# Differentiable Augmentation for Data-Efficient GAN Training # Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han # https://arxiv.org/pdf/2006.10738 import torch import torch.nn.functional as F import numpy as np def DiffAugment(x, policy='', channels_first=True): if policy: if not channels_first: x = x.permute(0, 3, 1, 2) for p in policy.split(','): for f in AUGMENT_FNS[p]: x = f(x) if not channels_first: x = x.permute(0, 2, 3, 1) x = x.contiguous() return x def rand_brightness(x): x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5) return x def rand_saturation(x): x_mean = x.mean(dim=1, keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean return x def rand_contrast(x): x_mean = x.mean(dim=[1, 2, 3], keepdim=True) x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean return x def rand_translation(x, ratio=0.125): ### ratio: org: 0.125 shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device) translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(x.size(2), dtype=torch.long, device=x.device), torch.arange(x.size(3), dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1) grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1) x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0]) x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2).contiguous() return x def rand_resize(x, min_ratio=0.8, max_ratio=1.2): ### ratio: org: 0.125 resize_ratio = np.random.rand()*(max_ratio-min_ratio) + min_ratio resized_img = F.interpolate(x, size=int(resize_ratio*x.shape[3]), mode='bilinear') org_size = x.shape[3] #print('ORG:', x.shape) #print('RESIZED:', resized_img.shape) if int(resize_ratio*x.shape[3]) < x.shape[3]: left_pad = (x.shape[3]-int(resize_ratio*x.shape[3]))/2. left_pad = int(left_pad) right_pad = x.shape[3] - left_pad - resized_img.shape[3] #print('PAD:', left_pad, right_pad) x = F.pad(resized_img, (left_pad, right_pad, left_pad, right_pad), "constant", 0.) #print('SMALL:', x.shape) else: left = (int(resize_ratio*x.shape[3])-x.shape[3])/2. left = int(left) #print('LEFT:', left) x = resized_img[:, :, left:(left+x.shape[3]), left:(left+x.shape[3])] #print('LARGE:', x.shape) assert x.shape[2] == org_size assert x.shape[3] == org_size return x def rand_cutout(x, ratio=0.5): cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5) offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device) offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device) grid_batch, grid_x, grid_y = torch.meshgrid( torch.arange(x.size(0), dtype=torch.long, device=x.device), torch.arange(cutout_size[0], dtype=torch.long, device=x.device), torch.arange(cutout_size[1], dtype=torch.long, device=x.device), ) grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1) grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1) mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device) mask[grid_batch, grid_x, grid_y] = 0 x = x * mask.unsqueeze(1) return x AUGMENT_FNS = { 'color': [rand_brightness, rand_saturation, rand_contrast], 'translation': [rand_translation], 'resize': [rand_resize], 'cutout': [rand_cutout], }