, 0))
|
||||||
|
# Init inception
|
||||||
|
def _init_inception():
|
||||||
|
global softmax, pool3
|
||||||
|
if not os.path.exists(MODEL_DIR):
|
||||||
|
os.makedirs(MODEL_DIR)
|
||||||
|
filename = DATA_URL.split('/')[-1]
|
||||||
|
filepath = os.path.join(MODEL_DIR, filename)
|
||||||
|
if not os.path.exists(filepath):
|
||||||
|
def _progress(count, block_size, total_size):
|
||||||
|
sys.stdout.write('\r>> Downloading %s %.1f%%' % (
|
||||||
|
filename, float(count * block_size) / float(total_size) * 100.0))
|
||||||
|
sys.stdout.flush()
|
||||||
|
filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
|
||||||
|
print()
|
||||||
|
statinfo = os.stat(filepath)
|
||||||
|
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
|
||||||
|
tarfile.open(filepath, 'r:gz').extractall(MODEL_DIR)
|
||||||
|
with tf.gfile.FastGFile(os.path.join(
|
||||||
|
MODEL_DIR, 'classify_image_graph_def.pb'), 'rb') as f:
|
||||||
|
graph_def = tf.GraphDef()
|
||||||
|
graph_def.ParseFromString(f.read())
|
||||||
|
_ = tf.import_graph_def(graph_def, name='')
|
||||||
|
# Works with an arbitrary minibatch size.
|
||||||
|
with tf.Session() as sess:
|
||||||
|
pool3 = sess.graph.get_tensor_by_name('pool_3:0')
|
||||||
|
ops = pool3.graph.get_operations()
|
||||||
|
for op_idx, op in enumerate(ops):
|
||||||
|
for o in op.outputs:
|
||||||
|
shape = o.get_shape()
|
||||||
|
shape = [s.value for s in shape]
|
||||||
|
new_shape = []
|
||||||
|
for j, s in enumerate(shape):
|
||||||
|
if s == 1 and j == 0:
|
||||||
|
new_shape.append(None)
|
||||||
|
else:
|
||||||
|
new_shape.append(s)
|
||||||
|
o._shape = tf.TensorShape(new_shape)
|
||||||
|
w = sess.graph.get_operation_by_name("softmax/logits/MatMul").inputs[1]
|
||||||
|
logits = tf.matmul(tf.squeeze(pool3), w)
|
||||||
|
softmax = tf.nn.softmax(logits)
|
||||||
|
|
||||||
|
# if softmax is None: # No need to functionalize like this.
|
||||||
|
_init_inception()
|
||||||
|
|
||||||
|
fname = '%s/%s/samples.npz' % (config['experiment_root'], config['experiment_name'])
|
||||||
|
print('loading %s ...'%fname)
|
||||||
|
ims = np.load(fname)['x']
|
||||||
|
import time
|
||||||
|
t0 = time.time()
|
||||||
|
inc_mean, inc_std, pool_activations = get_inception_score(list(ims.swapaxes(1,2).swapaxes(2,3)), splits=10)
|
||||||
|
t1 = time.time()
|
||||||
|
print('Saving pool to numpy file for FID calculations...')
|
||||||
|
np.savez('%s/%s/TF_pool.npz' % (config['experiment_root'], config['experiment_name']), **{'pool_mean': np.mean(pool_activations,axis=0), 'pool_var': np.cov(pool_activations, rowvar=False)})
|
||||||
|
print('Inception took %3f seconds, score of %3f +/- %3f.'%(t1-t0, inc_mean, inc_std))
|
||||||
|
def main():
|
||||||
|
# parse command line and run
|
||||||
|
parser = prepare_parser()
|
||||||
|
config = vars(parser.parse_args())
|
||||||
|
print(config)
|
||||||
|
run(config)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -0,0 +1,310 @@
|
||||||
|
''' Inception utilities
|
||||||
|
This file contains methods for calculating IS and FID, using either
|
||||||
|
the original numpy code or an accelerated fully-pytorch version that
|
||||||
|
uses a fast newton-schulz approximation for the matrix sqrt. There are also
|
||||||
|
methods for acquiring a desired number of samples from the Generator,
|
||||||
|
and parallelizing the inbuilt PyTorch inception network.
|
||||||
|
|
||||||
|
NOTE that Inception Scores and FIDs calculated using these methods will
|
||||||
|
*not* be directly comparable to values calculated using the original TF
|
||||||
|
IS/FID code. You *must* use the TF model if you wish to report and compare
|
||||||
|
numbers. This code tends to produce IS values that are 5-10% lower than
|
||||||
|
those obtained through TF.
|
||||||
|
'''
|
||||||
|
import numpy as np
|
||||||
|
from scipy import linalg # For numpy FID
|
||||||
|
import time
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn import Parameter as P
|
||||||
|
from torchvision.models.inception import inception_v3
|
||||||
|
|
||||||
|
|
||||||
|
# Module that wraps the inception network to enable use with dataparallel and
|
||||||
|
# returning pool features and logits.
|
||||||
|
class WrapInception(nn.Module):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(WrapInception,self).__init__()
|
||||||
|
self.net = net
|
||||||
|
self.mean = P(torch.tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1),
|
||||||
|
requires_grad=False)
|
||||||
|
self.std = P(torch.tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1),
|
||||||
|
requires_grad=False)
|
||||||
|
def forward(self, x):
|
||||||
|
# Normalize x
|
||||||
|
x = (x + 1.) / 2.0
|
||||||
|
x = (x - self.mean) / self.std
|
||||||
|
# Upsample if necessary
|
||||||
|
if x.shape[2] != 299 or x.shape[3] != 299:
|
||||||
|
x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=True)
|
||||||
|
# 299 x 299 x 3
|
||||||
|
x = self.net.Conv2d_1a_3x3(x)
|
||||||
|
# 149 x 149 x 32
|
||||||
|
x = self.net.Conv2d_2a_3x3(x)
|
||||||
|
# 147 x 147 x 32
|
||||||
|
x = self.net.Conv2d_2b_3x3(x)
|
||||||
|
# 147 x 147 x 64
|
||||||
|
x = F.max_pool2d(x, kernel_size=3, stride=2)
|
||||||
|
# 73 x 73 x 64
|
||||||
|
x = self.net.Conv2d_3b_1x1(x)
|
||||||
|
# 73 x 73 x 80
|
||||||
|
x = self.net.Conv2d_4a_3x3(x)
|
||||||
|
# 71 x 71 x 192
|
||||||
|
x = F.max_pool2d(x, kernel_size=3, stride=2)
|
||||||
|
# 35 x 35 x 192
|
||||||
|
x = self.net.Mixed_5b(x)
|
||||||
|
# 35 x 35 x 256
|
||||||
|
x = self.net.Mixed_5c(x)
|
||||||
|
# 35 x 35 x 288
|
||||||
|
x = self.net.Mixed_5d(x)
|
||||||
|
# 35 x 35 x 288
|
||||||
|
x = self.net.Mixed_6a(x)
|
||||||
|
# 17 x 17 x 768
|
||||||
|
x = self.net.Mixed_6b(x)
|
||||||
|
# 17 x 17 x 768
|
||||||
|
x = self.net.Mixed_6c(x)
|
||||||
|
# 17 x 17 x 768
|
||||||
|
x = self.net.Mixed_6d(x)
|
||||||
|
# 17 x 17 x 768
|
||||||
|
x = self.net.Mixed_6e(x)
|
||||||
|
# 17 x 17 x 768
|
||||||
|
# 17 x 17 x 768
|
||||||
|
x = self.net.Mixed_7a(x)
|
||||||
|
# 8 x 8 x 1280
|
||||||
|
x = self.net.Mixed_7b(x)
|
||||||
|
# 8 x 8 x 2048
|
||||||
|
x = self.net.Mixed_7c(x)
|
||||||
|
# 8 x 8 x 2048
|
||||||
|
pool = torch.mean(x.view(x.size(0), x.size(1), -1), 2)
|
||||||
|
# 1 x 1 x 2048
|
||||||
|
logits = self.net.fc(F.dropout(pool, training=False).view(pool.size(0), -1))
|
||||||
|
# 1000 (num_classes)
|
||||||
|
return pool, logits
|
||||||
|
|
||||||
|
|
||||||
|
# A pytorch implementation of cov, from Modar M. Alfadly
|
||||||
|
# https://discuss.pytorch.org/t/covariance-and-gradient-support/16217/2
|
||||||
|
def torch_cov(m, rowvar=False):
|
||||||
|
'''Estimate a covariance matrix given data.
|
||||||
|
|
||||||
|
Covariance indicates the level to which two variables vary together.
|
||||||
|
If we examine N-dimensional samples, `X = [x_1, x_2, ... x_N]^T`,
|
||||||
|
then the covariance matrix element `C_{ij}` is the covariance of
|
||||||
|
`x_i` and `x_j`. The element `C_{ii}` is the variance of `x_i`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
m: A 1-D or 2-D array containing multiple variables and observations.
|
||||||
|
Each row of `m` represents a variable, and each column a single
|
||||||
|
observation of all those variables.
|
||||||
|
rowvar: If `rowvar` is True, then each row represents a
|
||||||
|
variable, with observations in the columns. Otherwise, the
|
||||||
|
relationship is transposed: each column represents a variable,
|
||||||
|
while the rows contain observations.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The covariance matrix of the variables.
|
||||||
|
'''
|
||||||
|
if m.dim() > 2:
|
||||||
|
raise ValueError('m has more than 2 dimensions')
|
||||||
|
if m.dim() < 2:
|
||||||
|
m = m.view(1, -1)
|
||||||
|
if not rowvar and m.size(0) != 1:
|
||||||
|
m = m.t()
|
||||||
|
# m = m.type(torch.double) # uncomment this line if desired
|
||||||
|
fact = 1.0 / (m.size(1) - 1)
|
||||||
|
m -= torch.mean(m, dim=1, keepdim=True)
|
||||||
|
mt = m.t() # if complex: mt = m.t().conj()
|
||||||
|
return fact * m.matmul(mt).squeeze()
|
||||||
|
|
||||||
|
|
||||||
|
# Pytorch implementation of matrix sqrt, from Tsung-Yu Lin, and Subhransu Maji
|
||||||
|
# https://github.com/msubhransu/matrix-sqrt
|
||||||
|
def sqrt_newton_schulz(A, numIters, dtype=None):
|
||||||
|
with torch.no_grad():
|
||||||
|
if dtype is None:
|
||||||
|
dtype = A.type()
|
||||||
|
batchSize = A.shape[0]
|
||||||
|
dim = A.shape[1]
|
||||||
|
normA = A.mul(A).sum(dim=1).sum(dim=1).sqrt()
|
||||||
|
Y = A.div(normA.view(batchSize, 1, 1).expand_as(A));
|
||||||
|
I = torch.eye(dim,dim).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
|
||||||
|
Z = torch.eye(dim,dim).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
|
||||||
|
for i in range(numIters):
|
||||||
|
T = 0.5*(3.0*I - Z.bmm(Y))
|
||||||
|
Y = Y.bmm(T)
|
||||||
|
Z = T.bmm(Z)
|
||||||
|
sA = Y*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(A)
|
||||||
|
return sA
|
||||||
|
|
||||||
|
|
||||||
|
# FID calculator from TTUR--consider replacing this with GPU-accelerated cov
|
||||||
|
# calculations using torch?
|
||||||
|
def numpy_calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
||||||
|
"""Numpy implementation of the Frechet Distance.
|
||||||
|
Taken from https://github.com/bioinf-jku/TTUR
|
||||||
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
|
||||||
|
and X_2 ~ N(mu_2, C_2) is
|
||||||
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
|
||||||
|
Stable version by Dougal J. Sutherland.
|
||||||
|
Params:
|
||||||
|
-- mu1 : Numpy array containing the activations of a layer of the
|
||||||
|
inception net (like returned by the function 'get_predictions')
|
||||||
|
for generated samples.
|
||||||
|
-- mu2 : The sample mean over activations, precalculated on an
|
||||||
|
representive data set.
|
||||||
|
-- sigma1: The covariance matrix over activations for generated samples.
|
||||||
|
-- sigma2: The covariance matrix over activations, precalculated on an
|
||||||
|
representive data set.
|
||||||
|
Returns:
|
||||||
|
-- : The Frechet Distance.
|
||||||
|
"""
|
||||||
|
|
||||||
|
mu1 = np.atleast_1d(mu1)
|
||||||
|
mu2 = np.atleast_1d(mu2)
|
||||||
|
|
||||||
|
sigma1 = np.atleast_2d(sigma1)
|
||||||
|
sigma2 = np.atleast_2d(sigma2)
|
||||||
|
|
||||||
|
assert mu1.shape == mu2.shape, \
|
||||||
|
'Training and test mean vectors have different lengths'
|
||||||
|
assert sigma1.shape == sigma2.shape, \
|
||||||
|
'Training and test covariances have different dimensions'
|
||||||
|
|
||||||
|
diff = mu1 - mu2
|
||||||
|
|
||||||
|
# Product might be almost singular
|
||||||
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
||||||
|
if not np.isfinite(covmean).all():
|
||||||
|
msg = ('fid calculation produces singular product; '
|
||||||
|
'adding %s to diagonal of cov estimates') % eps
|
||||||
|
print(msg)
|
||||||
|
offset = np.eye(sigma1.shape[0]) * eps
|
||||||
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
||||||
|
|
||||||
|
# Numerical error might give slight imaginary component
|
||||||
|
if np.iscomplexobj(covmean):
|
||||||
|
print('wat')
|
||||||
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
||||||
|
m = np.max(np.abs(covmean.imag))
|
||||||
|
raise ValueError('Imaginary component {}'.format(m))
|
||||||
|
covmean = covmean.real
|
||||||
|
|
||||||
|
tr_covmean = np.trace(covmean)
|
||||||
|
|
||||||
|
out = diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def torch_calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
||||||
|
"""Pytorch implementation of the Frechet Distance.
|
||||||
|
Taken from https://github.com/bioinf-jku/TTUR
|
||||||
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
|
||||||
|
and X_2 ~ N(mu_2, C_2) is
|
||||||
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
|
||||||
|
Stable version by Dougal J. Sutherland.
|
||||||
|
Params:
|
||||||
|
-- mu1 : Numpy array containing the activations of a layer of the
|
||||||
|
inception net (like returned by the function 'get_predictions')
|
||||||
|
for generated samples.
|
||||||
|
-- mu2 : The sample mean over activations, precalculated on an
|
||||||
|
representive data set.
|
||||||
|
-- sigma1: The covariance matrix over activations for generated samples.
|
||||||
|
-- sigma2: The covariance matrix over activations, precalculated on an
|
||||||
|
representive data set.
|
||||||
|
Returns:
|
||||||
|
-- : The Frechet Distance.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
assert mu1.shape == mu2.shape, \
|
||||||
|
'Training and test mean vectors have different lengths'
|
||||||
|
assert sigma1.shape == sigma2.shape, \
|
||||||
|
'Training and test covariances have different dimensions'
|
||||||
|
|
||||||
|
diff = mu1 - mu2
|
||||||
|
# Run 50 itrs of newton-schulz to get the matrix sqrt of sigma1 dot sigma2
|
||||||
|
covmean = sqrt_newton_schulz(sigma1.mm(sigma2).unsqueeze(0), 50).squeeze()
|
||||||
|
out = (diff.dot(diff) + torch.trace(sigma1) + torch.trace(sigma2)
|
||||||
|
- 2 * torch.trace(covmean))
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
# Calculate Inception Score mean + std given softmax'd logits and number of splits
|
||||||
|
def calculate_inception_score(pred, num_splits=10):
|
||||||
|
scores = []
|
||||||
|
for index in range(num_splits):
|
||||||
|
pred_chunk = pred[index * (pred.shape[0] // num_splits): (index + 1) * (pred.shape[0] // num_splits), :]
|
||||||
|
kl_inception = pred_chunk * (np.log(pred_chunk) - np.log(np.expand_dims(np.mean(pred_chunk, 0), 0)))
|
||||||
|
kl_inception = np.mean(np.sum(kl_inception, 1))
|
||||||
|
scores.append(np.exp(kl_inception))
|
||||||
|
return np.mean(scores), np.std(scores)
|
||||||
|
|
||||||
|
|
||||||
|
# Loop and run the sampler and the net until it accumulates num_inception_images
|
||||||
|
# activations. Return the pool, the logits, and the labels (if one wants
|
||||||
|
# Inception Accuracy the labels of the generated class will be needed)
|
||||||
|
def accumulate_inception_activations(sample, net, num_inception_images=50000):
|
||||||
|
pool, logits, labels = [], [], []
|
||||||
|
while (torch.cat(logits, 0).shape[0] if len(logits) else 0) < num_inception_images:
|
||||||
|
with torch.no_grad():
|
||||||
|
images, labels_val = sample()
|
||||||
|
pool_val, logits_val = net(images.float())
|
||||||
|
pool += [pool_val]
|
||||||
|
logits += [F.softmax(logits_val, 1)]
|
||||||
|
labels += [labels_val]
|
||||||
|
return torch.cat(pool, 0), torch.cat(logits, 0), torch.cat(labels, 0)
|
||||||
|
|
||||||
|
|
||||||
|
# Load and wrap the Inception model
|
||||||
|
def load_inception_net(parallel=False):
|
||||||
|
inception_model = inception_v3(pretrained=True, transform_input=False)
|
||||||
|
inception_model = WrapInception(inception_model.eval()).cuda()
|
||||||
|
if parallel:
|
||||||
|
print('Parallelizing Inception module...')
|
||||||
|
inception_model = nn.DataParallel(inception_model)
|
||||||
|
return inception_model
|
||||||
|
|
||||||
|
|
||||||
|
# This produces a function which takes in an iterator which returns a set number of samples
|
||||||
|
# and iterates until it accumulates config['num_inception_images'] images.
|
||||||
|
# The iterator can return samples with a different batch size than used in
|
||||||
|
# training, using the setting confg['inception_batchsize']
|
||||||
|
def prepare_inception_metrics(dataset, parallel, no_fid=False):
|
||||||
|
# Load metrics; this is intentionally not in a try-except loop so that
|
||||||
|
# the script will crash here if it cannot find the Inception moments.
|
||||||
|
# By default, remove the "hdf5" from dataset
|
||||||
|
dataset = dataset.strip('_hdf5')
|
||||||
|
data_mu = np.load(dataset+'_inception_moments.npz')['mu']
|
||||||
|
data_sigma = np.load(dataset+'_inception_moments.npz')['sigma']
|
||||||
|
# Load network
|
||||||
|
net = load_inception_net(parallel)
|
||||||
|
def get_inception_metrics(sample, num_inception_images, num_splits=10,
|
||||||
|
prints=True, use_torch=True):
|
||||||
|
if prints:
|
||||||
|
print('Gathering activations...')
|
||||||
|
pool, logits, labels = accumulate_inception_activations(sample, net, num_inception_images)
|
||||||
|
if prints:
|
||||||
|
print('Calculating Inception Score...')
|
||||||
|
IS_mean, IS_std = calculate_inception_score(logits.cpu().numpy(), num_splits)
|
||||||
|
if no_fid:
|
||||||
|
FID = 9999.0
|
||||||
|
else:
|
||||||
|
if prints:
|
||||||
|
print('Calculating means and covariances...')
|
||||||
|
if use_torch:
|
||||||
|
mu, sigma = torch.mean(pool, 0), torch_cov(pool, rowvar=False)
|
||||||
|
else:
|
||||||
|
mu, sigma = np.mean(pool.cpu().numpy(), axis=0), np.cov(pool.cpu().numpy(), rowvar=False)
|
||||||
|
if prints:
|
||||||
|
print('Covariances calculated, getting FID...')
|
||||||
|
if use_torch:
|
||||||
|
FID = torch_calculate_frechet_distance(mu, sigma, torch.tensor(data_mu).float().cuda(), torch.tensor(data_sigma).float().cuda())
|
||||||
|
FID = float(FID.cpu().numpy())
|
||||||
|
else:
|
||||||
|
FID = numpy_calculate_frechet_distance(mu.cpu().numpy(), sigma.cpu().numpy(), data_mu, data_sigma)
|
||||||
|
# Delete mu, sigma, pool, logits, and labels, just in case
|
||||||
|
del mu, sigma, pool, logits, labels
|
||||||
|
return IS_mean, IS_std, FID
|
||||||
|
return get_inception_metrics
|
|
@ -0,0 +1,459 @@
|
||||||
|
''' Layers
|
||||||
|
This file contains various layers for the BigGAN models.
|
||||||
|
'''
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import init
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn import Parameter as P
|
||||||
|
|
||||||
|
from sync_batchnorm import SynchronizedBatchNorm2d as SyncBN2d
|
||||||
|
|
||||||
|
|
||||||
|
# Projection of x onto y
|
||||||
|
def proj(x, y):
|
||||||
|
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
|
||||||
|
|
||||||
|
|
||||||
|
# Orthogonalize x wrt list of vectors ys
|
||||||
|
def gram_schmidt(x, ys):
|
||||||
|
for y in ys:
|
||||||
|
x = x - proj(x, y)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
# Apply num_itrs steps of the power method to estimate top N singular values.
|
||||||
|
def power_iteration(W, u_, update=True, eps=1e-12):
|
||||||
|
# Lists holding singular vectors and values
|
||||||
|
us, vs, svs = [], [], []
|
||||||
|
for i, u in enumerate(u_):
|
||||||
|
# Run one step of the power iteration
|
||||||
|
with torch.no_grad():
|
||||||
|
v = torch.matmul(u, W)
|
||||||
|
# Run Gram-Schmidt to subtract components of all other singular vectors
|
||||||
|
v = F.normalize(gram_schmidt(v, vs), eps=eps)
|
||||||
|
# Add to the list
|
||||||
|
vs += [v]
|
||||||
|
# Update the other singular vector
|
||||||
|
u = torch.matmul(v, W.t())
|
||||||
|
# Run Gram-Schmidt to subtract components of all other singular vectors
|
||||||
|
u = F.normalize(gram_schmidt(u, us), eps=eps)
|
||||||
|
# Add to the list
|
||||||
|
us += [u]
|
||||||
|
if update:
|
||||||
|
u_[i][:] = u
|
||||||
|
# Compute this singular value and add it to the list
|
||||||
|
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
|
||||||
|
#svs += [torch.sum(F.linear(u, W.transpose(0, 1)) * v)]
|
||||||
|
return svs, us, vs
|
||||||
|
|
||||||
|
|
||||||
|
# Convenience passthrough function
|
||||||
|
class identity(nn.Module):
|
||||||
|
def forward(self, input):
|
||||||
|
return input
|
||||||
|
|
||||||
|
|
||||||
|
# Spectral normalization base class
|
||||||
|
class SN(object):
|
||||||
|
def __init__(self, num_svs, num_itrs, num_outputs, transpose=False, eps=1e-12):
|
||||||
|
# Number of power iterations per step
|
||||||
|
self.num_itrs = num_itrs
|
||||||
|
# Number of singular values
|
||||||
|
self.num_svs = num_svs
|
||||||
|
# Transposed?
|
||||||
|
self.transpose = transpose
|
||||||
|
# Epsilon value for avoiding divide-by-0
|
||||||
|
self.eps = eps
|
||||||
|
# Register a singular vector for each sv
|
||||||
|
for i in range(self.num_svs):
|
||||||
|
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
|
||||||
|
self.register_buffer('sv%d' % i, torch.ones(1))
|
||||||
|
|
||||||
|
# Singular vectors (u side)
|
||||||
|
@property
|
||||||
|
def u(self):
|
||||||
|
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
|
||||||
|
|
||||||
|
# Singular values;
|
||||||
|
# note that these buffers are just for logging and are not used in training.
|
||||||
|
@property
|
||||||
|
def sv(self):
|
||||||
|
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
|
||||||
|
|
||||||
|
# Compute the spectrally-normalized weight
|
||||||
|
def W_(self):
|
||||||
|
W_mat = self.weight.view(self.weight.size(0), -1)
|
||||||
|
if self.transpose:
|
||||||
|
W_mat = W_mat.t()
|
||||||
|
# Apply num_itrs power iterations
|
||||||
|
for _ in range(self.num_itrs):
|
||||||
|
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
|
||||||
|
# Update the svs
|
||||||
|
if self.training:
|
||||||
|
with torch.no_grad(): # Make sure to do this in a no_grad() context or you'll get memory leaks!
|
||||||
|
for i, sv in enumerate(svs):
|
||||||
|
self.sv[i][:] = sv
|
||||||
|
return self.weight / svs[0]
|
||||||
|
|
||||||
|
|
||||||
|
# 2D Conv layer with spectral norm
|
||||||
|
class SNConv2d(nn.Conv2d, SN):
|
||||||
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
||||||
|
padding=0, dilation=1, groups=1, bias=True,
|
||||||
|
num_svs=1, num_itrs=1, eps=1e-12):
|
||||||
|
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
|
||||||
|
padding, dilation, groups, bias)
|
||||||
|
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
|
||||||
|
def forward(self, x):
|
||||||
|
return F.conv2d(x, self.W_(), self.bias, self.stride,
|
||||||
|
self.padding, self.dilation, self.groups)
|
||||||
|
|
||||||
|
|
||||||
|
# Linear layer with spectral norm
|
||||||
|
class SNLinear(nn.Linear, SN):
|
||||||
|
def __init__(self, in_features, out_features, bias=True,
|
||||||
|
num_svs=1, num_itrs=1, eps=1e-12):
|
||||||
|
nn.Linear.__init__(self, in_features, out_features, bias)
|
||||||
|
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
|
||||||
|
def forward(self, x):
|
||||||
|
return F.linear(x, self.W_(), self.bias)
|
||||||
|
|
||||||
|
|
||||||
|
# Embedding layer with spectral norm
|
||||||
|
# We use num_embeddings as the dim instead of embedding_dim here
|
||||||
|
# for convenience sake
|
||||||
|
class SNEmbedding(nn.Embedding, SN):
|
||||||
|
def __init__(self, num_embeddings, embedding_dim, padding_idx=None,
|
||||||
|
max_norm=None, norm_type=2, scale_grad_by_freq=False,
|
||||||
|
sparse=False, _weight=None,
|
||||||
|
num_svs=1, num_itrs=1, eps=1e-12):
|
||||||
|
nn.Embedding.__init__(self, num_embeddings, embedding_dim, padding_idx,
|
||||||
|
max_norm, norm_type, scale_grad_by_freq,
|
||||||
|
sparse, _weight)
|
||||||
|
SN.__init__(self, num_svs, num_itrs, num_embeddings, eps=eps)
|
||||||
|
def forward(self, x):
|
||||||
|
return F.embedding(x, self.W_())
|
||||||
|
|
||||||
|
|
||||||
|
# A non-local block as used in SA-GAN
|
||||||
|
# Note that the implementation as described in the paper is largely incorrect;
|
||||||
|
# refer to the released code for the actual implementation.
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, ch, which_conv=SNConv2d, name='attention'):
|
||||||
|
super(Attention, self).__init__()
|
||||||
|
# Channel multiplier
|
||||||
|
self.ch = ch
|
||||||
|
self.which_conv = which_conv
|
||||||
|
self.theta = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
|
||||||
|
self.phi = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
|
||||||
|
self.g = self.which_conv(self.ch, self.ch // 2, kernel_size=1, padding=0, bias=False)
|
||||||
|
self.o = self.which_conv(self.ch // 2, self.ch, kernel_size=1, padding=0, bias=False)
|
||||||
|
# Learnable gain parameter
|
||||||
|
self.gamma = P(torch.tensor(0.), requires_grad=True)
|
||||||
|
def forward(self, x, y=None):
|
||||||
|
# Apply convs
|
||||||
|
theta = self.theta(x)
|
||||||
|
phi = F.max_pool2d(self.phi(x), [2,2])
|
||||||
|
g = F.max_pool2d(self.g(x), [2,2])
|
||||||
|
# Perform reshapes
|
||||||
|
theta = theta.view(-1, self. ch // 8, x.shape[2] * x.shape[3])
|
||||||
|
phi = phi.view(-1, self. ch // 8, x.shape[2] * x.shape[3] // 4)
|
||||||
|
g = g.view(-1, self. ch // 2, x.shape[2] * x.shape[3] // 4)
|
||||||
|
# Matmul and softmax to get attention maps
|
||||||
|
beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
|
||||||
|
# Attention map times g path
|
||||||
|
o = self.o(torch.bmm(g, beta.transpose(1,2)).view(-1, self.ch // 2, x.shape[2], x.shape[3]))
|
||||||
|
return self.gamma * o + x
|
||||||
|
|
||||||
|
|
||||||
|
# Fused batchnorm op
|
||||||
|
def fused_bn(x, mean, var, gain=None, bias=None, eps=1e-5):
|
||||||
|
# Apply scale and shift--if gain and bias are provided, fuse them here
|
||||||
|
# Prepare scale
|
||||||
|
scale = torch.rsqrt(var + eps)
|
||||||
|
# If a gain is provided, use it
|
||||||
|
if gain is not None:
|
||||||
|
scale = scale * gain
|
||||||
|
# Prepare shift
|
||||||
|
shift = mean * scale
|
||||||
|
# If bias is provided, use it
|
||||||
|
if bias is not None:
|
||||||
|
shift = shift - bias
|
||||||
|
return x * scale - shift
|
||||||
|
#return ((x - mean) / ((var + eps) ** 0.5)) * gain + bias # The unfused way.
|
||||||
|
|
||||||
|
|
||||||
|
# Manual BN
|
||||||
|
# Calculate means and variances using mean-of-squares minus mean-squared
|
||||||
|
def manual_bn(x, gain=None, bias=None, return_mean_var=False, eps=1e-5):
|
||||||
|
# Cast x to float32 if necessary
|
||||||
|
float_x = x.float()
|
||||||
|
# Calculate expected value of x (m) and expected value of x**2 (m2)
|
||||||
|
# Mean of x
|
||||||
|
m = torch.mean(float_x, [0, 2, 3], keepdim=True)
|
||||||
|
# Mean of x squared
|
||||||
|
m2 = torch.mean(float_x ** 2, [0, 2, 3], keepdim=True)
|
||||||
|
# Calculate variance as mean of squared minus mean squared.
|
||||||
|
var = (m2 - m **2)
|
||||||
|
# Cast back to float 16 if necessary
|
||||||
|
var = var.type(x.type())
|
||||||
|
m = m.type(x.type())
|
||||||
|
# Return mean and variance for updating stored mean/var if requested
|
||||||
|
if return_mean_var:
|
||||||
|
return fused_bn(x, m, var, gain, bias, eps), m.squeeze(), var.squeeze()
|
||||||
|
else:
|
||||||
|
return fused_bn(x, m, var, gain, bias, eps)
|
||||||
|
|
||||||
|
|
||||||
|
# My batchnorm, supports standing stats
|
||||||
|
class myBN(nn.Module):
|
||||||
|
def __init__(self, num_channels, eps=1e-5, momentum=0.1):
|
||||||
|
super(myBN, self).__init__()
|
||||||
|
# momentum for updating running stats
|
||||||
|
self.momentum = momentum
|
||||||
|
# epsilon to avoid dividing by 0
|
||||||
|
self.eps = eps
|
||||||
|
# Momentum
|
||||||
|
self.momentum = momentum
|
||||||
|
# Register buffers
|
||||||
|
self.register_buffer('stored_mean', torch.zeros(num_channels))
|
||||||
|
self.register_buffer('stored_var', torch.ones(num_channels))
|
||||||
|
self.register_buffer('accumulation_counter', torch.zeros(1))
|
||||||
|
# Accumulate running means and vars
|
||||||
|
self.accumulate_standing = False
|
||||||
|
|
||||||
|
# reset standing stats
|
||||||
|
def reset_stats(self):
|
||||||
|
self.stored_mean[:] = 0
|
||||||
|
self.stored_var[:] = 0
|
||||||
|
self.accumulation_counter[:] = 0
|
||||||
|
|
||||||
|
def forward(self, x, gain, bias):
|
||||||
|
if self.training:
|
||||||
|
out, mean, var = manual_bn(x, gain, bias, return_mean_var=True, eps=self.eps)
|
||||||
|
# If accumulating standing stats, increment them
|
||||||
|
if self.accumulate_standing:
|
||||||
|
self.stored_mean[:] = self.stored_mean + mean.data
|
||||||
|
self.stored_var[:] = self.stored_var + var.data
|
||||||
|
self.accumulation_counter += 1.0
|
||||||
|
# If not accumulating standing stats, take running averages
|
||||||
|
else:
|
||||||
|
self.stored_mean[:] = self.stored_mean * (1 - self.momentum) + mean * self.momentum
|
||||||
|
self.stored_var[:] = self.stored_var * (1 - self.momentum) + var * self.momentum
|
||||||
|
return out
|
||||||
|
# If not in training mode, use the stored statistics
|
||||||
|
else:
|
||||||
|
mean = self.stored_mean.view(1, -1, 1, 1)
|
||||||
|
var = self.stored_var.view(1, -1, 1, 1)
|
||||||
|
# If using standing stats, divide them by the accumulation counter
|
||||||
|
if self.accumulate_standing:
|
||||||
|
mean = mean / self.accumulation_counter
|
||||||
|
var = var / self.accumulation_counter
|
||||||
|
return fused_bn(x, mean, var, gain, bias, self.eps)
|
||||||
|
|
||||||
|
|
||||||
|
# Simple function to handle groupnorm norm stylization
|
||||||
|
def groupnorm(x, norm_style):
|
||||||
|
# If number of channels specified in norm_style:
|
||||||
|
if 'ch' in norm_style:
|
||||||
|
ch = int(norm_style.split('_')[-1])
|
||||||
|
groups = max(int(x.shape[1]) // ch, 1)
|
||||||
|
# If number of groups specified in norm style
|
||||||
|
elif 'grp' in norm_style:
|
||||||
|
groups = int(norm_style.split('_')[-1])
|
||||||
|
# If neither, default to groups = 16
|
||||||
|
else:
|
||||||
|
groups = 16
|
||||||
|
return F.group_norm(x, groups)
|
||||||
|
|
||||||
|
|
||||||
|
# Class-conditional bn
|
||||||
|
# output size is the number of channels, input size is for the linear layers
|
||||||
|
# Andy's Note: this class feels messy but I'm not really sure how to clean it up
|
||||||
|
# Suggestions welcome! (By which I mean, refactor this and make a pull request
|
||||||
|
# if you want to make this more readable/usable).
|
||||||
|
class ccbn(nn.Module):
|
||||||
|
def __init__(self, output_size, input_size, which_linear, eps=1e-5, momentum=0.1,
|
||||||
|
cross_replica=False, mybn=False, norm_style='bn',):
|
||||||
|
super(ccbn, self).__init__()
|
||||||
|
self.output_size, self.input_size = output_size, input_size
|
||||||
|
# Prepare gain and bias layers
|
||||||
|
self.gain = which_linear(input_size, output_size)
|
||||||
|
self.bias = which_linear(input_size, output_size)
|
||||||
|
# epsilon to avoid dividing by 0
|
||||||
|
self.eps = eps
|
||||||
|
# Momentum
|
||||||
|
self.momentum = momentum
|
||||||
|
# Use cross-replica batchnorm?
|
||||||
|
self.cross_replica = cross_replica
|
||||||
|
# Use my batchnorm?
|
||||||
|
self.mybn = mybn
|
||||||
|
# Norm style?
|
||||||
|
self.norm_style = norm_style
|
||||||
|
|
||||||
|
if self.cross_replica:
|
||||||
|
self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False)
|
||||||
|
elif self.mybn:
|
||||||
|
self.bn = myBN(output_size, self.eps, self.momentum)
|
||||||
|
elif self.norm_style in ['bn', 'in']:
|
||||||
|
self.register_buffer('stored_mean', torch.zeros(output_size))
|
||||||
|
self.register_buffer('stored_var', torch.ones(output_size))
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x, y):
|
||||||
|
# Calculate class-conditional gains and biases
|
||||||
|
gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1)
|
||||||
|
bias = self.bias(y).view(y.size(0), -1, 1, 1)
|
||||||
|
# If using my batchnorm
|
||||||
|
if self.mybn or self.cross_replica:
|
||||||
|
return self.bn(x, gain=gain, bias=bias)
|
||||||
|
# else:
|
||||||
|
else:
|
||||||
|
if self.norm_style == 'bn':
|
||||||
|
out = F.batch_norm(x, self.stored_mean, self.stored_var, None, None,
|
||||||
|
self.training, 0.1, self.eps)
|
||||||
|
elif self.norm_style == 'in':
|
||||||
|
out = F.instance_norm(x, self.stored_mean, self.stored_var, None, None,
|
||||||
|
self.training, 0.1, self.eps)
|
||||||
|
elif self.norm_style == 'gn':
|
||||||
|
out = groupnorm(x, self.normstyle)
|
||||||
|
elif self.norm_style == 'nonorm':
|
||||||
|
out = x
|
||||||
|
return out * gain + bias
|
||||||
|
def extra_repr(self):
|
||||||
|
s = 'out: {output_size}, in: {input_size},'
|
||||||
|
s +=' cross_replica={cross_replica}'
|
||||||
|
return s.format(**self.__dict__)
|
||||||
|
|
||||||
|
|
||||||
|
# Normal, non-class-conditional BN
|
||||||
|
class bn(nn.Module):
|
||||||
|
def __init__(self, output_size, eps=1e-5, momentum=0.1,
|
||||||
|
cross_replica=False, mybn=False):
|
||||||
|
super(bn, self).__init__()
|
||||||
|
self.output_size= output_size
|
||||||
|
# Prepare gain and bias layers
|
||||||
|
self.gain = P(torch.ones(output_size), requires_grad=True)
|
||||||
|
self.bias = P(torch.zeros(output_size), requires_grad=True)
|
||||||
|
# epsilon to avoid dividing by 0
|
||||||
|
self.eps = eps
|
||||||
|
# Momentum
|
||||||
|
self.momentum = momentum
|
||||||
|
# Use cross-replica batchnorm?
|
||||||
|
self.cross_replica = cross_replica
|
||||||
|
# Use my batchnorm?
|
||||||
|
self.mybn = mybn
|
||||||
|
|
||||||
|
if self.cross_replica:
|
||||||
|
self.bn = SyncBN2d(output_size, eps=self.eps, momentum=self.momentum, affine=False)
|
||||||
|
elif mybn:
|
||||||
|
self.bn = myBN(output_size, self.eps, self.momentum)
|
||||||
|
# Register buffers if neither of the above
|
||||||
|
else:
|
||||||
|
self.register_buffer('stored_mean', torch.zeros(output_size))
|
||||||
|
self.register_buffer('stored_var', torch.ones(output_size))
|
||||||
|
|
||||||
|
def forward(self, x, y=None):
|
||||||
|
if self.cross_replica or self.mybn:
|
||||||
|
gain = self.gain.view(1,-1,1,1)
|
||||||
|
bias = self.bias.view(1,-1,1,1)
|
||||||
|
return self.bn(x, gain=gain, bias=bias)
|
||||||
|
else:
|
||||||
|
return F.batch_norm(x, self.stored_mean, self.stored_var, self.gain,
|
||||||
|
self.bias, self.training, self.momentum, self.eps)
|
||||||
|
|
||||||
|
|
||||||
|
# Generator blocks
|
||||||
|
# Note that this class assumes the kernel size and padding (and any other
|
||||||
|
# settings) have been selected in the main generator module and passed in
|
||||||
|
# through the which_conv arg. Similar rules apply with which_bn (the input
|
||||||
|
# size [which is actually the number of channels of the conditional info] must
|
||||||
|
# be preselected)
|
||||||
|
class GBlock(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels,
|
||||||
|
which_conv=nn.Conv2d, which_bn=bn, activation=None,
|
||||||
|
upsample=None):
|
||||||
|
super(GBlock, self).__init__()
|
||||||
|
|
||||||
|
self.in_channels, self.out_channels = in_channels, out_channels
|
||||||
|
self.which_conv, self.which_bn = which_conv, which_bn
|
||||||
|
self.activation = activation
|
||||||
|
self.upsample = upsample
|
||||||
|
# Conv layers
|
||||||
|
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
||||||
|
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
||||||
|
self.learnable_sc = in_channels != out_channels or upsample
|
||||||
|
if self.learnable_sc:
|
||||||
|
self.conv_sc = self.which_conv(in_channels, out_channels,
|
||||||
|
kernel_size=1, padding=0)
|
||||||
|
# Batchnorm layers
|
||||||
|
self.bn1 = self.which_bn(in_channels)
|
||||||
|
self.bn2 = self.which_bn(out_channels)
|
||||||
|
# upsample layers
|
||||||
|
self.upsample = upsample
|
||||||
|
|
||||||
|
def forward(self, x, y):
|
||||||
|
h = self.activation(self.bn1(x, y))
|
||||||
|
if self.upsample:
|
||||||
|
h = self.upsample(h)
|
||||||
|
x = self.upsample(x)
|
||||||
|
h = self.conv1(h)
|
||||||
|
h = self.activation(self.bn2(h, y))
|
||||||
|
h = self.conv2(h)
|
||||||
|
if self.learnable_sc:
|
||||||
|
x = self.conv_sc(x)
|
||||||
|
return h + x
|
||||||
|
|
||||||
|
|
||||||
|
# Residual block for the discriminator
|
||||||
|
class DBlock(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
|
||||||
|
preactivation=False, activation=None, downsample=None,):
|
||||||
|
super(DBlock, self).__init__()
|
||||||
|
self.in_channels, self.out_channels = in_channels, out_channels
|
||||||
|
# If using wide D (as in SA-GAN and BigGAN), change the channel pattern
|
||||||
|
self.hidden_channels = self.out_channels if wide else self.in_channels
|
||||||
|
self.which_conv = which_conv
|
||||||
|
self.preactivation = preactivation
|
||||||
|
self.activation = activation
|
||||||
|
self.downsample = downsample
|
||||||
|
|
||||||
|
# Conv layers
|
||||||
|
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
|
||||||
|
self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
|
||||||
|
self.learnable_sc = True if (in_channels != out_channels) or downsample else False
|
||||||
|
if self.learnable_sc:
|
||||||
|
self.conv_sc = self.which_conv(in_channels, out_channels,
|
||||||
|
kernel_size=1, padding=0)
|
||||||
|
def shortcut(self, x):
|
||||||
|
if self.preactivation:
|
||||||
|
if self.learnable_sc:
|
||||||
|
x = self.conv_sc(x)
|
||||||
|
if self.downsample:
|
||||||
|
x = self.downsample(x)
|
||||||
|
else:
|
||||||
|
if self.downsample:
|
||||||
|
x = self.downsample(x)
|
||||||
|
if self.learnable_sc:
|
||||||
|
x = self.conv_sc(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.preactivation:
|
||||||
|
# h = self.activation(x) # NOT TODAY SATAN
|
||||||
|
# Andy's note: This line *must* be an out-of-place ReLU or it
|
||||||
|
# will negatively affect the shortcut connection.
|
||||||
|
h = F.relu(x)
|
||||||
|
else:
|
||||||
|
h = x
|
||||||
|
h = self.conv1(h)
|
||||||
|
h = self.conv2(self.activation(h))
|
||||||
|
if self.downsample:
|
||||||
|
h = self.downsample(h)
|
||||||
|
|
||||||
|
return h + self.shortcut(x)
|
||||||
|
|
||||||
|
# dogball
|
|
@ -0,0 +1,68 @@
|
||||||
|
{"itr": 2000, "IS_mean": 2.806771755218506, "IS_std": 0.019480662420392036, "FID": 173.76484159711126, "_stamp": 1551403232.0425167}
|
||||||
|
{"itr": 4000, "IS_mean": 4.962374687194824, "IS_std": 0.07276841998100281, "FID": 113.86730514283107, "_stamp": 1551422228.743057}
|
||||||
|
{"itr": 6000, "IS_mean": 6.939817905426025, "IS_std": 0.11417163163423538, "FID": 101.63548498447199, "_stamp": 1551457139.3400874}
|
||||||
|
{"itr": 8000, "IS_mean": 8.142985343933105, "IS_std": 0.11931543797254562, "FID": 92.0014385772705, "_stamp": 1551476217.2409613}
|
||||||
|
{"itr": 10000, "IS_mean": 10.355518341064453, "IS_std": 0.09094739705324173, "FID": 83.58068997965364, "_stamp": 1551494854.2419689}
|
||||||
|
{"itr": 12000, "IS_mean": 11.288347244262695, "IS_std": 0.14952820539474487, "FID": 80.98066299357106, "_stamp": 1551513232.5049698}
|
||||||
|
{"itr": 14000, "IS_mean": 11.755794525146484, "IS_std": 0.17969024181365967, "FID": 76.80603924280956, "_stamp": 1551531425.150371}
|
||||||
|
{"itr": 18000, "IS_mean": 13.65534496307373, "IS_std": 0.11151058971881866, "FID": 65.95736694335938, "_stamp": 1551588271.9177916}
|
||||||
|
{"itr": 20000, "IS_mean": 14.817827224731445, "IS_std": 0.23588882386684418, "FID": 61.32061767578125, "_stamp": 1551606713.6567464}
|
||||||
|
{"itr": 22000, "IS_mean": 17.16551399230957, "IS_std": 0.19506946206092834, "FID": 53.387969970703125, "_stamp": 1551624876.6513028}
|
||||||
|
{"itr": 24000, "IS_mean": 19.60654067993164, "IS_std": 0.5591856837272644, "FID": 46.5386962890625, "_stamp": 1551642822.6126688}
|
||||||
|
{"itr": 26000, "IS_mean": 21.74416732788086, "IS_std": 0.2850531041622162, "FID": 41.595001220703125, "_stamp": 1551663522.6019194}
|
||||||
|
{"itr": 28000, "IS_mean": 23.923612594604492, "IS_std": 0.41587772965431213, "FID": 37.894744873046875, "_stamp": 1551681794.6567173}
|
||||||
|
{"itr": 30000, "IS_mean": 25.569377899169922, "IS_std": 0.3333457112312317, "FID": 35.49310302734375, "_stamp": 1551699773.7080302}
|
||||||
|
{"itr": 32000, "IS_mean": 26.867944717407227, "IS_std": 0.5968036651611328, "FID": 33.4849853515625, "_stamp": 1551717623.887933}
|
||||||
|
{"itr": 34000, "IS_mean": 28.719074249267578, "IS_std": 0.5698027014732361, "FID": 31.375518798828125, "_stamp": 1551735411.1578612}
|
||||||
|
{"itr": 36000, "IS_mean": 30.587574005126953, "IS_std": 0.5044271349906921, "FID": 29.432281494140625, "_stamp": 1551783380.6357439}
|
||||||
|
{"itr": 38000, "IS_mean": 32.08299255371094, "IS_std": 0.49342143535614014, "FID": 28.099456787109375, "_stamp": 1551801179.6495197}
|
||||||
|
{"itr": 40000, "IS_mean": 34.24657440185547, "IS_std": 0.7709177732467651, "FID": 26.53802490234375, "_stamp": 1551818775.171794}
|
||||||
|
{"itr": 42000, "IS_mean": 35.891212463378906, "IS_std": 0.7036871314048767, "FID": 25.03021240234375, "_stamp": 1551836329.6873965}
|
||||||
|
{"itr": 44000, "IS_mean": 38.184898376464844, "IS_std": 0.32996198534965515, "FID": 23.4940185546875, "_stamp": 1551897864.911537}
|
||||||
|
{"itr": 46000, "IS_mean": 40.239479064941406, "IS_std": 0.7761151194572449, "FID": 22.53167724609375, "_stamp": 1551915406.4840703}
|
||||||
|
{"itr": 48000, "IS_mean": 41.46656036376953, "IS_std": 1.1031498908996582, "FID": 21.5338134765625, "_stamp": 1551932899.6074848}
|
||||||
|
{"itr": 50000, "IS_mean": 43.31670379638672, "IS_std": 0.7796809077262878, "FID": 20.53253173828125, "_stamp": 1551950390.345334}
|
||||||
|
{"itr": 52000, "IS_mean": 45.1517333984375, "IS_std": 1.2925242185592651, "FID": 19.656646728515625, "_stamp": 1551967838.1501615}
|
||||||
|
{"itr": 54000, "IS_mean": 47.638771057128906, "IS_std": 1.0689665079116821, "FID": 18.898162841796875, "_stamp": 1552044534.5349634}
|
||||||
|
{"itr": 56000, "IS_mean": 48.87520217895508, "IS_std": 1.1317559480667114, "FID": 18.1248779296875, "_stamp": 1552061763.3080354}
|
||||||
|
{"itr": 58000, "IS_mean": 49.40987014770508, "IS_std": 1.1866596937179565, "FID": 17.751922607421875, "_stamp": 1552078939.9828825}
|
||||||
|
{"itr": 60000, "IS_mean": 51.051334381103516, "IS_std": 1.2281248569488525, "FID": 17.19964599609375, "_stamp": 1552096167.889482}
|
||||||
|
{"itr": 62000, "IS_mean": 52.0235481262207, "IS_std": 0.5391153693199158, "FID": 16.62115478515625, "_stamp": 1552113417.9520617}
|
||||||
|
{"itr": 64000, "IS_mean": 53.868492126464844, "IS_std": 1.327082633972168, "FID": 16.237335205078125, "_stamp": 1552142961.09602}
|
||||||
|
{"itr": 66000, "IS_mean": 54.978721618652344, "IS_std": 0.9502049088478088, "FID": 15.81170654296875, "_stamp": 1552162403.2232807}
|
||||||
|
{"itr": 68000, "IS_mean": 55.73248291015625, "IS_std": 1.0323851108551025, "FID": 15.545623779296875, "_stamp": 1552181112.676657}
|
||||||
|
{"itr": 70000, "IS_mean": 56.78422927856445, "IS_std": 1.211003303527832, "FID": 15.28369140625, "_stamp": 1552199498.887533}
|
||||||
|
{"itr": 72000, "IS_mean": 57.972999572753906, "IS_std": 0.8668608665466309, "FID": 14.86395263671875, "_stamp": 1552217782.2738616}
|
||||||
|
{"itr": 74000, "IS_mean": 58.845054626464844, "IS_std": 1.4297977685928345, "FID": 14.620635986328125, "_stamp": 1552251085.1781816}
|
||||||
|
{"itr": 76000, "IS_mean": 59.60982131958008, "IS_std": 0.9095696210861206, "FID": 14.360198974609375, "_stamp": 1552270214.9345307}
|
||||||
|
{"itr": 78000, "IS_mean": 60.71195602416992, "IS_std": 0.960899829864502, "FID": 14.07183837890625, "_stamp": 1552288697.1580262}
|
||||||
|
{"itr": 80000, "IS_mean": 61.772125244140625, "IS_std": 0.6913255453109741, "FID": 13.781585693359375, "_stamp": 1552307170.0280282}
|
||||||
|
{"itr": 82000, "IS_mean": 62.98079299926758, "IS_std": 1.4735801219940186, "FID": 13.55389404296875, "_stamp": 1552325252.8553352}
|
||||||
|
{"itr": 84000, "IS_mean": 64.95240783691406, "IS_std": 0.9018951654434204, "FID": 13.231689453125, "_stamp": 1552344135.3111835}
|
||||||
|
{"itr": 86000, "IS_mean": 65.13968658447266, "IS_std": 0.8772205114364624, "FID": 13.176849365234375, "_stamp": 1552362429.6782444}
|
||||||
|
{"itr": 88000, "IS_mean": 65.84476470947266, "IS_std": 1.167534351348877, "FID": 12.87078857421875, "_stamp": 1552380560.7988124}
|
||||||
|
{"itr": 90000, "IS_mean": 67.41099548339844, "IS_std": 1.6899267435073853, "FID": 12.586517333984375, "_stamp": 1552398550.2060475}
|
||||||
|
{"itr": 92000, "IS_mean": 68.63685607910156, "IS_std": 1.9431978464126587, "FID": 12.49505615234375, "_stamp": 1552430781.6406457}
|
||||||
|
{"itr": 94000, "IS_mean": 70.09907531738281, "IS_std": 1.0715738534927368, "FID": 12.047607421875, "_stamp": 1552449001.1950285}
|
||||||
|
{"itr": 96000, "IS_mean": 70.34623718261719, "IS_std": 1.7962944507598877, "FID": 11.896697998046875, "_stamp": 1552466989.3587568}
|
||||||
|
{"itr": 98000, "IS_mean": 71.08210754394531, "IS_std": 1.458209753036499, "FID": 11.73046875, "_stamp": 1552484800.7138846}
|
||||||
|
{"itr": 100000, "IS_mean": 72.24256896972656, "IS_std": 1.3259714841842651, "FID": 11.7386474609375, "_stamp": 1552502538.0269725}
|
||||||
|
{"itr": 102000, "IS_mean": 73.19488525390625, "IS_std": 1.3439149856567383, "FID": 11.50494384765625, "_stamp": 1552523284.4514356}
|
||||||
|
{"itr": 104000, "IS_mean": 73.38243103027344, "IS_std": 1.4162707328796387, "FID": 11.374542236328125, "_stamp": 1552541012.0651608}
|
||||||
|
{"itr": 106000, "IS_mean": 74.95563507080078, "IS_std": 1.089124083518982, "FID": 11.10479736328125, "_stamp": 1552558577.7458107}
|
||||||
|
{"itr": 108000, "IS_mean": 76.42997741699219, "IS_std": 1.9282453060150146, "FID": 10.998870849609375, "_stamp": 1552576111.9480467}
|
||||||
|
{"itr": 110000, "IS_mean": 76.89225769042969, "IS_std": 1.4771150350570679, "FID": 10.847015380859375, "_stamp": 1552593659.445132}
|
||||||
|
{"itr": 112000, "IS_mean": 78.04684448242188, "IS_std": 1.4850096702575684, "FID": 10.772552490234375, "_stamp": 1552616479.5201895}
|
||||||
|
{"itr": 114000, "IS_mean": 79.67677307128906, "IS_std": 2.0147368907928467, "FID": 10.528045654296875, "_stamp": 1552633850.9315467}
|
||||||
|
{"itr": 116000, "IS_mean": 79.8828125, "IS_std": 0.978247344493866, "FID": 10.626068115234375, "_stamp": 1552651198.9012825}
|
||||||
|
{"itr": 118000, "IS_mean": 79.95381164550781, "IS_std": 1.8608143329620361, "FID": 10.46771240234375, "_stamp": 1552668560.4420238}
|
||||||
|
{"itr": 120000, "IS_mean": 82.37217712402344, "IS_std": 1.8909310102462769, "FID": 10.259033203125, "_stamp": 1552749673.4319007}
|
||||||
|
{"itr": 122000, "IS_mean": 83.49666595458984, "IS_std": 2.38446044921875, "FID": 9.996185302734375, "_stamp": 1552766698.2706933}
|
||||||
|
{"itr": 124000, "IS_mean": 83.05189514160156, "IS_std": 1.8844469785690308, "FID": 10.164398193359375, "_stamp": 1552783762.891172}
|
||||||
|
{"itr": 126000, "IS_mean": 84.27763366699219, "IS_std": 0.9329544901847839, "FID": 10.03509521484375, "_stamp": 1552800953.5724175}
|
||||||
|
{"itr": 128000, "IS_mean": 85.84852600097656, "IS_std": 2.2698562145233154, "FID": 9.91644287109375, "_stamp": 1552818112.227726}
|
||||||
|
{"itr": 130000, "IS_mean": 87.356689453125, "IS_std": 2.0958640575408936, "FID": 9.771148681640625, "_stamp": 1552837539.995247}
|
||||||
|
{"itr": 132000, "IS_mean": 88.72562408447266, "IS_std": 1.7551432847976685, "FID": 9.8258056640625, "_stamp": 1552859685.9305944}
|
||||||
|
{"itr": 134000, "IS_mean": 88.0631103515625, "IS_std": 1.8199039697647095, "FID": 9.957183837890625, "_stamp": 1552880037.5408435}
|
||||||
|
{"itr": 136000, "IS_mean": 91.50938415527344, "IS_std": 1.9926033020019531, "FID": 9.876556396484375, "_stamp": 1552899854.652669}
|
||||||
|
{"itr": 138000, "IS_mean": 93.09217834472656, "IS_std": 2.3062736988067627, "FID": 9.908477783203125, "_stamp": 1552921580.958927}
|
|
@ -0,0 +1,89 @@
|
||||||
|
clc
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
fclose all;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%% Get All logs and sort them
|
||||||
|
s = {};
|
||||||
|
d = dir();
|
||||||
|
j = 1;
|
||||||
|
for i = 1:length(d)
|
||||||
|
if any(strfind(d(i).name,'.jsonl'))
|
||||||
|
s = [s; d(i).name];
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
j = 1;
|
||||||
|
for i = 1:length(s)
|
||||||
|
fname = s{i,1};
|
||||||
|
% Check if the Inception metrics log exists, and if so, plot it
|
||||||
|
[itr, IS, FID, t] = process_inception_log(fname(1:end - 10), 'log.jsonl');
|
||||||
|
s{i,2} = itr;
|
||||||
|
s{i,3} = IS;
|
||||||
|
s{i,4} = FID;
|
||||||
|
s{i,5} = max(IS);
|
||||||
|
s{i,6} = min(FID);
|
||||||
|
s{i,7} = t;
|
||||||
|
end
|
||||||
|
% Sort by Inception Score?
|
||||||
|
[IS_sorted, IS_index] = sort(cell2mat(s(:,5)));
|
||||||
|
% Cutoff inception scores below a certain value?
|
||||||
|
threshold = 22;
|
||||||
|
IS_index = IS_index(IS_sorted > threshold);
|
||||||
|
|
||||||
|
% Sort by FID?
|
||||||
|
[FID_sorted, FID_index] = sort(cell2mat(s(:,6)));
|
||||||
|
% Cutoff also based on IS?
|
||||||
|
% threshold = 0;
|
||||||
|
FID_index = FID_index(IS_sorted > threshold);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%% Plot things?
|
||||||
|
cc = hsv(length(IS_index));
|
||||||
|
legend1 = {};
|
||||||
|
legend2 = {};
|
||||||
|
make_axis=true;%false % Turn this on to see the axis out to 1e6 iterations
|
||||||
|
for i=1:length(IS_index)
|
||||||
|
legend1 = [legend1; s{IS_index(i), 1}];
|
||||||
|
figure(1)
|
||||||
|
plot(s{IS_index(i),2}, s{IS_index(i),3}, 'color', cc(i,:),'linewidth',2)
|
||||||
|
hold on;
|
||||||
|
xlabel('itr'); ylabel('IS');
|
||||||
|
grid on;
|
||||||
|
if make_axis
|
||||||
|
axis([0,1e6,0,80]); % 50% grid on;
|
||||||
|
end
|
||||||
|
legend(legend1,'Interpreter','none')
|
||||||
|
%pause(1) % Turn this on to animate stuff
|
||||||
|
legend2 = [legend2; s{IS_index(i), 1}];
|
||||||
|
figure(2)
|
||||||
|
plot(s{IS_index(i),2}, s{IS_index(i),4}, 'color', cc(i,:),'linewidth',2)
|
||||||
|
hold on;
|
||||||
|
xlabel('itr'); ylabel('FID');
|
||||||
|
j = j + 1;
|
||||||
|
grid on;
|
||||||
|
if make_axis
|
||||||
|
axis([0,1e6,0,50]);% grid on;
|
||||||
|
end
|
||||||
|
legend(legend2, 'Interpreter','none')
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
%% Quick script to plot IS versus timesteps
|
||||||
|
if 0
|
||||||
|
figure(3);
|
||||||
|
this_index=4;
|
||||||
|
subplot(2,1,1);
|
||||||
|
%plot(s{this_index, 2}(2:end), s{this_index, 7}(2:end) - s{this_index, 7}(1:end-1), 'r*');
|
||||||
|
% xlabel('Iteration');ylabel('\Delta T')
|
||||||
|
plot(s{this_index, 2}, s{this_index, 7}, 'r*');
|
||||||
|
xlabel('Iteration');ylabel('T')
|
||||||
|
subplot(2,1,2);
|
||||||
|
plot(s{this_index, 2}, s{this_index, 3}, 'r', 'linewidth',2);
|
||||||
|
xlabel('Iteration'), ylabel('Inception score')
|
||||||
|
title(s{this_index,1})
|
||||||
|
end
|
|
@ -0,0 +1,3 @@
|
||||||
|
datetime: 2019-03-18 13:27:59.181225
|
||||||
|
config: {'dataset': 'I128_hdf5', 'augment': False, 'num_workers': 8, 'pin_memory': True, 'shuffle': True, 'load_in_mem': True, 'use_multiepoch_sampler': True, 'model': 'model', 'G_param': 'SN', 'D_param': 'SN', 'G_ch': 96, 'D_ch': 96, 'G_depth': 1, 'D_depth': 1, 'D_wide': True, 'G_shared': True, 'shared_dim': 128, 'dim_z': 120, 'z_var': 1.0, 'hier': True, 'cross_replica': False, 'mybn': False, 'G_nl': 'inplace_relu', 'D_nl': 'inplace_relu', 'G_attn': '64', 'D_attn': '64', 'norm_style': 'bn', 'seed': 0, 'G_init': 'ortho', 'D_init': 'ortho', 'skip_init': True, 'G_lr': 0.0001, 'D_lr': 0.0004, 'G_B1': 0.0, 'D_B1': 0.0, 'G_B2': 0.999, 'D_B2': 0.999, 'batch_size': 256, 'G_batch_size': 0, 'num_G_accumulations': 8, 'num_D_steps': 1, 'num_D_accumulations': 8, 'split_D': False, 'num_epochs': 400, 'parallel': True, 'G_fp16': False, 'D_fp16': False, 'D_mixed_precision': False, 'G_mixed_precision': False, 'accumulate_stats': False, 'num_standing_accumulations': 16, 'G_eval_mode': True, 'save_every': 500, 'num_save_copies': 2, 'num_best_copies': 5, 'which_best': 'IS', 'no_fid': False, 'test_every': 2000, 'num_inception_images': 50000, 'hashname': False, 'base_root': '', 'dataset_root': 'data', 'weights_root': 'weights', 'logs_root': 'logs', 'samples_root': 'samples', 'pbar': 'mine', 'name_suffix': '', 'experiment_name': 'Jade_BigGAN_B1_bs256x8_fp32', 'config_from_name': False, 'ema': True, 'ema_decay': 0.9999, 'use_ema': True, 'ema_start': 20000, 'adam_eps': 1e-06, 'BN_eps': 1e-05, 'SN_eps': 1e-06, 'num_G_SVs': 1, 'num_D_SVs': 1, 'num_G_SV_itrs': 1, 'num_D_SV_itrs': 1, 'G_ortho': 0.0, 'D_ortho': 0.0, 'toggle_grads': True, 'which_train_fn': 'GAN', 'load_weights': '', 'resume': True, 'logstyle': '%3.3e', 'log_G_spectra': False, 'log_D_spectra': False, 'sv_log_interval': 10, 'resolution': 128, 'n_classes': 1000, 'G_activation': ReLU(inplace), 'D_activation': ReLU(inplace)}
|
||||||
|
state: {'itr': 137500, 'epoch': 2, 'save_num': 0, 'save_best_num': 1, 'best_IS': 91.509384, 'best_FID': tensor(9.7711, 'config': {'dataset': 'I128_hdf5', 'augment': False, 'num_workers': 8, 'pin_memory': True, 'shuffle': True, 'load_in_mem': True, 'use_multiepoch_sampler': True, 'model': 'model', 'G_param': 'SN', 'D_param': 'SN', 'G_ch': 96, 'D_ch': 96, 'D_wide': True, 'G_shared': True, 'shared_dim': 128, 'dim_z': 120, 'hier': True, 'cross_replica': False, 'mybn': False, 'G_nl': 'inplace_relu', 'D_nl': 'inplace_relu', 'G_attn': '64', 'D_attn': '64', 'norm_style': 'bn', 'seed': 0, 'G_init': 'ortho', 'D_init': 'ortho', 'skip_init': False, 'G_lr': 0.0001, 'D_lr': 0.0004, 'G_B1': 0.0, 'D_B1': 0.0, 'G_B2': 0.999, 'D_B2': 0.999, 'batch_size': 256, 'G_batch_size': 0, 'num_G_accumulations': 8, 'num_D_steps': 1, 'num_D_accumulations': 8, 'split_D': False, 'num_epochs': 100, 'parallel': True, 'G_fp16': False, 'D_fp16': False, 'D_mixed_precision': False, 'G_mixed_precision': False, 'accumulate_stats': False, 'num_standing_accumulations': 16, 'BN_sync': False, 'G_eval_mode': True, 'save_every': 500, 'num_save_copies': 2, 'num_best_copies': 5, 'which_best': 'IS', 'no_fid': False, 'test_every': 2000, 'num_inception_images': 50000, 'hashname': False, 'base_root': '', 'dataset_root': 'data', 'weights_root': 'weights', 'logs_root': 'logs', 'samples_root': 'samples', 'pbar': 'mine', 'name_suffix': '', 'experiment_name': 'Jade_BigGAN_B1_bs256x8_fp32', 'ema': True, 'ema_decay': 0.9999, 'use_ema': True, 'ema_start': 20000, 'adam_eps': 1e-06, 'BN_eps': 1e-05, 'SN_eps': 1e-06, 'num_G_SVs': 1, 'num_D_SVs': 1, 'num_G_SV_itrs': 1, 'num_D_SV_itrs': 1, 'G_ortho': 0.0, 'D_ortho': 0.0, 'toggle_grads': True, 'which_train_fn': 'GAN', 'load_weights': '', 'resume': False, 'logstyle': '%3.3e', 'log_G_spectra': False, 'log_D_spectra': False, 'sv_log_interval': 10, 'resolution': 128, 'n_classes': 1000, 'G_activation': ReLU(inplace), 'D_activation': ReLU(inplace)}}
|
|
@ -0,0 +1,19 @@
|
||||||
|
function [itr, IS, FID, t] = process_inception_log(fname, which_log)
|
||||||
|
f = sprintf('%s_%s',fname, which_log);%'G_loss.log');
|
||||||
|
fid = fopen(f,'r');
|
||||||
|
itr = [];
|
||||||
|
IS = [];
|
||||||
|
FID = [];
|
||||||
|
t = [];
|
||||||
|
i = 1;
|
||||||
|
while ~feof(fid);
|
||||||
|
s = fgets(fid);
|
||||||
|
parsed = sscanf(s,'{"itr": %d, "IS_mean": %f, "IS_std": %f, "FID": %f, "_stamp": %f}');
|
||||||
|
itr(i) = parsed(1);
|
||||||
|
IS(i) = parsed(2);
|
||||||
|
FID(i) = parsed(4);
|
||||||
|
t(i) = parsed(5);
|
||||||
|
i = i + 1;
|
||||||
|
end
|
||||||
|
fclose(fid);
|
||||||
|
end
|
|
@ -0,0 +1,109 @@
|
||||||
|
clc
|
||||||
|
clear all
|
||||||
|
close all
|
||||||
|
fclose all;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%% Get all training logs for a given run
|
||||||
|
target_dir = '.';
|
||||||
|
s = {};
|
||||||
|
nm = {};
|
||||||
|
d = dir(target_dir);
|
||||||
|
j = 1;
|
||||||
|
for i = 1:length(d)
|
||||||
|
if any(strfind(d(i).name,'.log'))
|
||||||
|
s = [s; sprintf('%s\\%s', target_dir, d(i).name)];
|
||||||
|
nm = [nm; d(i).name];
|
||||||
|
end
|
||||||
|
end
|
||||||
|
%% Loop over training logs and acquire data
|
||||||
|
D_count = 0;
|
||||||
|
G_count = 0;
|
||||||
|
for i = 1:length(s)
|
||||||
|
fname = s{i,1};
|
||||||
|
fid = fopen(s{i,1},'r');
|
||||||
|
% Prepare bookkeeping for sv0
|
||||||
|
if any(strfind(s{i,1},'sv'))
|
||||||
|
if any(strfind(s{i,1},'G_'))
|
||||||
|
G_count = G_count +1;
|
||||||
|
else
|
||||||
|
D_count = D_count + 1;
|
||||||
|
end
|
||||||
|
end
|
||||||
|
itr = [];
|
||||||
|
val = [];
|
||||||
|
j = 1;
|
||||||
|
while ~feof(fid);
|
||||||
|
line = fgets(fid);
|
||||||
|
parsed = sscanf(line, '%d: %e');
|
||||||
|
itr(j) = parsed(1);
|
||||||
|
val(j) = parsed(2);
|
||||||
|
j = j + 1;
|
||||||
|
end
|
||||||
|
s{i,2} = itr;
|
||||||
|
s{i,3} = val;
|
||||||
|
fclose(fid);
|
||||||
|
end
|
||||||
|
|
||||||
|
%% Plot SVs and losses
|
||||||
|
close all;
|
||||||
|
Gcc = hsv(G_count);
|
||||||
|
Dcc = hsv(D_count);
|
||||||
|
gi = 1;
|
||||||
|
di = 1;
|
||||||
|
li = 1;
|
||||||
|
legendG = {};
|
||||||
|
legendD = {};
|
||||||
|
legendL = {};
|
||||||
|
thresh=2; % wavelet denoising threshold
|
||||||
|
losses = {};
|
||||||
|
for i=1:length(s)
|
||||||
|
if any(strfind(s{i,1},'D_loss_real.log')) || any(strfind(s{i,1},'D_loss_fake.log')) || any(strfind(s{i,1},'G_loss.log'))
|
||||||
|
% Select colors
|
||||||
|
if any(strfind(s{i,1},'D_loss_real.log'))
|
||||||
|
color1 = [0.7,0.7,1.0];
|
||||||
|
color2 = [0, 0, 1];
|
||||||
|
dlr = {s{i,2}, s{i,3}, wden(s{i,3},'sqtwolog','s','mln', thresh, 'sym4'), color1, color2};
|
||||||
|
losses = [losses; dlr];
|
||||||
|
elseif any(strfind(s{i,1},'D_loss_fake.log'))
|
||||||
|
color1 = [0.7,1.0,0.7];
|
||||||
|
color2 = [0, 1, 0];
|
||||||
|
dlf = {s{i,2},s{i,3} wden(s{i,3},'sqtwolog','s','mln', thresh, 'sym4'), color1, color2};
|
||||||
|
losses = [losses; dlf];
|
||||||
|
else % g loss
|
||||||
|
color1 = [1.0, 0.7,0.7];
|
||||||
|
color2 = [1, 0, 0];
|
||||||
|
gl = {s{i,2},s{i,3}, wden(s{i,3},'sqtwolog','s','mln', thresh, 'sym4'), color1 color2};
|
||||||
|
losses = [losses; gl];
|
||||||
|
end
|
||||||
|
figure(1); hold on;
|
||||||
|
% Plot the unsmoothed losses; we'll plot the smoothed losses later
|
||||||
|
plot(s{i,2},s{i,3},'color', color1, 'HandleVisibility','off');
|
||||||
|
legendL = [legendL; nm{i}];
|
||||||
|
continue
|
||||||
|
end
|
||||||
|
if any(strfind(s{i,1},'G_'))
|
||||||
|
legendG = [legendG; nm{i}];
|
||||||
|
figure(2); hold on;
|
||||||
|
plot(s{i,2},s{i,3},'color',Gcc(gi,:),'linewidth',2);
|
||||||
|
gi = gi+1;
|
||||||
|
elseif any(strfind(s{i,1},'D_'))
|
||||||
|
legendD = [legendD; nm{i}];
|
||||||
|
figure(3); hold on;
|
||||||
|
plot(s{i,2},s{i,3},'color',Dcc(di,:),'linewidth',2);
|
||||||
|
di = di+1;
|
||||||
|
else
|
||||||
|
s{i,1} % Debug print to show the name of the log that was not processed.
|
||||||
|
end
|
||||||
|
end
|
||||||
|
figure(1);
|
||||||
|
% Plot the smoothed losses last
|
||||||
|
for i = 1:3
|
||||||
|
% plot(losses{i,1}, losses{i,2},'color', losses{i,4}, 'HandleVisibility','off');
|
||||||
|
plot(losses{i,1},losses{i,3},'color',losses{i,5});
|
||||||
|
end
|
||||||
|
legend(legendL, 'Interpreter', 'none'); title('Losses'); xlabel('Generator itr'); ylabel('loss'); axis([0, max(s{end,2}), -1, 4]);
|
||||||
|
|
||||||
|
figure(2); legend(legendG,'Interpreter','none'); title('Singular Values in G'); xlabel('Generator itr'); ylabel('SV0');
|
||||||
|
figure(3); legend(legendD, 'Interpreter', 'none'); title('Singular Values in D'); xlabel('Generator itr'); ylabel('SV0');
|
|
@ -0,0 +1,33 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
# DCGAN loss
|
||||||
|
def loss_dcgan_dis(dis_fake, dis_real):
|
||||||
|
L1 = torch.mean(F.softplus(-dis_real))
|
||||||
|
L2 = torch.mean(F.softplus(dis_fake))
|
||||||
|
return L1, L2
|
||||||
|
|
||||||
|
|
||||||
|
def loss_dcgan_gen(dis_fake):
|
||||||
|
loss = torch.mean(F.softplus(-dis_fake))
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
# Hinge Loss
|
||||||
|
def loss_hinge_dis(dis_fake, dis_real):
|
||||||
|
loss_real = torch.mean(F.relu(1. - dis_real))
|
||||||
|
loss_fake = torch.mean(F.relu(1. + dis_fake))
|
||||||
|
return loss_real, loss_fake
|
||||||
|
# def loss_hinge_dis(dis_fake, dis_real): # This version returns a single loss
|
||||||
|
# loss = torch.mean(F.relu(1. - dis_real))
|
||||||
|
# loss += torch.mean(F.relu(1. + dis_fake))
|
||||||
|
# return loss
|
||||||
|
|
||||||
|
|
||||||
|
def loss_hinge_gen(dis_fake):
|
||||||
|
loss = -torch.mean(dis_fake)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
# Default to hinge loss
|
||||||
|
generator_loss = loss_hinge_gen
|
||||||
|
discriminator_loss = loss_hinge_dis
|
|
@ -0,0 +1,110 @@
|
||||||
|
""" Convert dataset to HDF5
|
||||||
|
This script preprocesses a dataset and saves it (images and labels) to
|
||||||
|
an HDF5 file for improved I/O. """
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
import h5py as h5
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision.datasets as dset
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from torchvision.utils import save_image
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
import utils
|
||||||
|
|
||||||
|
def prepare_parser():
|
||||||
|
usage = 'Parser for ImageNet HDF5 scripts.'
|
||||||
|
parser = ArgumentParser(description=usage)
|
||||||
|
parser.add_argument(
|
||||||
|
'--dataset', type=str, default='I128',
|
||||||
|
help='Which Dataset to train on, out of I128, I256, C10, C100;'
|
||||||
|
'Append "_hdf5" to use the hdf5 version for ISLVRC (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--data_root', type=str, default='data',
|
||||||
|
help='Default location where data is stored (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--batch_size', type=int, default=256,
|
||||||
|
help='Default overall batchsize (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--num_workers', type=int, default=16,
|
||||||
|
help='Number of dataloader workers (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--chunk_size', type=int, default=500,
|
||||||
|
help='Default overall batchsize (default: %(default)s)')
|
||||||
|
parser.add_argument(
|
||||||
|
'--compression', action='store_true', default=False,
|
||||||
|
help='Use LZF compression? (default: %(default)s)')
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def run(config):
|
||||||
|
if 'hdf5' in config['dataset']:
|
||||||
|
raise ValueError('Reading from an HDF5 file which you will probably be '
|
||||||
|
'about to overwrite! Override this error only if you know '
|
||||||
|
'what you''re doing!')
|
||||||
|
# Get image size
|
||||||
|
config['image_size'] = utils.imsize_dict[config['dataset']]
|
||||||
|
|
||||||
|
# Update compression entry
|
||||||
|
config['compression'] = 'lzf' if config['compression'] else None #No compression; can also use 'lzf'
|
||||||
|
|
||||||
|
# Get dataset
|
||||||
|
kwargs = {'num_workers': config['num_workers'], 'pin_memory': False, 'drop_last': False}
|
||||||
|
train_loader = utils.get_data_loaders(dataset=config['dataset'],
|
||||||
|
batch_size=config['batch_size'],
|
||||||
|
shuffle=False,
|
||||||
|
data_root=config['data_root'],
|
||||||
|
use_multiepoch_sampler=False,
|
||||||
|
**kwargs)[0]
|
||||||
|
|
||||||
|
# HDF5 supports chunking and compression. You may want to experiment
|
||||||
|
# with different chunk sizes to see how it runs on your machines.
|
||||||
|
# Chunk Size/compression Read speed @ 256x256 Read speed @ 128x128 Filesize @ 128x128 Time to write @128x128
|
||||||
|
# 1 / None 20/s
|
||||||
|
# 500 / None ramps up to 77/s 102/s 61GB 23min
|
||||||
|
# 500 / LZF 8/s 56GB 23min
|
||||||
|
# 1000 / None 78/s
|
||||||
|
# 5000 / None 81/s
|
||||||
|
# auto:(125,1,16,32) / None 11/s 61GB
|
||||||
|
|
||||||
|
print('Starting to load %s into an HDF5 file with chunk size %i and compression %s...' % (config['dataset'], config['chunk_size'], config['compression']))
|
||||||
|
# Loop over train loader
|
||||||
|
for i,(x,y) in enumerate(tqdm(train_loader)):
|
||||||
|
# Stick X into the range [0, 255] since it's coming from the train loader
|
||||||
|
x = (255 * ((x + 1) / 2.0)).byte().numpy()
|
||||||
|
# Numpyify y
|
||||||
|
y = y.numpy()
|
||||||
|
# If we're on the first batch, prepare the hdf5
|
||||||
|
if i==0:
|
||||||
|
with h5.File(config['data_root'] + '/ILSVRC%i.hdf5' % config['image_size'], 'w') as f:
|
||||||
|
print('Producing dataset of len %d' % len(train_loader.dataset))
|
||||||
|
imgs_dset = f.create_dataset('imgs', x.shape,dtype='uint8', maxshape=(len(train_loader.dataset), 3, config['image_size'], config['image_size']),
|
||||||
|
chunks=(config['chunk_size'], 3, config['image_size'], config['image_size']), compression=config['compression'])
|
||||||
|
print('Image chunks chosen as ' + str(imgs_dset.chunks))
|
||||||
|
imgs_dset[...] = x
|
||||||
|
labels_dset = f.create_dataset('labels', y.shape, dtype='int64', maxshape=(len(train_loader.dataset),), chunks=(config['chunk_size'],), compression=config['compression'])
|
||||||
|
print('Label chunks chosen as ' + str(labels_dset.chunks))
|
||||||
|
labels_dset[...] = y
|
||||||
|
# Else append to the hdf5
|
||||||
|
else:
|
||||||
|
with h5.File(config['data_root'] + '/ILSVRC%i.hdf5' % config['image_size'], 'a') as f:
|
||||||
|
f['imgs'].resize(f['imgs'].shape[0] + x.shape[0], axis=0)
|
||||||
|
f['imgs'][-x.shape[0]:] = x
|
||||||
|
f['labels'].resize(f['labels'].shape[0] + y.shape[0], axis=0)
|
||||||
|
f['labels'][-y.shape[0]:] = y
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# parse command line and run
|
||||||
|
parser = prepare_parser()
|
||||||
|
config = vars(parser.parse_args())
|
||||||
|
print(config)
|
||||||
|
run(config)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -0,0 +1,183 @@
|
||||||
|
''' Sample
|
||||||
|
This script loads a pretrained net and a weightsfile and sample '''
|
||||||
|
import functools
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import init
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn import Parameter as P
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
# Import my stuff
|
||||||
|
import inception_utils
|
||||||
|
import utils
|
||||||
|
import losses
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def run(config):
|
||||||
|
# Prepare state dict, which holds things like epoch # and itr #
|
||||||
|
state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0,
|
||||||
|
'best_IS': 0, 'best_FID': 999999, 'config': config}
|
||||||
|
|
||||||
|
# Optionally, get the configuration from the state dict. This allows for
|
||||||
|
# recovery of the config provided only a state dict and experiment name,
|
||||||
|
# and can be convenient for writing less verbose sample shell scripts.
|
||||||
|
if config['config_from_name']:
|
||||||
|
utils.load_weights(None, None, state_dict, config['weights_root'],
|
||||||
|
config['experiment_name'], config['load_weights'], None,
|
||||||
|
strict=False, load_optim=False)
|
||||||
|
# Ignore items which we might want to overwrite from the command line
|
||||||
|
for item in state_dict['config']:
|
||||||
|
if item not in ['z_var', 'base_root', 'batch_size', 'G_batch_size', 'use_ema', 'G_eval_mode']:
|
||||||
|
config[item] = state_dict['config'][item]
|
||||||
|
|
||||||
|
# update config (see train.py for explanation)
|
||||||
|
config['resolution'] = utils.imsize_dict[config['dataset']]
|
||||||
|
config['n_classes'] = utils.nclass_dict[config['dataset']]
|
||||||
|
config['G_activation'] = utils.activation_dict[config['G_nl']]
|
||||||
|
config['D_activation'] = utils.activation_dict[config['D_nl']]
|
||||||
|
config = utils.update_config_roots(config)
|
||||||
|
config['skip_init'] = True
|
||||||
|
config['no_optim'] = True
|
||||||
|
device = 'cuda'
|
||||||
|
|
||||||
|
# Seed RNG
|
||||||
|
utils.seed_rng(config['seed'])
|
||||||
|
|
||||||
|
# Setup cudnn.benchmark for free speed
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
|
# Import the model--this line allows us to dynamically select different files.
|
||||||
|
model = __import__(config['model'])
|
||||||
|
experiment_name = (config['experiment_name'] if config['experiment_name']
|
||||||
|
else utils.name_from_config(config))
|
||||||
|
print('Experiment name is %s' % experiment_name)
|
||||||
|
|
||||||
|
G = model.Generator(**config).cuda()
|
||||||
|
utils.count_parameters(G)
|
||||||
|
|
||||||
|
# Load weights
|
||||||
|
print('Loading weights...')
|
||||||
|
# Here is where we deal with the ema--load ema weights or load normal weights
|
||||||
|
utils.load_weights(G if not (config['use_ema']) else None, None, state_dict,
|
||||||
|
config['weights_root'], experiment_name, config['load_weights'],
|
||||||
|
G if config['ema'] and config['use_ema'] else None,
|
||||||
|
strict=False, load_optim=False)
|
||||||
|
# Update batch size setting used for G
|
||||||
|
G_batch_size = max(config['G_batch_size'], config['batch_size'])
|
||||||
|
z_, y_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'],
|
||||||
|
device=device, fp16=config['G_fp16'],
|
||||||
|
z_var=config['z_var'])
|
||||||
|
|
||||||
|
if config['G_eval_mode']:
|
||||||
|
print('Putting G in eval mode..')
|
||||||
|
G.eval()
|
||||||
|
else:
|
||||||
|
print('G is in %s mode...' % ('training' if G.training else 'eval'))
|
||||||
|
|
||||||
|
#Sample function
|
||||||
|
sample = functools.partial(utils.sample, G=G, z_=z_, y_=y_, config=config)
|
||||||
|
if config['accumulate_stats']:
|
||||||
|
print('Accumulating standing stats across %d accumulations...' % config['num_standing_accumulations'])
|
||||||
|
utils.accumulate_standing_stats(G, z_, y_, config['n_classes'],
|
||||||
|
config['num_standing_accumulations'])
|
||||||
|
|
||||||
|
|
||||||
|
# Sample a number of images and save them to an NPZ, for use with TF-Inception
|
||||||
|
if config['sample_npz']:
|
||||||
|
# Lists to hold images and labels for images
|
||||||
|
x, y = [], []
|
||||||
|
print('Sampling %d images and saving them to npz...' % config['sample_num_npz'])
|
||||||
|
for i in trange(int(np.ceil(config['sample_num_npz'] / float(G_batch_size)))):
|
||||||
|
with torch.no_grad():
|
||||||
|
images, labels = sample()
|
||||||
|
x += [np.uint8(255 * (images.cpu().numpy() + 1) / 2.)]
|
||||||
|
y += [labels.cpu().numpy()]
|
||||||
|
x = np.concatenate(x, 0)[:config['sample_num_npz']]
|
||||||
|
y = np.concatenate(y, 0)[:config['sample_num_npz']]
|
||||||
|
print('Images shape: %s, Labels shape: %s' % (x.shape, y.shape))
|
||||||
|
npz_filename = '%s/%s/samples.npz' % (config['samples_root'], experiment_name)
|
||||||
|
print('Saving npz to %s...' % npz_filename)
|
||||||
|
np.savez(npz_filename, **{'x' : x, 'y' : y})
|
||||||
|
|
||||||
|
# Prepare sample sheets
|
||||||
|
if config['sample_sheets']:
|
||||||
|
print('Preparing conditional sample sheets...')
|
||||||
|
utils.sample_sheet(G, classes_per_sheet=utils.classes_per_sheet_dict[config['dataset']],
|
||||||
|
num_classes=config['n_classes'],
|
||||||
|
samples_per_class=10, parallel=config['parallel'],
|
||||||
|
samples_root=config['samples_root'],
|
||||||
|
experiment_name=experiment_name,
|
||||||
|
folder_number=config['sample_sheet_folder_num'],
|
||||||
|
z_=z_,)
|
||||||
|
# Sample interp sheets
|
||||||
|
if config['sample_interps']:
|
||||||
|
print('Preparing interp sheets...')
|
||||||
|
for fix_z, fix_y in zip([False, False, True], [False, True, False]):
|
||||||
|
utils.interp_sheet(G, num_per_sheet=16, num_midpoints=8,
|
||||||
|
num_classes=config['n_classes'],
|
||||||
|
parallel=config['parallel'],
|
||||||
|
samples_root=config['samples_root'],
|
||||||
|
experiment_name=experiment_name,
|
||||||
|
folder_number=config['sample_sheet_folder_num'],
|
||||||
|
sheet_number=0,
|
||||||
|
fix_z=fix_z, fix_y=fix_y, device='cuda')
|
||||||
|
# Sample random sheet
|
||||||
|
if config['sample_random']:
|
||||||
|
print('Preparing random sample sheet...')
|
||||||
|
images, labels = sample()
|
||||||
|
torchvision.utils.save_image(images.float(),
|
||||||
|
'%s/%s/random_samples.jpg' % (config['samples_root'], experiment_name),
|
||||||
|
nrow=int(G_batch_size**0.5),
|
||||||
|
normalize=True)
|
||||||
|
|
||||||
|
# Get Inception Score and FID
|
||||||
|
get_inception_metrics = inception_utils.prepare_inception_metrics(config['dataset'], config['parallel'], config['no_fid'])
|
||||||
|
# Prepare a simple function get metrics that we use for trunc curves
|
||||||
|
def get_metrics():
|
||||||
|
sample = functools.partial(utils.sample, G=G, z_=z_, y_=y_, config=config)
|
||||||
|
IS_mean, IS_std, FID = get_inception_metrics(sample, config['num_inception_images'], num_splits=10, prints=False)
|
||||||
|
# Prepare output string
|
||||||
|
outstring = 'Using %s weights ' % ('ema' if config['use_ema'] else 'non-ema')
|
||||||
|
outstring += 'in %s mode, ' % ('eval' if config['G_eval_mode'] else 'training')
|
||||||
|
outstring += 'with noise variance %3.3f, ' % z_.var
|
||||||
|
outstring += 'over %d images, ' % config['num_inception_images']
|
||||||
|
if config['accumulate_stats'] or not config['G_eval_mode']:
|
||||||
|
outstring += 'with batch size %d, ' % G_batch_size
|
||||||
|
if config['accumulate_stats']:
|
||||||
|
outstring += 'using %d standing stat accumulations, ' % config['num_standing_accumulations']
|
||||||
|
outstring += 'Itr %d: PYTORCH UNOFFICIAL Inception Score is %3.3f +/- %3.3f, PYTORCH UNOFFICIAL FID is %5.4f' % (state_dict['itr'], IS_mean, IS_std, FID)
|
||||||
|
print(outstring)
|
||||||
|
if config['sample_inception_metrics']:
|
||||||
|
print('Calculating Inception metrics...')
|
||||||
|
get_metrics()
|
||||||
|
|
||||||
|
# Sample truncation curve stuff. This is basically the same as the inception metrics code
|
||||||
|
if config['sample_trunc_curves']:
|
||||||
|
start, step, end = [float(item) for item in config['sample_trunc_curves'].split('_')]
|
||||||
|
print('Getting truncation values for variance in range (%3.3f:%3.3f:%3.3f)...' % (start, step, end))
|
||||||
|
for var in np.arange(start, end + step, step):
|
||||||
|
z_.var = var
|
||||||
|
# Optionally comment this out if you want to run with standing stats
|
||||||
|
# accumulated at one z variance setting
|
||||||
|
if config['accumulate_stats']:
|
||||||
|
utils.accumulate_standing_stats(G, z_, y_, config['n_classes'],
|
||||||
|
config['num_standing_accumulations'])
|
||||||
|
get_metrics()
|
||||||
|
def main():
|
||||||
|
# parse command line and run
|
||||||
|
parser = utils.prepare_parser()
|
||||||
|
parser = utils.add_sample_parser(parser)
|
||||||
|
config = vars(parser.parse_args())
|
||||||
|
print(config)
|
||||||
|
run(config)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -0,0 +1,17 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python train.py \
|
||||||
|
--dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 256 --load_in_mem \
|
||||||
|
--num_G_accumulations 8 --num_D_accumulations 8 \
|
||||||
|
--num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 \
|
||||||
|
--G_attn 64 --D_attn 64 \
|
||||||
|
--G_nl inplace_relu --D_nl inplace_relu \
|
||||||
|
--SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_shared \
|
||||||
|
--G_init ortho --D_init ortho \
|
||||||
|
--hier --dim_z 120 --shared_dim 128 \
|
||||||
|
--G_eval_mode \
|
||||||
|
--G_ch 96 --D_ch 96 \
|
||||||
|
--ema --use_ema --ema_start 20000 \
|
||||||
|
--test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 \
|
||||||
|
--use_multiepoch_sampler \
|
|
@ -0,0 +1,17 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python train.py \
|
||||||
|
--dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 512 --load_in_mem \
|
||||||
|
--num_G_accumulations 4 --num_D_accumulations 4 \
|
||||||
|
--num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 \
|
||||||
|
--G_attn 64 --D_attn 64 \
|
||||||
|
--G_nl inplace_relu --D_nl inplace_relu \
|
||||||
|
--SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_shared \
|
||||||
|
--G_init ortho --D_init ortho \
|
||||||
|
--hier --dim_z 120 --shared_dim 128 \
|
||||||
|
--G_eval_mode \
|
||||||
|
--G_ch 96 --D_ch 96 \
|
||||||
|
--ema --use_ema --ema_start 20000 \
|
||||||
|
--test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 \
|
||||||
|
--use_multiepoch_sampler \
|
|
@ -0,0 +1,17 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python train.py \
|
||||||
|
--dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 256 --load_in_mem \
|
||||||
|
--num_G_accumulations 8 --num_D_accumulations 8 \
|
||||||
|
--num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 \
|
||||||
|
--G_attn 64 --D_attn 64 \
|
||||||
|
--G_nl inplace_relu --D_nl inplace_relu \
|
||||||
|
--SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_shared \
|
||||||
|
--G_init ortho --D_init ortho \
|
||||||
|
--hier --dim_z 120 --shared_dim 128 \
|
||||||
|
--G_eval_mode \
|
||||||
|
--G_ch 64 --G_ch 64 \
|
||||||
|
--ema --use_ema --ema_start 20000 \
|
||||||
|
--test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 \
|
||||||
|
--use_multiepoch_sampler
|
|
@ -0,0 +1,18 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python train.py \
|
||||||
|
--model BigGANdeep \
|
||||||
|
--dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 256 \
|
||||||
|
--num_G_accumulations 8 --num_D_accumulations 8 \
|
||||||
|
--num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 \
|
||||||
|
--G_attn 64 --D_attn 64 \
|
||||||
|
--G_ch 128 --D_ch 128 \
|
||||||
|
--G_depth 2 --D_depth 2 \
|
||||||
|
--G_nl inplace_relu --D_nl inplace_relu \
|
||||||
|
--SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_shared \
|
||||||
|
--G_init ortho --D_init ortho \
|
||||||
|
--hier --dim_z 128 --shared_dim 128 \
|
||||||
|
--ema --use_ema --ema_start 20000 --G_eval_mode \
|
||||||
|
--test_every 2000 --save_every 500 --num_best_copies 5 --num_save_copies 2 --seed 0 \
|
||||||
|
--use_multiepoch_sampler \
|
|
@ -0,0 +1,13 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python train.py \
|
||||||
|
--dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 128 \
|
||||||
|
--num_G_accumulations 2 --num_D_accumulations 2 \
|
||||||
|
--num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 \
|
||||||
|
--G_attn 64 --D_attn 64 \
|
||||||
|
--G_nl relu --D_nl relu \
|
||||||
|
--SN_eps 1e-8 --BN_eps 1e-5 --adam_eps 1e-8 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_init xavier --D_init xavier \
|
||||||
|
--ema --use_ema --ema_start 2000 --G_eval_mode \
|
||||||
|
--test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 \
|
||||||
|
--name_suffix SAGAN_ema \
|
|
@ -0,0 +1,14 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python train.py \
|
||||||
|
--dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 64 \
|
||||||
|
--num_G_accumulations 1 --num_D_accumulations 1 \
|
||||||
|
--num_D_steps 5 --G_lr 2e-4 --D_lr 2e-4 --D_B2 0.900 --G_B2 0.900 \
|
||||||
|
--G_attn 0 --D_attn 0 \
|
||||||
|
--G_nl relu --D_nl relu \
|
||||||
|
--SN_eps 1e-8 --BN_eps 1e-5 --adam_eps 1e-8 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--D_thin \
|
||||||
|
--G_init xavier --D_init xavier \
|
||||||
|
--G_eval_mode \
|
||||||
|
--test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 \
|
||||||
|
--name_suffix SNGAN \
|
|
@ -0,0 +1,11 @@
|
||||||
|
#!/bin/bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0,1 python train.py \
|
||||||
|
--shuffle --batch_size 50 --parallel \
|
||||||
|
--num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 \
|
||||||
|
--num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 \
|
||||||
|
--dataset C10 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_attn 0 --D_attn 0 \
|
||||||
|
--G_init N02 --D_init N02 \
|
||||||
|
--ema --use_ema --ema_start 1000 \
|
||||||
|
--test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --seed 0
|
|
@ -0,0 +1,20 @@
|
||||||
|
# use z_var to change the variance of z for all the sampling
|
||||||
|
# use --mybn --accumulate_stats --num_standing_accumulations 32 to
|
||||||
|
# use running stats
|
||||||
|
python sample.py \
|
||||||
|
--dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 256 \
|
||||||
|
--num_G_accumulations 8 --num_D_accumulations 8 \
|
||||||
|
--num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 \
|
||||||
|
--G_attn 64 --D_attn 64 \
|
||||||
|
--G_ch 96 --D_ch 96 \
|
||||||
|
--G_nl inplace_relu --D_nl inplace_relu \
|
||||||
|
--SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_shared \
|
||||||
|
--G_init ortho --D_init ortho --skip_init \
|
||||||
|
--hier --dim_z 120 --shared_dim 128 \
|
||||||
|
--ema --ema_start 20000 \
|
||||||
|
--use_multiepoch_sampler \
|
||||||
|
--test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 \
|
||||||
|
--skip_init --G_batch_size 512 --use_ema --G_eval_mode --sample_trunc_curves 0.05_0.05_1.0 \
|
||||||
|
--sample_inception_metrics --sample_npz --sample_random --sample_sheets --sample_interps
|
|
@ -0,0 +1,11 @@
|
||||||
|
#!/bin/bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0,1 python sample.py \
|
||||||
|
--shuffle --batch_size 50 --G_batch_size 256 --parallel \
|
||||||
|
--num_G_accumulations 1 --num_D_accumulations 1 --num_epochs 500 \
|
||||||
|
--num_D_steps 4 --G_lr 2e-4 --D_lr 2e-4 \
|
||||||
|
--dataset C10 \
|
||||||
|
--G_ortho 0.0 \
|
||||||
|
--G_attn 0 --D_attn 0 \
|
||||||
|
--G_init N02 --D_init N02 \
|
||||||
|
--ema --use_ema --ema_start 1000 \
|
||||||
|
--test_every 5000 --save_every 2000 --num_best_copies 5 --num_save_copies 2 --seed 0
|
|
@ -0,0 +1,14 @@
|
||||||
|
#duplicate.sh
|
||||||
|
source=BigGAN_I128_hdf5_seed0_Gch64_Dch64_bs256_Glr1.0e-04_Dlr4.0e-04_Gnlinplace_relu_Dnlinplace_relu_Ginitxavier_Dinitxavier_Gshared_alex0
|
||||||
|
target=BigGAN_I128_hdf5_seed0_Gch64_Dch64_bs256_Glr1.0e-04_Dlr4.0e-04_Gnlinplace_relu_Dnlinplace_relu_Ginitxavier_Dinitxavier_Gshared_alex0A
|
||||||
|
logs_root=logs
|
||||||
|
weights_root=weights
|
||||||
|
echo "copying ${source} to ${target}"
|
||||||
|
cp -r ${logs_root}/${source} ${logs_root}/${target}
|
||||||
|
cp ${logs_root}/${source}_log.jsonl ${logs_root}/${target}_log.jsonl
|
||||||
|
cp ${weights_root}/${source}_G.pth ${weights_root}/${target}_G.pth
|
||||||
|
cp ${weights_root}/${source}_G_ema.pth ${weights_root}/${target}_G_ema.pth
|
||||||
|
cp ${weights_root}/${source}_D.pth ${weights_root}/${target}_D.pth
|
||||||
|
cp ${weights_root}/${source}_G_optim.pth ${weights_root}/${target}_G_optim.pth
|
||||||
|
cp ${weights_root}/${source}_D_optim.pth ${weights_root}/${target}_D_optim.pth
|
||||||
|
cp ${weights_root}/${source}_state_dict.pth ${weights_root}/${target}_state_dict.pth
|
|
@ -0,0 +1,3 @@
|
||||||
|
#!/bin/bash
|
||||||
|
python make_hdf5.py --dataset I128 --batch_size 256 --data_root data
|
||||||
|
python calculate_inception_moments.py --dataset I128_hdf5 --data_root data
|
|
@ -0,0 +1,12 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# File : __init__.py
|
||||||
|
# Author : Jiayuan Mao
|
||||||
|
# Email : maojiayuan@gmail.com
|
||||||
|
# Date : 27/01/2018
|
||||||
|
#
|
||||||
|
# This file is part of Synchronized-BatchNorm-PyTorch.
|
||||||
|
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
|
||||||
|
# Distributed under MIT License.
|
||||||
|
|
||||||
|
from .batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d
|
||||||
|
from .replicate import DataParallelWithCallback, patch_replication_callback
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,349 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# File : batchnorm.py
|
||||||
|
# Author : Jiayuan Mao
|
||||||
|
# Email : maojiayuan@gmail.com
|
||||||
|
# Date : 27/01/2018
|
||||||
|
#
|
||||||
|
# This file is part of Synchronized-BatchNorm-PyTorch.
|
||||||
|
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
|
||||||
|
# Distributed under MIT License.
|
||||||
|
|
||||||
|
import collections
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from torch.nn.modules.batchnorm import _BatchNorm
|
||||||
|
from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast
|
||||||
|
|
||||||
|
from .comm import SyncMaster
|
||||||
|
|
||||||
|
__all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d']
|
||||||
|
|
||||||
|
|
||||||
|
def _sum_ft(tensor):
|
||||||
|
"""sum over the first and last dimention"""
|
||||||
|
return tensor.sum(dim=0).sum(dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def _unsqueeze_ft(tensor):
|
||||||
|
"""add new dementions at the front and the tail"""
|
||||||
|
return tensor.unsqueeze(0).unsqueeze(-1)
|
||||||
|
|
||||||
|
|
||||||
|
_ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size'])
|
||||||
|
_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])
|
||||||
|
# _MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'ssum', 'sum_size'])
|
||||||
|
|
||||||
|
class _SynchronizedBatchNorm(_BatchNorm):
|
||||||
|
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True):
|
||||||
|
super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine)
|
||||||
|
|
||||||
|
self._sync_master = SyncMaster(self._data_parallel_master)
|
||||||
|
|
||||||
|
self._is_parallel = False
|
||||||
|
self._parallel_id = None
|
||||||
|
self._slave_pipe = None
|
||||||
|
|
||||||
|
def forward(self, input, gain=None, bias=None):
|
||||||
|
# If it is not parallel computation or is in evaluation mode, use PyTorch's implementation.
|
||||||
|
if not (self._is_parallel and self.training):
|
||||||
|
out = F.batch_norm(
|
||||||
|
input, self.running_mean, self.running_var, self.weight, self.bias,
|
||||||
|
self.training, self.momentum, self.eps)
|
||||||
|
if gain is not None:
|
||||||
|
out = out + gain
|
||||||
|
if bias is not None:
|
||||||
|
out = out + bias
|
||||||
|
return out
|
||||||
|
|
||||||
|
# Resize the input to (B, C, -1).
|
||||||
|
input_shape = input.size()
|
||||||
|
# print(input_shape)
|
||||||
|
input = input.view(input.size(0), input.size(1), -1)
|
||||||
|
|
||||||
|
# Compute the sum and square-sum.
|
||||||
|
sum_size = input.size(0) * input.size(2)
|
||||||
|
input_sum = _sum_ft(input)
|
||||||
|
input_ssum = _sum_ft(input ** 2)
|
||||||
|
# Reduce-and-broadcast the statistics.
|
||||||
|
# print('it begins')
|
||||||
|
if self._parallel_id == 0:
|
||||||
|
mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size))
|
||||||
|
else:
|
||||||
|
mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size))
|
||||||
|
# if self._parallel_id == 0:
|
||||||
|
# # print('here')
|
||||||
|
# sum, ssum, num = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size))
|
||||||
|
# else:
|
||||||
|
# # print('there')
|
||||||
|
# sum, ssum, num = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size))
|
||||||
|
|
||||||
|
# print('how2')
|
||||||
|
# num = sum_size
|
||||||
|
# print('Sum: %f, ssum: %f, sumsize: %f, insum: %f' %(float(sum.sum().cpu()), float(ssum.sum().cpu()), float(sum_size), float(input_sum.sum().cpu())))
|
||||||
|
# Fix the graph
|
||||||
|
# sum = (sum.detach() - input_sum.detach()) + input_sum
|
||||||
|
# ssum = (ssum.detach() - input_ssum.detach()) + input_ssum
|
||||||
|
|
||||||
|
# mean = sum / num
|
||||||
|
# var = ssum / num - mean ** 2
|
||||||
|
# # var = (ssum - mean * sum) / num
|
||||||
|
# inv_std = torch.rsqrt(var + self.eps)
|
||||||
|
|
||||||
|
# Compute the output.
|
||||||
|
if gain is not None:
|
||||||
|
# print('gaining')
|
||||||
|
# scale = _unsqueeze_ft(inv_std) * gain.squeeze(-1)
|
||||||
|
# shift = _unsqueeze_ft(mean) * scale - bias.squeeze(-1)
|
||||||
|
# output = input * scale - shift
|
||||||
|
output = (input - _unsqueeze_ft(mean)) * (_unsqueeze_ft(inv_std) * gain.squeeze(-1)) + bias.squeeze(-1)
|
||||||
|
elif self.affine:
|
||||||
|
# MJY:: Fuse the multiplication for speed.
|
||||||
|
output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias)
|
||||||
|
else:
|
||||||
|
output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std)
|
||||||
|
|
||||||
|
# Reshape it.
|
||||||
|
return output.view(input_shape)
|
||||||
|
|
||||||
|
def __data_parallel_replicate__(self, ctx, copy_id):
|
||||||
|
self._is_parallel = True
|
||||||
|
self._parallel_id = copy_id
|
||||||
|
|
||||||
|
# parallel_id == 0 means master device.
|
||||||
|
if self._parallel_id == 0:
|
||||||
|
ctx.sync_master = self._sync_master
|
||||||
|
else:
|
||||||
|
self._slave_pipe = ctx.sync_master.register_slave(copy_id)
|
||||||
|
|
||||||
|
def _data_parallel_master(self, intermediates):
|
||||||
|
"""Reduce the sum and square-sum, compute the statistics, and broadcast it."""
|
||||||
|
|
||||||
|
# Always using same "device order" makes the ReduceAdd operation faster.
|
||||||
|
# Thanks to:: Tete Xiao (http://tetexiao.com/)
|
||||||
|
intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device())
|
||||||
|
|
||||||
|
to_reduce = [i[1][:2] for i in intermediates]
|
||||||
|
to_reduce = [j for i in to_reduce for j in i] # flatten
|
||||||
|
target_gpus = [i[1].sum.get_device() for i in intermediates]
|
||||||
|
|
||||||
|
sum_size = sum([i[1].sum_size for i in intermediates])
|
||||||
|
sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce)
|
||||||
|
mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size)
|
||||||
|
|
||||||
|
broadcasted = Broadcast.apply(target_gpus, mean, inv_std)
|
||||||
|
# print('a')
|
||||||
|
# print(type(sum_), type(ssum), type(sum_size), sum_.shape, ssum.shape, sum_size)
|
||||||
|
# broadcasted = Broadcast.apply(target_gpus, sum_, ssum, torch.tensor(sum_size).float().to(sum_.device))
|
||||||
|
# print('b')
|
||||||
|
outputs = []
|
||||||
|
for i, rec in enumerate(intermediates):
|
||||||
|
outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2])))
|
||||||
|
# outputs.append((rec[0], _MasterMessage(*broadcasted[i*3:i*3+3])))
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def _compute_mean_std(self, sum_, ssum, size):
|
||||||
|
"""Compute the mean and standard-deviation with sum and square-sum. This method
|
||||||
|
also maintains the moving average on the master device."""
|
||||||
|
assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.'
|
||||||
|
mean = sum_ / size
|
||||||
|
sumvar = ssum - sum_ * mean
|
||||||
|
unbias_var = sumvar / (size - 1)
|
||||||
|
bias_var = sumvar / size
|
||||||
|
|
||||||
|
self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data
|
||||||
|
self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data
|
||||||
|
return mean, torch.rsqrt(bias_var + self.eps)
|
||||||
|
# return mean, bias_var.clamp(self.eps) ** -0.5
|
||||||
|
|
||||||
|
|
||||||
|
class SynchronizedBatchNorm1d(_SynchronizedBatchNorm):
|
||||||
|
r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a
|
||||||
|
mini-batch.
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
|
||||||
|
|
||||||
|
This module differs from the built-in PyTorch BatchNorm1d as the mean and
|
||||||
|
standard-deviation are reduced across all devices during training.
|
||||||
|
|
||||||
|
For example, when one uses `nn.DataParallel` to wrap the network during
|
||||||
|
training, PyTorch's implementation normalize the tensor on each device using
|
||||||
|
the statistics only on that device, which accelerated the computation and
|
||||||
|
is also easy to implement, but the statistics might be inaccurate.
|
||||||
|
Instead, in this synchronized version, the statistics will be computed
|
||||||
|
over all training samples distributed on multiple devices.
|
||||||
|
|
||||||
|
Note that, for one-GPU or CPU-only case, this module behaves exactly same
|
||||||
|
as the built-in PyTorch implementation.
|
||||||
|
|
||||||
|
The mean and standard-deviation are calculated per-dimension over
|
||||||
|
the mini-batches and gamma and beta are learnable parameter vectors
|
||||||
|
of size C (where C is the input size).
|
||||||
|
|
||||||
|
During training, this layer keeps a running estimate of its computed mean
|
||||||
|
and variance. The running sum is kept with a default momentum of 0.1.
|
||||||
|
|
||||||
|
During evaluation, this running mean/variance is used for normalization.
|
||||||
|
|
||||||
|
Because the BatchNorm is done over the `C` dimension, computing statistics
|
||||||
|
on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_features: num_features from an expected input of size
|
||||||
|
`batch_size x num_features [x width]`
|
||||||
|
eps: a value added to the denominator for numerical stability.
|
||||||
|
Default: 1e-5
|
||||||
|
momentum: the value used for the running_mean and running_var
|
||||||
|
computation. Default: 0.1
|
||||||
|
affine: a boolean value that when set to ``True``, gives the layer learnable
|
||||||
|
affine parameters. Default: ``True``
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Input: :math:`(N, C)` or :math:`(N, C, L)`
|
||||||
|
- Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> # With Learnable Parameters
|
||||||
|
>>> m = SynchronizedBatchNorm1d(100)
|
||||||
|
>>> # Without Learnable Parameters
|
||||||
|
>>> m = SynchronizedBatchNorm1d(100, affine=False)
|
||||||
|
>>> input = torch.autograd.Variable(torch.randn(20, 100))
|
||||||
|
>>> output = m(input)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _check_input_dim(self, input):
|
||||||
|
if input.dim() != 2 and input.dim() != 3:
|
||||||
|
raise ValueError('expected 2D or 3D input (got {}D input)'
|
||||||
|
.format(input.dim()))
|
||||||
|
super(SynchronizedBatchNorm1d, self)._check_input_dim(input)
|
||||||
|
|
||||||
|
|
||||||
|
class SynchronizedBatchNorm2d(_SynchronizedBatchNorm):
|
||||||
|
r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch
|
||||||
|
of 3d inputs
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
|
||||||
|
|
||||||
|
This module differs from the built-in PyTorch BatchNorm2d as the mean and
|
||||||
|
standard-deviation are reduced across all devices during training.
|
||||||
|
|
||||||
|
For example, when one uses `nn.DataParallel` to wrap the network during
|
||||||
|
training, PyTorch's implementation normalize the tensor on each device using
|
||||||
|
the statistics only on that device, which accelerated the computation and
|
||||||
|
is also easy to implement, but the statistics might be inaccurate.
|
||||||
|
Instead, in this synchronized version, the statistics will be computed
|
||||||
|
over all training samples distributed on multiple devices.
|
||||||
|
|
||||||
|
Note that, for one-GPU or CPU-only case, this module behaves exactly same
|
||||||
|
as the built-in PyTorch implementation.
|
||||||
|
|
||||||
|
The mean and standard-deviation are calculated per-dimension over
|
||||||
|
the mini-batches and gamma and beta are learnable parameter vectors
|
||||||
|
of size C (where C is the input size).
|
||||||
|
|
||||||
|
During training, this layer keeps a running estimate of its computed mean
|
||||||
|
and variance. The running sum is kept with a default momentum of 0.1.
|
||||||
|
|
||||||
|
During evaluation, this running mean/variance is used for normalization.
|
||||||
|
|
||||||
|
Because the BatchNorm is done over the `C` dimension, computing statistics
|
||||||
|
on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_features: num_features from an expected input of
|
||||||
|
size batch_size x num_features x height x width
|
||||||
|
eps: a value added to the denominator for numerical stability.
|
||||||
|
Default: 1e-5
|
||||||
|
momentum: the value used for the running_mean and running_var
|
||||||
|
computation. Default: 0.1
|
||||||
|
affine: a boolean value that when set to ``True``, gives the layer learnable
|
||||||
|
affine parameters. Default: ``True``
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Input: :math:`(N, C, H, W)`
|
||||||
|
- Output: :math:`(N, C, H, W)` (same shape as input)
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> # With Learnable Parameters
|
||||||
|
>>> m = SynchronizedBatchNorm2d(100)
|
||||||
|
>>> # Without Learnable Parameters
|
||||||
|
>>> m = SynchronizedBatchNorm2d(100, affine=False)
|
||||||
|
>>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45))
|
||||||
|
>>> output = m(input)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _check_input_dim(self, input):
|
||||||
|
if input.dim() != 4:
|
||||||
|
raise ValueError('expected 4D input (got {}D input)'
|
||||||
|
.format(input.dim()))
|
||||||
|
super(SynchronizedBatchNorm2d, self)._check_input_dim(input)
|
||||||
|
|
||||||
|
|
||||||
|
class SynchronizedBatchNorm3d(_SynchronizedBatchNorm):
|
||||||
|
r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch
|
||||||
|
of 4d inputs
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
|
||||||
|
|
||||||
|
This module differs from the built-in PyTorch BatchNorm3d as the mean and
|
||||||
|
standard-deviation are reduced across all devices during training.
|
||||||
|
|
||||||
|
For example, when one uses `nn.DataParallel` to wrap the network during
|
||||||
|
training, PyTorch's implementation normalize the tensor on each device using
|
||||||
|
the statistics only on that device, which accelerated the computation and
|
||||||
|
is also easy to implement, but the statistics might be inaccurate.
|
||||||
|
Instead, in this synchronized version, the statistics will be computed
|
||||||
|
over all training samples distributed on multiple devices.
|
||||||
|
|
||||||
|
Note that, for one-GPU or CPU-only case, this module behaves exactly same
|
||||||
|
as the built-in PyTorch implementation.
|
||||||
|
|
||||||
|
The mean and standard-deviation are calculated per-dimension over
|
||||||
|
the mini-batches and gamma and beta are learnable parameter vectors
|
||||||
|
of size C (where C is the input size).
|
||||||
|
|
||||||
|
During training, this layer keeps a running estimate of its computed mean
|
||||||
|
and variance. The running sum is kept with a default momentum of 0.1.
|
||||||
|
|
||||||
|
During evaluation, this running mean/variance is used for normalization.
|
||||||
|
|
||||||
|
Because the BatchNorm is done over the `C` dimension, computing statistics
|
||||||
|
on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm
|
||||||
|
or Spatio-temporal BatchNorm
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_features: num_features from an expected input of
|
||||||
|
size batch_size x num_features x depth x height x width
|
||||||
|
eps: a value added to the denominator for numerical stability.
|
||||||
|
Default: 1e-5
|
||||||
|
momentum: the value used for the running_mean and running_var
|
||||||
|
computation. Default: 0.1
|
||||||
|
affine: a boolean value that when set to ``True``, gives the layer learnable
|
||||||
|
affine parameters. Default: ``True``
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Input: :math:`(N, C, D, H, W)`
|
||||||
|
- Output: :math:`(N, C, D, H, W)` (same shape as input)
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> # With Learnable Parameters
|
||||||
|
>>> m = SynchronizedBatchNorm3d(100)
|
||||||
|
>>> # Without Learnable Parameters
|
||||||
|
>>> m = SynchronizedBatchNorm3d(100, affine=False)
|
||||||
|
>>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10))
|
||||||
|
>>> output = m(input)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _check_input_dim(self, input):
|
||||||
|
if input.dim() != 5:
|
||||||
|
raise ValueError('expected 5D input (got {}D input)'
|
||||||
|
.format(input.dim()))
|
||||||
|
super(SynchronizedBatchNorm3d, self)._check_input_dim(input)
|
|
@ -0,0 +1,74 @@
|
||||||
|
#! /usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# File : batchnorm_reimpl.py
|
||||||
|
# Author : acgtyrant
|
||||||
|
# Date : 11/01/2018
|
||||||
|
#
|
||||||
|
# This file is part of Synchronized-BatchNorm-PyTorch.
|
||||||
|
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
|
||||||
|
# Distributed under MIT License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.init as init
|
||||||
|
|
||||||
|
__all__ = ['BatchNormReimpl']
|
||||||
|
|
||||||
|
|
||||||
|
class BatchNorm2dReimpl(nn.Module):
|
||||||
|
"""
|
||||||
|
A re-implementation of batch normalization, used for testing the numerical
|
||||||
|
stability.
|
||||||
|
|
||||||
|
Author: acgtyrant
|
||||||
|
See also:
|
||||||
|
https://github.com/vacancy/Synchronized-BatchNorm-PyTorch/issues/14
|
||||||
|
"""
|
||||||
|
def __init__(self, num_features, eps=1e-5, momentum=0.1):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.num_features = num_features
|
||||||
|
self.eps = eps
|
||||||
|
self.momentum = momentum
|
||||||
|
self.weight = nn.Parameter(torch.empty(num_features))
|
||||||
|
self.bias = nn.Parameter(torch.empty(num_features))
|
||||||
|
self.register_buffer('running_mean', torch.zeros(num_features))
|
||||||
|
self.register_buffer('running_var', torch.ones(num_features))
|
||||||
|
self.reset_parameters()
|
||||||
|
|
||||||
|
def reset_running_stats(self):
|
||||||
|
self.running_mean.zero_()
|
||||||
|
self.running_var.fill_(1)
|
||||||
|
|
||||||
|
def reset_parameters(self):
|
||||||
|
self.reset_running_stats()
|
||||||
|
init.uniform_(self.weight)
|
||||||
|
init.zeros_(self.bias)
|
||||||
|
|
||||||
|
def forward(self, input_):
|
||||||
|
batchsize, channels, height, width = input_.size()
|
||||||
|
numel = batchsize * height * width
|
||||||
|
input_ = input_.permute(1, 0, 2, 3).contiguous().view(channels, numel)
|
||||||
|
sum_ = input_.sum(1)
|
||||||
|
sum_of_square = input_.pow(2).sum(1)
|
||||||
|
mean = sum_ / numel
|
||||||
|
sumvar = sum_of_square - sum_ * mean
|
||||||
|
|
||||||
|
self.running_mean = (
|
||||||
|
(1 - self.momentum) * self.running_mean
|
||||||
|
+ self.momentum * mean.detach()
|
||||||
|
)
|
||||||
|
unbias_var = sumvar / (numel - 1)
|
||||||
|
self.running_var = (
|
||||||
|
(1 - self.momentum) * self.running_var
|
||||||
|
+ self.momentum * unbias_var.detach()
|
||||||
|
)
|
||||||
|
|
||||||
|
bias_var = sumvar / numel
|
||||||
|
inv_std = 1 / (bias_var + self.eps).pow(0.5)
|
||||||
|
output = (
|
||||||
|
(input_ - mean.unsqueeze(1)) * inv_std.unsqueeze(1) *
|
||||||
|
self.weight.unsqueeze(1) + self.bias.unsqueeze(1))
|
||||||
|
|
||||||
|
return output.view(channels, batchsize, height, width).permute(1, 0, 2, 3).contiguous()
|
||||||
|
|
|
@ -0,0 +1,137 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# File : comm.py
|
||||||
|
# Author : Jiayuan Mao
|
||||||
|
# Email : maojiayuan@gmail.com
|
||||||
|
# Date : 27/01/2018
|
||||||
|
#
|
||||||
|
# This file is part of Synchronized-BatchNorm-PyTorch.
|
||||||
|
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
|
||||||
|
# Distributed under MIT License.
|
||||||
|
|
||||||
|
import queue
|
||||||
|
import collections
|
||||||
|
import threading
|
||||||
|
|
||||||
|
__all__ = ['FutureResult', 'SlavePipe', 'SyncMaster']
|
||||||
|
|
||||||
|
|
||||||
|
class FutureResult(object):
|
||||||
|
"""A thread-safe future implementation. Used only as one-to-one pipe."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self._result = None
|
||||||
|
self._lock = threading.Lock()
|
||||||
|
self._cond = threading.Condition(self._lock)
|
||||||
|
|
||||||
|
def put(self, result):
|
||||||
|
with self._lock:
|
||||||
|
assert self._result is None, 'Previous result has\'t been fetched.'
|
||||||
|
self._result = result
|
||||||
|
self._cond.notify()
|
||||||
|
|
||||||
|
def get(self):
|
||||||
|
with self._lock:
|
||||||
|
if self._result is None:
|
||||||
|
self._cond.wait()
|
||||||
|
|
||||||
|
res = self._result
|
||||||
|
self._result = None
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
_MasterRegistry = collections.namedtuple('MasterRegistry', ['result'])
|
||||||
|
_SlavePipeBase = collections.namedtuple('_SlavePipeBase', ['identifier', 'queue', 'result'])
|
||||||
|
|
||||||
|
|
||||||
|
class SlavePipe(_SlavePipeBase):
|
||||||
|
"""Pipe for master-slave communication."""
|
||||||
|
|
||||||
|
def run_slave(self, msg):
|
||||||
|
self.queue.put((self.identifier, msg))
|
||||||
|
ret = self.result.get()
|
||||||
|
self.queue.put(True)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
class SyncMaster(object):
|
||||||
|
"""An abstract `SyncMaster` object.
|
||||||
|
|
||||||
|
- During the replication, as the data parallel will trigger an callback of each module, all slave devices should
|
||||||
|
call `register(id)` and obtain an `SlavePipe` to communicate with the master.
|
||||||
|
- During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected,
|
||||||
|
and passed to a registered callback.
|
||||||
|
- After receiving the messages, the master device should gather the information and determine to message passed
|
||||||
|
back to each slave devices.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, master_callback):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
master_callback: a callback to be invoked after having collected messages from slave devices.
|
||||||
|
"""
|
||||||
|
self._master_callback = master_callback
|
||||||
|
self._queue = queue.Queue()
|
||||||
|
self._registry = collections.OrderedDict()
|
||||||
|
self._activated = False
|
||||||
|
|
||||||
|
def __getstate__(self):
|
||||||
|
return {'master_callback': self._master_callback}
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
self.__init__(state['master_callback'])
|
||||||
|
|
||||||
|
def register_slave(self, identifier):
|
||||||
|
"""
|
||||||
|
Register an slave device.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
identifier: an identifier, usually is the device id.
|
||||||
|
|
||||||
|
Returns: a `SlavePipe` object which can be used to communicate with the master device.
|
||||||
|
|
||||||
|
"""
|
||||||
|
if self._activated:
|
||||||
|
assert self._queue.empty(), 'Queue is not clean before next initialization.'
|
||||||
|
self._activated = False
|
||||||
|
self._registry.clear()
|
||||||
|
future = FutureResult()
|
||||||
|
self._registry[identifier] = _MasterRegistry(future)
|
||||||
|
return SlavePipe(identifier, self._queue, future)
|
||||||
|
|
||||||
|
def run_master(self, master_msg):
|
||||||
|
"""
|
||||||
|
Main entry for the master device in each forward pass.
|
||||||
|
The messages were first collected from each devices (including the master device), and then
|
||||||
|
an callback will be invoked to compute the message to be sent back to each devices
|
||||||
|
(including the master device).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
master_msg: the message that the master want to send to itself. This will be placed as the first
|
||||||
|
message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example.
|
||||||
|
|
||||||
|
Returns: the message to be sent back to the master device.
|
||||||
|
|
||||||
|
"""
|
||||||
|
self._activated = True
|
||||||
|
|
||||||
|
intermediates = [(0, master_msg)]
|
||||||
|
for i in range(self.nr_slaves):
|
||||||
|
intermediates.append(self._queue.get())
|
||||||
|
|
||||||
|
results = self._master_callback(intermediates)
|
||||||
|
assert results[0][0] == 0, 'The first result should belongs to the master.'
|
||||||
|
|
||||||
|
for i, res in results:
|
||||||
|
if i == 0:
|
||||||
|
continue
|
||||||
|
self._registry[i].result.put(res)
|
||||||
|
|
||||||
|
for i in range(self.nr_slaves):
|
||||||
|
assert self._queue.get() is True
|
||||||
|
|
||||||
|
return results[0][1]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def nr_slaves(self):
|
||||||
|
return len(self._registry)
|
|
@ -0,0 +1,94 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# File : replicate.py
|
||||||
|
# Author : Jiayuan Mao
|
||||||
|
# Email : maojiayuan@gmail.com
|
||||||
|
# Date : 27/01/2018
|
||||||
|
#
|
||||||
|
# This file is part of Synchronized-BatchNorm-PyTorch.
|
||||||
|
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
|
||||||
|
# Distributed under MIT License.
|
||||||
|
|
||||||
|
import functools
|
||||||
|
|
||||||
|
from torch.nn.parallel.data_parallel import DataParallel
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
'CallbackContext',
|
||||||
|
'execute_replication_callbacks',
|
||||||
|
'DataParallelWithCallback',
|
||||||
|
'patch_replication_callback'
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class CallbackContext(object):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def execute_replication_callbacks(modules):
|
||||||
|
"""
|
||||||
|
Execute an replication callback `__data_parallel_replicate__` on each module created by original replication.
|
||||||
|
|
||||||
|
The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`
|
||||||
|
|
||||||
|
Note that, as all modules are isomorphism, we assign each sub-module with a context
|
||||||
|
(shared among multiple copies of this module on different devices).
|
||||||
|
Through this context, different copies can share some information.
|
||||||
|
|
||||||
|
We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback
|
||||||
|
of any slave copies.
|
||||||
|
"""
|
||||||
|
master_copy = modules[0]
|
||||||
|
nr_modules = len(list(master_copy.modules()))
|
||||||
|
ctxs = [CallbackContext() for _ in range(nr_modules)]
|
||||||
|
|
||||||
|
for i, module in enumerate(modules):
|
||||||
|
for j, m in enumerate(module.modules()):
|
||||||
|
if hasattr(m, '__data_parallel_replicate__'):
|
||||||
|
m.__data_parallel_replicate__(ctxs[j], i)
|
||||||
|
|
||||||
|
|
||||||
|
class DataParallelWithCallback(DataParallel):
|
||||||
|
"""
|
||||||
|
Data Parallel with a replication callback.
|
||||||
|
|
||||||
|
An replication callback `__data_parallel_replicate__` of each module will be invoked after being created by
|
||||||
|
original `replicate` function.
|
||||||
|
The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
> sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
|
||||||
|
> sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
|
||||||
|
# sync_bn.__data_parallel_replicate__ will be invoked.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def replicate(self, module, device_ids):
|
||||||
|
modules = super(DataParallelWithCallback, self).replicate(module, device_ids)
|
||||||
|
execute_replication_callbacks(modules)
|
||||||
|
return modules
|
||||||
|
|
||||||
|
|
||||||
|
def patch_replication_callback(data_parallel):
|
||||||
|
"""
|
||||||
|
Monkey-patch an existing `DataParallel` object. Add the replication callback.
|
||||||
|
Useful when you have customized `DataParallel` implementation.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
> sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
|
||||||
|
> sync_bn = DataParallel(sync_bn, device_ids=[0, 1])
|
||||||
|
> patch_replication_callback(sync_bn)
|
||||||
|
# this is equivalent to
|
||||||
|
> sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
|
||||||
|
> sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert isinstance(data_parallel, DataParallel)
|
||||||
|
|
||||||
|
old_replicate = data_parallel.replicate
|
||||||
|
|
||||||
|
@functools.wraps(old_replicate)
|
||||||
|
def new_replicate(module, device_ids):
|
||||||
|
modules = old_replicate(module, device_ids)
|
||||||
|
execute_replication_callbacks(modules)
|
||||||
|
return modules
|
||||||
|
|
||||||
|
data_parallel.replicate = new_replicate
|
|
@ -0,0 +1,29 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
# File : unittest.py
|
||||||
|
# Author : Jiayuan Mao
|
||||||
|
# Email : maojiayuan@gmail.com
|
||||||
|
# Date : 27/01/2018
|
||||||
|
#
|
||||||
|
# This file is part of Synchronized-BatchNorm-PyTorch.
|
||||||
|
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
|
||||||
|
# Distributed under MIT License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class TorchTestCase(unittest.TestCase):
|
||||||
|
def assertTensorClose(self, x, y):
|
||||||
|
adiff = float((x - y).abs().max())
|
||||||
|
if (y == 0).all():
|
||||||
|
rdiff = 'NaN'
|
||||||
|
else:
|
||||||
|
rdiff = float((adiff / y).abs().max())
|
||||||
|
|
||||||
|
message = (
|
||||||
|
'Tensor close check failed\n'
|
||||||
|
'adiff={}\n'
|
||||||
|
'rdiff={}\n'
|
||||||
|
).format(adiff, rdiff)
|
||||||
|
self.assertTrue(torch.allclose(x, y), message)
|
||||||
|
|
|
@ -0,0 +1,227 @@
|
||||||
|
""" BigGAN: The Authorized Unofficial PyTorch release
|
||||||
|
Code by A. Brock and A. Andonian
|
||||||
|
This code is an unofficial reimplementation of
|
||||||
|
"Large-Scale GAN Training for High Fidelity Natural Image Synthesis,"
|
||||||
|
by A. Brock, J. Donahue, and K. Simonyan (arXiv 1809.11096).
|
||||||
|
|
||||||
|
Let's go.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import functools
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import init
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch.nn import Parameter as P
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
# Import my stuff
|
||||||
|
import inception_utils
|
||||||
|
import utils
|
||||||
|
import losses
|
||||||
|
import train_fns
|
||||||
|
from sync_batchnorm import patch_replication_callback
|
||||||
|
|
||||||
|
# The main training file. Config is a dictionary specifying the configuration
|
||||||
|
# of this training run.
|
||||||
|
def run(config):
|
||||||
|
|
||||||
|
# Update the config dict as necessary
|
||||||
|
# This is for convenience, to add settings derived from the user-specified
|
||||||
|
# configuration into the config-dict (e.g. inferring the number of classes
|
||||||
|
# and size of the images from the dataset, passing in a pytorch object
|
||||||
|
# for the activation specified as a string)
|
||||||
|
config['resolution'] = utils.imsize_dict[config['dataset']]
|
||||||
|
config['n_classes'] = utils.nclass_dict[config['dataset']]
|
||||||
|
config['G_activation'] = utils.activation_dict[config['G_nl']]
|
||||||
|
config['D_activation'] = utils.activation_dict[config['D_nl']]
|
||||||
|
# By default, skip init if resuming training.
|
||||||
|
if config['resume']:
|
||||||
|
print('Skipping initialization for training resumption...')
|
||||||
|
config['skip_init'] = True
|
||||||
|
config = utils.update_config_roots(config)
|
||||||
|
device = 'cuda'
|
||||||
|
|
||||||
|
# Seed RNG
|
||||||
|
utils.seed_rng(config['seed'])
|
||||||
|
|
||||||
|
# Prepare root folders if necessary
|
||||||
|
utils.prepare_root(config)
|
||||||
|
|
||||||
|
# Setup cudnn.benchmark for free speed
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
|
# Import the model--this line allows us to dynamically select different files.
|
||||||
|
model = __import__(config['model'])
|
||||||
|
experiment_name = (config['experiment_name'] if config['experiment_name']
|
||||||
|
else utils.name_from_config(config))
|
||||||
|
print('Experiment name is %s' % experiment_name)
|
||||||
|
|
||||||
|
# Next, build the model
|
||||||
|
G = model.Generator(**config).to(device)
|
||||||
|
D = model.Discriminator(**config).to(device)
|
||||||
|
|
||||||
|
# If using EMA, prepare it
|
||||||
|
if config['ema']:
|
||||||
|
print('Preparing EMA for G with decay of {}'.format(config['ema_decay']))
|
||||||
|
G_ema = model.Generator(**{**config, 'skip_init':True,
|
||||||
|
'no_optim': True}).to(device)
|
||||||
|
ema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start'])
|
||||||
|
else:
|
||||||
|
G_ema, ema = None, None
|
||||||
|
|
||||||
|
# FP16?
|
||||||
|
if config['G_fp16']:
|
||||||
|
print('Casting G to float16...')
|
||||||
|
G = G.half()
|
||||||
|
if config['ema']:
|
||||||
|
G_ema = G_ema.half()
|
||||||
|
if config['D_fp16']:
|
||||||
|
print('Casting D to fp16...')
|
||||||
|
D = D.half()
|
||||||
|
# Consider automatically reducing SN_eps?
|
||||||
|
GD = model.G_D(G, D)
|
||||||
|
print(G)
|
||||||
|
print(D)
|
||||||
|
print('Number of params in G: {} D: {}'.format(
|
||||||
|
*[sum([p.data.nelement() for p in net.parameters()]) for net in [G,D]]))
|
||||||
|
# Prepare state dict, which holds things like epoch # and itr #
|
||||||
|
state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0,
|
||||||
|
'best_IS': 0, 'best_FID': 999999, 'config': config}
|
||||||
|
|
||||||
|
# If loading from a pre-trained model, load weights
|
||||||
|
if config['resume']:
|
||||||
|
print('Loading weights...')
|
||||||
|
utils.load_weights(G, D, state_dict,
|
||||||
|
config['weights_root'], experiment_name,
|
||||||
|
config['load_weights'] if config['load_weights'] else None,
|
||||||
|
G_ema if config['ema'] else None)
|
||||||
|
|
||||||
|
# If parallel, parallelize the GD module
|
||||||
|
if config['parallel']:
|
||||||
|
GD = nn.DataParallel(GD)
|
||||||
|
if config['cross_replica']:
|
||||||
|
patch_replication_callback(GD)
|
||||||
|
|
||||||
|
# Prepare loggers for stats; metrics holds test metrics,
|
||||||
|
# lmetrics holds any desired training metrics.
|
||||||
|
test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'],
|
||||||
|
experiment_name)
|
||||||
|
train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name)
|
||||||
|
print('Inception Metrics will be saved to {}'.format(test_metrics_fname))
|
||||||
|
test_log = utils.MetricsLogger(test_metrics_fname,
|
||||||
|
reinitialize=(not config['resume']))
|
||||||
|
print('Training Metrics will be saved to {}'.format(train_metrics_fname))
|
||||||
|
train_log = utils.MyLogger(train_metrics_fname,
|
||||||
|
reinitialize=(not config['resume']),
|
||||||
|
logstyle=config['logstyle'])
|
||||||
|
# Write metadata
|
||||||
|
utils.write_metadata(config['logs_root'], experiment_name, config, state_dict)
|
||||||
|
# Prepare data; the Discriminator's batch size is all that needs to be passed
|
||||||
|
# to the dataloader, as G doesn't require dataloading.
|
||||||
|
# Note that at every loader iteration we pass in enough data to complete
|
||||||
|
# a full D iteration (regardless of number of D steps and accumulations)
|
||||||
|
D_batch_size = (config['batch_size'] * config['num_D_steps']
|
||||||
|
* config['num_D_accumulations'])
|
||||||
|
loaders = utils.get_data_loaders(**{**config, 'batch_size': D_batch_size,
|
||||||
|
'start_itr': state_dict['itr']})
|
||||||
|
|
||||||
|
# Prepare inception metrics: FID and IS
|
||||||
|
get_inception_metrics = inception_utils.prepare_inception_metrics(config['dataset'], config['parallel'], config['no_fid'])
|
||||||
|
|
||||||
|
# Prepare noise and randomly sampled label arrays
|
||||||
|
# Allow for different batch sizes in G
|
||||||
|
G_batch_size = max(config['G_batch_size'], config['batch_size'])
|
||||||
|
z_, y_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'],
|
||||||
|
device=device, fp16=config['G_fp16'])
|
||||||
|
# Prepare a fixed z & y to see individual sample evolution throghout training
|
||||||
|
fixed_z, fixed_y = utils.prepare_z_y(G_batch_size, G.dim_z,
|
||||||
|
config['n_classes'], device=device,
|
||||||
|
fp16=config['G_fp16'])
|
||||||
|
fixed_z.sample_()
|
||||||
|
fixed_y.sample_()
|
||||||
|
# Loaders are loaded, prepare the training function
|
||||||
|
if config['which_train_fn'] == 'GAN':
|
||||||
|
train = train_fns.GAN_training_function(G, D, GD, z_, y_,
|
||||||
|
ema, state_dict, config)
|
||||||
|
# Else, assume debugging and use the dummy train fn
|
||||||
|
else:
|
||||||
|
train = train_fns.dummy_training_function()
|
||||||
|
# Prepare Sample function for use with inception metrics
|
||||||
|
sample = functools.partial(utils.sample,
|
||||||
|
G=(G_ema if config['ema'] and config['use_ema']
|
||||||
|
else G),
|
||||||
|
z_=z_, y_=y_, config=config)
|
||||||
|
|
||||||
|
print('Beginning training at epoch %d...' % state_dict['epoch'])
|
||||||
|
# Train for specified number of epochs, although we mostly track G iterations.
|
||||||
|
for epoch in range(state_dict['epoch'], config['num_epochs']):
|
||||||
|
# Which progressbar to use? TQDM or my own?
|
||||||
|
if config['pbar'] == 'mine':
|
||||||
|
pbar = utils.progress(loaders[0],displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta')
|
||||||
|
else:
|
||||||
|
pbar = tqdm(loaders[0])
|
||||||
|
for i, (x, y) in enumerate(pbar):
|
||||||
|
# Increment the iteration counter
|
||||||
|
state_dict['itr'] += 1
|
||||||
|
# Make sure G and D are in training mode, just in case they got set to eval
|
||||||
|
# For D, which typically doesn't have BN, this shouldn't matter much.
|
||||||
|
G.train()
|
||||||
|
D.train()
|
||||||
|
if config['ema']:
|
||||||
|
G_ema.train()
|
||||||
|
if config['D_fp16']:
|
||||||
|
x, y = x.to(device).half(), y.to(device)
|
||||||
|
else:
|
||||||
|
x, y = x.to(device), y.to(device)
|
||||||
|
metrics = train(x, y)
|
||||||
|
train_log.log(itr=int(state_dict['itr']), **metrics)
|
||||||
|
|
||||||
|
# Every sv_log_interval, log singular values
|
||||||
|
if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])):
|
||||||
|
train_log.log(itr=int(state_dict['itr']),
|
||||||
|
**{**utils.get_SVs(G, 'G'), **utils.get_SVs(D, 'D')})
|
||||||
|
|
||||||
|
# If using my progbar, print metrics.
|
||||||
|
if config['pbar'] == 'mine':
|
||||||
|
print(', '.join(['itr: %d' % state_dict['itr']]
|
||||||
|
+ ['%s : %+4.3f' % (key, metrics[key])
|
||||||
|
for key in metrics]), end=' ')
|
||||||
|
|
||||||
|
# Save weights and copies as configured at specified interval
|
||||||
|
if not (state_dict['itr'] % config['save_every']):
|
||||||
|
if config['G_eval_mode']:
|
||||||
|
print('Switchin G to eval mode...')
|
||||||
|
G.eval()
|
||||||
|
if config['ema']:
|
||||||
|
G_ema.eval()
|
||||||
|
train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y,
|
||||||
|
state_dict, config, experiment_name)
|
||||||
|
|
||||||
|
# Test every specified interval
|
||||||
|
if not (state_dict['itr'] % config['test_every']):
|
||||||
|
if config['G_eval_mode']:
|
||||||
|
print('Switchin G to eval mode...')
|
||||||
|
G.eval()
|
||||||
|
train_fns.test(G, D, G_ema, z_, y_, state_dict, config, sample,
|
||||||
|
get_inception_metrics, experiment_name, test_log)
|
||||||
|
# Increment epoch counter at end of epoch
|
||||||
|
state_dict['epoch'] += 1
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# parse command line and run
|
||||||
|
parser = utils.prepare_parser()
|
||||||
|
config = vars(parser.parse_args())
|
||||||
|
print(config)
|
||||||
|
run(config)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -0,0 +1,187 @@
|
||||||
|
''' train_fns.py
|
||||||
|
Functions for the main loop of training different conditional image models
|
||||||
|
'''
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torchvision
|
||||||
|
import os
|
||||||
|
|
||||||
|
import utils
|
||||||
|
import losses
|
||||||
|
|
||||||
|
|
||||||
|
# Dummy training function for debugging
|
||||||
|
def dummy_training_function():
|
||||||
|
def train(x, y):
|
||||||
|
return {}
|
||||||
|
return train
|
||||||
|
|
||||||
|
|
||||||
|
def GAN_training_function(G, D, GD, z_, y_, ema, state_dict, config):
|
||||||
|
def train(x, y):
|
||||||
|
G.optim.zero_grad()
|
||||||
|
D.optim.zero_grad()
|
||||||
|
# How many chunks to split x and y into?
|
||||||
|
x = torch.split(x, config['batch_size'])
|
||||||
|
y = torch.split(y, config['batch_size'])
|
||||||
|
counter = 0
|
||||||
|
|
||||||
|
# Optionally toggle D and G's "require_grad"
|
||||||
|
if config['toggle_grads']:
|
||||||
|
utils.toggle_grad(D, True)
|
||||||
|
utils.toggle_grad(G, False)
|
||||||
|
|
||||||
|
for step_index in range(config['num_D_steps']):
|
||||||
|
# If accumulating gradients, loop multiple times before an optimizer step
|
||||||
|
D.optim.zero_grad()
|
||||||
|
for accumulation_index in range(config['num_D_accumulations']):
|
||||||
|
z_.sample_()
|
||||||
|
y_.sample_()
|
||||||
|
D_fake, D_real = GD(z_[:config['batch_size']], y_[:config['batch_size']],
|
||||||
|
x[counter], y[counter], train_G=False,
|
||||||
|
split_D=config['split_D'])
|
||||||
|
|
||||||
|
# Compute components of D's loss, average them, and divide by
|
||||||
|
# the number of gradient accumulations
|
||||||
|
D_loss_real, D_loss_fake = losses.discriminator_loss(D_fake, D_real)
|
||||||
|
D_loss = (D_loss_real + D_loss_fake) / float(config['num_D_accumulations'])
|
||||||
|
D_loss.backward()
|
||||||
|
counter += 1
|
||||||
|
|
||||||
|
# Optionally apply ortho reg in D
|
||||||
|
if config['D_ortho'] > 0.0:
|
||||||
|
# Debug print to indicate we're using ortho reg in D.
|
||||||
|
print('using modified ortho reg in D')
|
||||||
|
utils.ortho(D, config['D_ortho'])
|
||||||
|
|
||||||
|
D.optim.step()
|
||||||
|
|
||||||
|
# Optionally toggle "requires_grad"
|
||||||
|
if config['toggle_grads']:
|
||||||
|
utils.toggle_grad(D, False)
|
||||||
|
utils.toggle_grad(G, True)
|
||||||
|
|
||||||
|
# Zero G's gradients by default before training G, for safety
|
||||||
|
G.optim.zero_grad()
|
||||||
|
|
||||||
|
# If accumulating gradients, loop multiple times
|
||||||
|
for accumulation_index in range(config['num_G_accumulations']):
|
||||||
|
z_.sample_()
|
||||||
|
y_.sample_()
|
||||||
|
D_fake = GD(z_, y_, train_G=True, split_D=config['split_D'])
|
||||||
|
G_loss = losses.generator_loss(D_fake) / float(config['num_G_accumulations'])
|
||||||
|
G_loss.backward()
|
||||||
|
|
||||||
|
# Optionally apply modified ortho reg in G
|
||||||
|
if config['G_ortho'] > 0.0:
|
||||||
|
print('using modified ortho reg in G') # Debug print to indicate we're using ortho reg in G
|
||||||
|
# Don't ortho reg shared, it makes no sense. Really we should blacklist any embeddings for this
|
||||||
|
utils.ortho(G, config['G_ortho'],
|
||||||
|
blacklist=[param for param in G.shared.parameters()])
|
||||||
|
G.optim.step()
|
||||||
|
|
||||||
|
# If we have an ema, update it, regardless of if we test with it or not
|
||||||
|
if config['ema']:
|
||||||
|
ema.update(state_dict['itr'])
|
||||||
|
|
||||||
|
out = {'G_loss': float(G_loss.item()),
|
||||||
|
'D_loss_real': float(D_loss_real.item()),
|
||||||
|
'D_loss_fake': float(D_loss_fake.item())}
|
||||||
|
# Return G's loss and the components of D's loss.
|
||||||
|
return out
|
||||||
|
return train
|
||||||
|
|
||||||
|
''' This function takes in the model, saves the weights (multiple copies if
|
||||||
|
requested), and prepares sample sheets: one consisting of samples given
|
||||||
|
a fixed noise seed (to show how the model evolves throughout training),
|
||||||
|
a set of full conditional sample sheets, and a set of interp sheets. '''
|
||||||
|
def save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y,
|
||||||
|
state_dict, config, experiment_name):
|
||||||
|
utils.save_weights(G, D, state_dict, config['weights_root'],
|
||||||
|
experiment_name, None, G_ema if config['ema'] else None)
|
||||||
|
# Save an additional copy to mitigate accidental corruption if process
|
||||||
|
# is killed during a save (it's happened to me before -.-)
|
||||||
|
if config['num_save_copies'] > 0:
|
||||||
|
utils.save_weights(G, D, state_dict, config['weights_root'],
|
||||||
|
experiment_name,
|
||||||
|
'copy%d' % state_dict['save_num'],
|
||||||
|
G_ema if config['ema'] else None)
|
||||||
|
state_dict['save_num'] = (state_dict['save_num'] + 1 ) % config['num_save_copies']
|
||||||
|
|
||||||
|
# Use EMA G for samples or non-EMA?
|
||||||
|
which_G = G_ema if config['ema'] and config['use_ema'] else G
|
||||||
|
|
||||||
|
# Accumulate standing statistics?
|
||||||
|
if config['accumulate_stats']:
|
||||||
|
utils.accumulate_standing_stats(G_ema if config['ema'] and config['use_ema'] else G,
|
||||||
|
z_, y_, config['n_classes'],
|
||||||
|
config['num_standing_accumulations'])
|
||||||
|
|
||||||
|
# Save a random sample sheet with fixed z and y
|
||||||
|
with torch.no_grad():
|
||||||
|
if config['parallel']:
|
||||||
|
fixed_Gz = nn.parallel.data_parallel(which_G, (fixed_z, which_G.shared(fixed_y)))
|
||||||
|
else:
|
||||||
|
fixed_Gz = which_G(fixed_z, which_G.shared(fixed_y))
|
||||||
|
if not os.path.isdir('%s/%s' % (config['samples_root'], experiment_name)):
|
||||||
|
os.mkdir('%s/%s' % (config['samples_root'], experiment_name))
|
||||||
|
image_filename = '%s/%s/fixed_samples%d.jpg' % (config['samples_root'],
|
||||||
|
experiment_name,
|
||||||
|
state_dict['itr'])
|
||||||
|
torchvision.utils.save_image(fixed_Gz.float().cpu(), image_filename, ## NOTE: xcliu for torchvision 0.8.2
|
||||||
|
nrow=int(fixed_Gz.shape[0] **0.5), normalize=True)
|
||||||
|
#torchvision.utils.save_image(torch.from_numpy(fixed_Gz.float().cpu().numpy()), image_filename,
|
||||||
|
# nrow=int(fixed_Gz.shape[0] **0.5), normalize=True)
|
||||||
|
|
||||||
|
# For now, every time we save, also save sample sheets
|
||||||
|
utils.sample_sheet(which_G,
|
||||||
|
classes_per_sheet=utils.classes_per_sheet_dict[config['dataset']],
|
||||||
|
num_classes=config['n_classes'],
|
||||||
|
samples_per_class=10, parallel=config['parallel'],
|
||||||
|
samples_root=config['samples_root'],
|
||||||
|
experiment_name=experiment_name,
|
||||||
|
folder_number=state_dict['itr'],
|
||||||
|
z_=z_)
|
||||||
|
# Also save interp sheets
|
||||||
|
for fix_z, fix_y in zip([False, False, True], [False, True, False]):
|
||||||
|
utils.interp_sheet(which_G,
|
||||||
|
num_per_sheet=16,
|
||||||
|
num_midpoints=8,
|
||||||
|
num_classes=config['n_classes'],
|
||||||
|
parallel=config['parallel'],
|
||||||
|
samples_root=config['samples_root'],
|
||||||
|
experiment_name=experiment_name,
|
||||||
|
folder_number=state_dict['itr'],
|
||||||
|
sheet_number=0,
|
||||||
|
fix_z=fix_z, fix_y=fix_y, device='cuda')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
''' This function runs the inception metrics code, checks if the results
|
||||||
|
are an improvement over the previous best (either in IS or FID,
|
||||||
|
user-specified), logs the results, and saves a best_ copy if it's an
|
||||||
|
improvement. '''
|
||||||
|
def test(G, D, G_ema, z_, y_, state_dict, config, sample, get_inception_metrics,
|
||||||
|
experiment_name, test_log):
|
||||||
|
print('Gathering inception metrics...')
|
||||||
|
if config['accumulate_stats']:
|
||||||
|
utils.accumulate_standing_stats(G_ema if config['ema'] and config['use_ema'] else G,
|
||||||
|
z_, y_, config['n_classes'],
|
||||||
|
config['num_standing_accumulations'])
|
||||||
|
IS_mean, IS_std, FID = get_inception_metrics(sample,
|
||||||
|
config['num_inception_images'],
|
||||||
|
num_splits=10)
|
||||||
|
print('Itr %d: PYTORCH UNOFFICIAL Inception Score is %3.3f +/- %3.3f, PYTORCH UNOFFICIAL FID is %5.4f' % (state_dict['itr'], IS_mean, IS_std, FID))
|
||||||
|
# If improved over previous best metric, save approrpiate copy
|
||||||
|
if ((config['which_best'] == 'IS' and IS_mean > state_dict['best_IS'])
|
||||||
|
or (config['which_best'] == 'FID' and FID < state_dict['best_FID'])):
|
||||||
|
print('%s improved over previous best, saving checkpoint...' % config['which_best'])
|
||||||
|
utils.save_weights(G, D, state_dict, config['weights_root'],
|
||||||
|
experiment_name, 'best%d' % state_dict['save_best_num'],
|
||||||
|
G_ema if config['ema'] else None)
|
||||||
|
state_dict['save_best_num'] = (state_dict['save_best_num'] + 1 ) % config['num_best_copies']
|
||||||
|
state_dict['best_IS'] = max(state_dict['best_IS'], IS_mean)
|
||||||
|
state_dict['best_FID'] = min(state_dict['best_FID'], FID)
|
||||||
|
# Log results to file
|
||||||
|
test_log.log(itr=int(state_dict['itr']), IS_mean=float(IS_mean),
|
||||||
|
IS_std=float(IS_std), FID=float(FID))
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,2 @@
|
||||||
|
Download pre-trained weights from
|
||||||
|
https://drive.google.com/drive/folders/1nJ3HmgYgeA9NZr-oU-enqbYeO7zBaANs?usp=sharing
|
|
@ -0,0 +1,102 @@
|
||||||
|
# Differentiable Augmentation for Data-Efficient GAN Training
|
||||||
|
# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han
|
||||||
|
# https://arxiv.org/pdf/2006.10738
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def DiffAugment(x, policy='', channels_first=True):
|
||||||
|
if policy:
|
||||||
|
if not channels_first:
|
||||||
|
x = x.permute(0, 3, 1, 2)
|
||||||
|
for p in policy.split(','):
|
||||||
|
for f in AUGMENT_FNS[p]:
|
||||||
|
x = f(x)
|
||||||
|
if not channels_first:
|
||||||
|
x = x.permute(0, 2, 3, 1)
|
||||||
|
x = x.contiguous()
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def rand_brightness(x):
|
||||||
|
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def rand_saturation(x):
|
||||||
|
x_mean = x.mean(dim=1, keepdim=True)
|
||||||
|
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def rand_contrast(x):
|
||||||
|
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
|
||||||
|
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def rand_translation(x, ratio=0.125): ### ratio: org: 0.125
|
||||||
|
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
||||||
|
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
|
||||||
|
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
|
||||||
|
grid_batch, grid_x, grid_y = torch.meshgrid(
|
||||||
|
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
||||||
|
torch.arange(x.size(2), dtype=torch.long, device=x.device),
|
||||||
|
torch.arange(x.size(3), dtype=torch.long, device=x.device),
|
||||||
|
)
|
||||||
|
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
|
||||||
|
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
|
||||||
|
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
|
||||||
|
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2).contiguous()
|
||||||
|
return x
|
||||||
|
|
||||||
|
def rand_resize(x, min_ratio=0.8, max_ratio=1.2): ### ratio: org: 0.125
|
||||||
|
resize_ratio = np.random.rand()*(max_ratio-min_ratio) + min_ratio
|
||||||
|
resized_img = F.interpolate(x, size=int(resize_ratio*x.shape[3]), mode='bilinear')
|
||||||
|
org_size = x.shape[3]
|
||||||
|
#print('ORG:', x.shape)
|
||||||
|
#print('RESIZED:', resized_img.shape)
|
||||||
|
if int(resize_ratio*x.shape[3]) < x.shape[3]:
|
||||||
|
left_pad = (x.shape[3]-int(resize_ratio*x.shape[3]))/2.
|
||||||
|
left_pad = int(left_pad)
|
||||||
|
right_pad = x.shape[3] - left_pad - resized_img.shape[3]
|
||||||
|
#print('PAD:', left_pad, right_pad)
|
||||||
|
x = F.pad(resized_img, (left_pad, right_pad, left_pad, right_pad), "constant", 0.)
|
||||||
|
#print('SMALL:', x.shape)
|
||||||
|
else:
|
||||||
|
left = (int(resize_ratio*x.shape[3])-x.shape[3])/2.
|
||||||
|
left = int(left)
|
||||||
|
#print('LEFT:', left)
|
||||||
|
x = resized_img[:, :, left:(left+x.shape[3]), left:(left+x.shape[3])]
|
||||||
|
#print('LARGE:', x.shape)
|
||||||
|
assert x.shape[2] == org_size
|
||||||
|
assert x.shape[3] == org_size
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def rand_cutout(x, ratio=0.5):
|
||||||
|
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
||||||
|
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
|
||||||
|
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
|
||||||
|
grid_batch, grid_x, grid_y = torch.meshgrid(
|
||||||
|
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
||||||
|
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
|
||||||
|
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
|
||||||
|
)
|
||||||
|
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
|
||||||
|
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
|
||||||
|
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
|
||||||
|
mask[grid_batch, grid_x, grid_y] = 0
|
||||||
|
x = x * mask.unsqueeze(1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
AUGMENT_FNS = {
|
||||||
|
'color': [rand_brightness, rand_saturation, rand_contrast],
|
||||||
|
'translation': [rand_translation],
|
||||||
|
'resize': [rand_resize],
|
||||||
|
'cutout': [rand_cutout],
|
||||||
|
}
|
|
@ -0,0 +1,21 @@
|
||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2021 gnobitab
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
|
@ -0,0 +1,65 @@
|
||||||
|
# FuseDream
|
||||||
|
|
||||||
|
This repo contains code for our paper ([paper link](https://arxiv.org/abs/2112.01573)):
|
||||||
|
|
||||||
|
**FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimization**
|
||||||
|
|
||||||
|
by *Xingchao Liu, Chengyue Gong, Lemeng Wu, Shujian Zhang, Hao Su and Qiang Liu* from UCSD and UT Austin.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## Introduction
|
||||||
|
FuseDream uses pre-trained GANs (we support BigGAN-256 and BigGAN-512 for now) and CLIP to achieve high-fidelity text-to-image generation.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
Please use `pip` or `conda` to install the following packages:
|
||||||
|
`PyTorch==1.7.1, torchvision==0.8.2, lpips==0.1.4` and also the requirements from [BigGAN](https://github.com/ajbrock/BigGAN-PyTorch).
|
||||||
|
|
||||||
|
## Getting Started
|
||||||
|
|
||||||
|
We transformed the pre-trained weights of BigGAN from TFHub to PyTorch. To save your time, you can download the transformed BigGAN checkpoints from:
|
||||||
|
|
||||||
|
https://drive.google.com/drive/folders/1nJ3HmgYgeA9NZr-oU-enqbYeO7zBaANs?usp=sharing
|
||||||
|
|
||||||
|
Put the checkpoints into `./BigGAN_utils/weights/`
|
||||||
|
|
||||||
|
Run the following command to generate images from text query:
|
||||||
|
|
||||||
|
`python fusedream_generator.py --text 'YOUR TEXT' --seed YOUR_SEED`
|
||||||
|
|
||||||
|
For example, to get an image of a blue dog:
|
||||||
|
|
||||||
|
`python fusedream_generator.py --text 'A photo of a blue dog.' --seed 1234`
|
||||||
|
|
||||||
|
The generated image will be stored in `./samples`
|
||||||
|
|
||||||
|
## Colab Notebook
|
||||||
|
|
||||||
|
For a quick test of *FuseDream*, we provide Colab notebooks for [*FuseDream*(Single Image)](https://colab.research.google.com/drive/17qkzkoQQtzDRFaSCJQzIaNj88xjO9Rm9?usp=sharing) and *FuseDream-Composition*(TODO). Have fun!
|
||||||
|
|
||||||
|
## Citations
|
||||||
|
If you use the code, please cite:
|
||||||
|
|
||||||
|
```BibTex
|
||||||
|
@inproceedings{
|
||||||
|
brock2018large,
|
||||||
|
title={Large Scale {GAN} Training for High Fidelity Natural Image Synthesis},
|
||||||
|
author={Andrew Brock and Jeff Donahue and Karen Simonyan},
|
||||||
|
booktitle={International Conference on Learning Representations},
|
||||||
|
year={2019},
|
||||||
|
url={https://openreview.net/forum?id=B1xsqj09Fm},
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
and
|
||||||
|
```BibTex
|
||||||
|
@misc{
|
||||||
|
liu2021fusedream,
|
||||||
|
title={FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimization},
|
||||||
|
author={Xingchao Liu and Chengyue Gong and Lemeng Wu and Shujian Zhang and Hao Su and Qiang Liu},
|
||||||
|
year={2021},
|
||||||
|
eprint={2112.01573},
|
||||||
|
archivePrefix={arXiv},
|
||||||
|
primaryClass={cs.CV}
|
||||||
|
}
|
||||||
|
```
|
|
@ -0,0 +1,35 @@
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
||||||
|
import BigGAN_utils.utils as utils
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from DiffAugment_pytorch import DiffAugment
|
||||||
|
import numpy as np
|
||||||
|
from fusedream_utils import FuseDreamBaseGenerator, get_G, save_image
|
||||||
|
|
||||||
|
parser = utils.prepare_parser()
|
||||||
|
parser = utils.add_sample_parser(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
INIT_ITERS = 1000
|
||||||
|
OPT_ITERS = 1000
|
||||||
|
|
||||||
|
utils.seed_rng(args.seed)
|
||||||
|
|
||||||
|
sentence = args.text
|
||||||
|
|
||||||
|
print('Generating:', sentence)
|
||||||
|
G, config = get_G(512) # Choose from 256 and 512
|
||||||
|
generator = FuseDreamBaseGenerator(G, config, 10)
|
||||||
|
z_cllt, y_cllt = generator.generate_basis(sentence, init_iters=INIT_ITERS, num_basis=5)
|
||||||
|
|
||||||
|
z_cllt_save = torch.cat(z_cllt).cpu().numpy()
|
||||||
|
y_cllt_save = torch.cat(y_cllt).cpu().numpy()
|
||||||
|
img, z, y = generator.optimize_clip_score(z_cllt, y_cllt, sentence, latent_noise=True, augment=True, opt_iters=OPT_ITERS, optimize_y=True)
|
||||||
|
score = generator.measureAugCLIP(z, y, sentence, augment=True, num_samples=20)
|
||||||
|
print('AugCLIP score:', score)
|
||||||
|
import os
|
||||||
|
if not os.path.exists('./samples'):
|
||||||
|
os.mkdir('./samples')
|
||||||
|
save_image(img, 'samples/fusedream_%s_seed_%d_score_%.4f.png'%(sentence, args.seed, score))
|
||||||
|
|
|
@ -0,0 +1,308 @@
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
||||||
|
import torchvision
|
||||||
|
import BigGAN_utils.utils as utils
|
||||||
|
import clip
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from DiffAugment_pytorch import DiffAugment
|
||||||
|
import numpy as np
|
||||||
|
import lpips
|
||||||
|
import os
|
||||||
|
current_path = os.path.dirname(__file__)
|
||||||
|
|
||||||
|
LATENT_NOISE = 0.01
|
||||||
|
Z_THRES = 2.0
|
||||||
|
POLICY = 'color,translation,resize,cutout'
|
||||||
|
TEST_POLICY = 'color,translation,resize,cutout'
|
||||||
|
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda()
|
||||||
|
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda()
|
||||||
|
|
||||||
|
def AugmentLoss(img, clip_model, text, replicate=10, interp_mode='bilinear', policy=POLICY):
|
||||||
|
|
||||||
|
clip_c = clip_model.logit_scale.exp()
|
||||||
|
img_aug = DiffAugment(img.repeat(replicate, 1, 1, 1), policy=policy)
|
||||||
|
img_aug = (img_aug+1.)/2.
|
||||||
|
img_aug = F.interpolate(img_aug, size=224, mode=interp_mode)
|
||||||
|
img_aug.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
|
||||||
|
|
||||||
|
logits_per_image, logits_per_text = clip_model(img_aug, text)
|
||||||
|
logits_per_image = logits_per_image / clip_c
|
||||||
|
concept_loss = (-1.) * logits_per_image
|
||||||
|
|
||||||
|
return concept_loss.mean(dim=0, keepdim=False)
|
||||||
|
|
||||||
|
def NaiveSemanticLoss(img, clip_model, text, interp_mode='bilinear'):
|
||||||
|
|
||||||
|
clip_c = clip_model.logit_scale.exp()
|
||||||
|
img = (img+1.)/2.
|
||||||
|
img = F.interpolate(img, size=224, mode=interp_mode)
|
||||||
|
img.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
|
||||||
|
|
||||||
|
logits_per_image, logits_per_text = clip_model(img, text)
|
||||||
|
logits_per_image = logits_per_image / clip_c
|
||||||
|
concept_loss = (-1.) * logits_per_image
|
||||||
|
|
||||||
|
return concept_loss.mean(dim=0, keepdim=False)
|
||||||
|
|
||||||
|
def get_gaussian_mask(size=256):
|
||||||
|
x, y = np.meshgrid(np.linspace(-1,1, size), np.linspace(-1,1,size))
|
||||||
|
dst = np.sqrt(x*x+y*y)
|
||||||
|
|
||||||
|
# Intializing sigma and muu
|
||||||
|
sigma = 1
|
||||||
|
muu = 0.000
|
||||||
|
|
||||||
|
# Calculating Gaussian array
|
||||||
|
gauss = np.exp(-( (dst-muu)**2 / ( 2.0 * sigma**2 ) ) )
|
||||||
|
|
||||||
|
return gauss
|
||||||
|
|
||||||
|
def save_image(img, path, n_per_row=1):
|
||||||
|
with torch.no_grad():
|
||||||
|
torchvision.utils.save_image(
|
||||||
|
torch.from_numpy(img.cpu().numpy()), ##hack, to turn Distribution back to tensor
|
||||||
|
path,
|
||||||
|
nrow=n_per_row,
|
||||||
|
normalize=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_G(resolution=256):
|
||||||
|
if resolution == 256:
|
||||||
|
parser = utils.prepare_parser()
|
||||||
|
parser = utils.add_sample_parser(parser)
|
||||||
|
config = vars(parser.parse_args())
|
||||||
|
|
||||||
|
# See: https://github.com/ajbrock/BigGAN-PyTorch/blob/master/scripts/sample_BigGAN_bs256x8.sh.
|
||||||
|
config["resolution"] = utils.imsize_dict["I128_hdf5"]
|
||||||
|
config["n_classes"] = utils.nclass_dict["I128_hdf5"]
|
||||||
|
config["G_activation"] = utils.activation_dict["inplace_relu"]
|
||||||
|
config["D_activation"] = utils.activation_dict["inplace_relu"]
|
||||||
|
config["G_attn"] = "128"
|
||||||
|
config["D_attn"] = "128"
|
||||||
|
config["G_ch"] = 96
|
||||||
|
config["D_ch"] = 96
|
||||||
|
config["hier"] = True
|
||||||
|
config["dim_z"] = 140
|
||||||
|
config["shared_dim"] = 128
|
||||||
|
config["G_shared"] = True
|
||||||
|
config = utils.update_config_roots(config)
|
||||||
|
config["skip_init"] = True
|
||||||
|
config["no_optim"] = True
|
||||||
|
config["device"] = "cuda"
|
||||||
|
config["resolution"] = 256
|
||||||
|
|
||||||
|
# Set up cudnn.benchmark for free speed.
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
|
# Import the model.
|
||||||
|
model = __import__(config["model"])
|
||||||
|
G = model.Generator(**config).to(config["device"])
|
||||||
|
utils.count_parameters(G)
|
||||||
|
|
||||||
|
# Load weights.
|
||||||
|
weights_path = f"{current_path}/BigGAN_utils/weights/biggan-256.pth" # Change this.
|
||||||
|
G.load_state_dict(torch.load(weights_path), strict=False)
|
||||||
|
elif resolution == 512:
|
||||||
|
parser = utils.prepare_parser()
|
||||||
|
parser = utils.add_sample_parser(parser)
|
||||||
|
config = vars(parser.parse_args())
|
||||||
|
|
||||||
|
# See: https://github.com/ajbrock/BigGAN-PyTorch/blob/master/scripts/sample_BigGAN_bs128x8.sh.
|
||||||
|
config["resolution"] = 512
|
||||||
|
config["n_classes"] = utils.nclass_dict["I128_hdf5"]
|
||||||
|
config["G_activation"] = utils.activation_dict["inplace_relu"]
|
||||||
|
config["D_activation"] = utils.activation_dict["inplace_relu"]
|
||||||
|
config["G_attn"] = "64"
|
||||||
|
config["D_attn"] = "64"
|
||||||
|
config["G_ch"] = 96
|
||||||
|
config["D_ch"] = 64
|
||||||
|
config["hier"] = True
|
||||||
|
config["dim_z"] = 128
|
||||||
|
config["shared_dim"] = 128
|
||||||
|
config["G_shared"] = True
|
||||||
|
config = utils.update_config_roots(config)
|
||||||
|
config["skip_init"] = True
|
||||||
|
config["no_optim"] = True
|
||||||
|
config["device"] = "cuda"
|
||||||
|
|
||||||
|
# Set up cudnn.benchmark for free speed.
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
|
||||||
|
# Import the model.
|
||||||
|
model = __import__(config["model"])
|
||||||
|
#print(config["model"])
|
||||||
|
G = model.Generator(**config).to(config["device"])
|
||||||
|
utils.count_parameters(G)
|
||||||
|
#print('G parameters:')
|
||||||
|
#for p, m in G.named_parameters():
|
||||||
|
# print(p)
|
||||||
|
# Load weights.
|
||||||
|
weights_path = f"{current_path}/BigGAN_utils/weights/biggan-512.pth" # Change this.
|
||||||
|
G.load_state_dict(torch.load(weights_path), strict=False)
|
||||||
|
|
||||||
|
return G, config
|
||||||
|
|
||||||
|
class FuseDreamBaseGenerator():
|
||||||
|
def __init__(self, G, G_config, G_batch_size=10, clip_mode="ViT-B/32", interp_mode='bilinear'):
|
||||||
|
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
self.device = device
|
||||||
|
self.G = G
|
||||||
|
self.clip_model, _ = clip.load(clip_mode, device=device)
|
||||||
|
|
||||||
|
(self.z_, self.y_) = utils.prepare_z_y(
|
||||||
|
G_batch_size,
|
||||||
|
self.G.dim_z,
|
||||||
|
G_config["n_classes"],
|
||||||
|
device=G_config["device"],
|
||||||
|
fp16=G_config["G_fp16"],
|
||||||
|
z_var=G_config["z_var"],
|
||||||
|
)
|
||||||
|
|
||||||
|
self.G.eval()
|
||||||
|
|
||||||
|
for p in self.G.parameters():
|
||||||
|
p.requires_grad = False
|
||||||
|
for p in self.clip_model.parameters():
|
||||||
|
p.requires_grad = False
|
||||||
|
|
||||||
|
self.interp_mode = interp_mode
|
||||||
|
|
||||||
|
def generate_basis(self, text, init_iters=500, num_basis=5):
|
||||||
|
text_tok = clip.tokenize([text]).to(self.device)
|
||||||
|
clip_c = self.clip_model.logit_scale.exp()
|
||||||
|
|
||||||
|
z_init_cllt = []
|
||||||
|
y_init_cllt = []
|
||||||
|
z_init = None
|
||||||
|
y_init = None
|
||||||
|
score_init = None
|
||||||
|
with torch.no_grad():
|
||||||
|
for i in tqdm(range(init_iters)):
|
||||||
|
self.z_.sample_()
|
||||||
|
self.y_.sample_()
|
||||||
|
|
||||||
|
self.z_.data = torch.clamp(self.z_.data.detach().clone(), min=-Z_THRES, max=Z_THRES)
|
||||||
|
|
||||||
|
image_tensors = self.G(self.z_, self.G.shared(self.y_))
|
||||||
|
image_tensors = (image_tensors+1.) / 2.
|
||||||
|
image_tensors = F.interpolate(image_tensors, size=224, mode=self.interp_mode)
|
||||||
|
image_tensors.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
|
||||||
|
|
||||||
|
logits_per_image, logits_per_text = self.clip_model(image_tensors, text_tok)
|
||||||
|
logits_per_image = logits_per_image/clip_c
|
||||||
|
if z_init is None:
|
||||||
|
z_init = self.z_.data.detach().clone()
|
||||||
|
y_init = self.y_.data.detach().clone()
|
||||||
|
score_init = logits_per_image.squeeze()
|
||||||
|
else:
|
||||||
|
z_init = torch.cat([z_init, self.z_.data.detach().clone()], dim=0)
|
||||||
|
y_init = torch.cat([y_init, self.y_.data.detach().clone()], dim=0)
|
||||||
|
score_init = torch.cat([score_init, logits_per_image.squeeze()])
|
||||||
|
|
||||||
|
sorted, indices = torch.sort(score_init, descending=True)
|
||||||
|
z_init = z_init[indices]
|
||||||
|
y_init = y_init[indices]
|
||||||
|
score_init = score_init[indices]
|
||||||
|
z_init = z_init[:num_basis]
|
||||||
|
y_init = y_init[:num_basis]
|
||||||
|
score_init = score_init[:num_basis]
|
||||||
|
|
||||||
|
#save_image(self.G(z_init, self.G.shared(y_init)), 'samples/init_%s.png'%text, 1)
|
||||||
|
|
||||||
|
z_init_cllt.append(z_init.detach().clone())
|
||||||
|
y_init_cllt.append(self.G.shared(y_init.detach().clone()))
|
||||||
|
|
||||||
|
return z_init_cllt, y_init_cllt
|
||||||
|
|
||||||
|
|
||||||
|
def optimize_clip_score(self, z_init_cllt, y_init_cllt, text, latent_noise=False, augment=True, opt_iters=500, optimize_y=False):
|
||||||
|
|
||||||
|
text_tok = clip.tokenize([text]).to(self.device)
|
||||||
|
clip_c = self.clip_model.logit_scale.exp()
|
||||||
|
|
||||||
|
z_init_ans = torch.stack(z_init_cllt)
|
||||||
|
y_init_ans = torch.stack(y_init_cllt)
|
||||||
|
z_init_ans = z_init_ans.view(-1, z_init_ans.shape[-1])
|
||||||
|
y_init_ans = y_init_ans.view(-1, y_init_ans.shape[-1])
|
||||||
|
|
||||||
|
w_z = torch.randn((z_init_ans.shape[0], z_init_ans.shape[1])).to(self.device)
|
||||||
|
w_y = torch.randn((y_init_ans.shape[0], y_init_ans.shape[1])).to(self.device)
|
||||||
|
w_z.requires_grad = True
|
||||||
|
w_y.requires_grad = True
|
||||||
|
|
||||||
|
opt_y = torch.zeros(y_init_ans.shape).to(self.device)
|
||||||
|
opt_y.data = y_init_ans.data.detach().clone()
|
||||||
|
opt_z = torch.zeros(z_init_ans.shape).to(self.device)
|
||||||
|
opt_z.data = z_init_ans.data.detach().clone()
|
||||||
|
opt_z.requires_grad = True
|
||||||
|
|
||||||
|
if not optimize_y:
|
||||||
|
optimizer = torch.optim.Adam([w_z, w_y, opt_z], lr=5e-3, weight_decay=0.0)
|
||||||
|
else:
|
||||||
|
opt_y.requires_grad = True
|
||||||
|
optimizer = torch.optim.Adam([w_z, w_y,opt_y,opt_z], lr=5e-3, weight_decay=0.0)
|
||||||
|
|
||||||
|
for i in tqdm(range(opt_iters)):
|
||||||
|
#print(w_z.shape, w_y.shape)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
if not latent_noise:
|
||||||
|
s_z = torch.softmax(w_z, dim=0)
|
||||||
|
s_y = torch.softmax(w_y, dim=0)
|
||||||
|
#print(s_z)
|
||||||
|
|
||||||
|
cur_z = s_z * opt_z
|
||||||
|
cur_y = s_y * opt_y
|
||||||
|
cur_z = cur_z.sum(dim=0, keepdim=True)
|
||||||
|
cur_y = cur_y.sum(dim=0, keepdim=True)
|
||||||
|
|
||||||
|
image_tensors = self.G(cur_z, cur_y)
|
||||||
|
else:
|
||||||
|
s_z = torch.softmax(w_z, dim=0)
|
||||||
|
s_y = torch.softmax(w_y, dim=0)
|
||||||
|
|
||||||
|
cur_z = s_z * opt_z
|
||||||
|
cur_y = s_y * opt_y
|
||||||
|
cur_z = cur_z.sum(dim=0, keepdim=True)
|
||||||
|
cur_y = cur_y.sum(dim=0, keepdim=True)
|
||||||
|
cur_z_aug = cur_z + torch.randn(cur_z.shape).to(cur_z.device) * LATENT_NOISE
|
||||||
|
cur_y_aug = cur_y + torch.randn(cur_y.shape).to(cur_y.device) * LATENT_NOISE
|
||||||
|
|
||||||
|
image_tensors = self.G(cur_z_aug, cur_y_aug)
|
||||||
|
|
||||||
|
loss = 0.0
|
||||||
|
for j in range(image_tensors.shape[0]):
|
||||||
|
if augment:
|
||||||
|
loss = loss + AugmentLoss(image_tensors[j:(j+1)], self.clip_model, text_tok, replicate=50, interp_mode=self.interp_mode)
|
||||||
|
else:
|
||||||
|
loss = loss + NaiveSemanticLoss(image_tensors[j:(j+1)], self.clip_model, text_tok)
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
opt_z.data = torch.clamp(opt_z.data.detach().clone(), min=-Z_THRES, max=Z_THRES)
|
||||||
|
|
||||||
|
z_init_ans = cur_z.detach().clone()
|
||||||
|
y_init_ans = cur_y.detach().clone()
|
||||||
|
|
||||||
|
# save_image(self.G(z_init_ans, y_init_ans), '/home/zhaojh/workspace/computer_vision/opt_%s.png'%text, 1)
|
||||||
|
return self.G(z_init_ans, y_init_ans), z_init_ans, y_init_ans
|
||||||
|
|
||||||
|
def measureAugCLIP(self, z, y, text, augment=False, num_samples=20):
|
||||||
|
text_tok = clip.tokenize([text]).to(self.device)
|
||||||
|
avg_loss = 0.0
|
||||||
|
for itr in range(num_samples):
|
||||||
|
image_tensors = self.G(z, y)
|
||||||
|
|
||||||
|
for j in range(image_tensors.shape[0]):
|
||||||
|
if augment:
|
||||||
|
loss = AugmentLoss(image_tensors[j:(j+1)], self.clip_model, text_tok, replicate=50, interp_mode=self.interp_mode, policy=TEST_POLICY)
|
||||||
|
else:
|
||||||
|
loss = NaiveSemanticLoss(image_tensors[j:(j+1)], self.clip_model, text_tok)
|
||||||
|
avg_loss += loss.item()
|
||||||
|
|
||||||
|
avg_loss /= num_samples
|
||||||
|
return avg_loss * (-1.)
|
||||||
|
|
|
@ -0,0 +1,30 @@
|
||||||
|
import numpy as np
|
||||||
|
from logzero import logger
|
||||||
|
import torch
|
||||||
|
from torchvision.utils import make_grid
|
||||||
|
from BigGAN_utils import utils
|
||||||
|
from fusedream_utils import FuseDreamBaseGenerator, get_G
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
INIT_ITERS = 1000
|
||||||
|
OPT_ITERS = 1000
|
||||||
|
NUM_BASIS = 5
|
||||||
|
MODEL = "biggan-512"
|
||||||
|
SEED = 1884
|
||||||
|
|
||||||
|
def text2image(sentence:str):
|
||||||
|
utils.seed_rng(SEED)
|
||||||
|
logger.info(f'Generating: {sentence}')
|
||||||
|
G, config = get_G(512)
|
||||||
|
generator = FuseDreamBaseGenerator(G, config, 10)
|
||||||
|
z_cllt, y_cllt = generator.generate_basis(sentence, init_iters=INIT_ITERS, num_basis=NUM_BASIS)
|
||||||
|
|
||||||
|
z_cllt_save = torch.cat(z_cllt).cpu().numpy()
|
||||||
|
y_cllt_save = torch.cat(y_cllt).cpu().numpy()
|
||||||
|
img, z, y = generator.optimize_clip_score(z_cllt, y_cllt, sentence, latent_noise=False, augment=True, opt_iters=OPT_ITERS, optimize_y=True)
|
||||||
|
## Set latent_noise = True yields slightly higher AugCLIP score, but slightly lower image quality. We set it to False for dogs.
|
||||||
|
score = generator.measureAugCLIP(z, y, sentence, augment=True, num_samples=20)
|
||||||
|
grid = make_grid(img, nrow=1, normalize=True)
|
||||||
|
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
||||||
|
im = Image.fromarray(ndarr)
|
||||||
|
return im
|
Loading…
Reference in New Issue