""" Convert dataset to HDF5 This script preprocesses a dataset and saves it (images and labels) to an HDF5 file for improved I/O. """ import os import sys from argparse import ArgumentParser from tqdm import tqdm, trange import h5py as h5 import numpy as np import torch import torchvision.datasets as dset import torchvision.transforms as transforms from torchvision.utils import save_image import torchvision.transforms as transforms from torch.utils.data import DataLoader import utils def prepare_parser(): usage = 'Parser for ImageNet HDF5 scripts.' parser = ArgumentParser(description=usage) parser.add_argument( '--dataset', type=str, default='I128', help='Which Dataset to train on, out of I128, I256, C10, C100;' 'Append "_hdf5" to use the hdf5 version for ISLVRC (default: %(default)s)') parser.add_argument( '--data_root', type=str, default='data', help='Default location where data is stored (default: %(default)s)') parser.add_argument( '--batch_size', type=int, default=256, help='Default overall batchsize (default: %(default)s)') parser.add_argument( '--num_workers', type=int, default=16, help='Number of dataloader workers (default: %(default)s)') parser.add_argument( '--chunk_size', type=int, default=500, help='Default overall batchsize (default: %(default)s)') parser.add_argument( '--compression', action='store_true', default=False, help='Use LZF compression? (default: %(default)s)') return parser def run(config): if 'hdf5' in config['dataset']: raise ValueError('Reading from an HDF5 file which you will probably be ' 'about to overwrite! Override this error only if you know ' 'what you''re doing!') # Get image size config['image_size'] = utils.imsize_dict[config['dataset']] # Update compression entry config['compression'] = 'lzf' if config['compression'] else None #No compression; can also use 'lzf' # Get dataset kwargs = {'num_workers': config['num_workers'], 'pin_memory': False, 'drop_last': False} train_loader = utils.get_data_loaders(dataset=config['dataset'], batch_size=config['batch_size'], shuffle=False, data_root=config['data_root'], use_multiepoch_sampler=False, **kwargs)[0] # HDF5 supports chunking and compression. You may want to experiment # with different chunk sizes to see how it runs on your machines. # Chunk Size/compression Read speed @ 256x256 Read speed @ 128x128 Filesize @ 128x128 Time to write @128x128 # 1 / None 20/s # 500 / None ramps up to 77/s 102/s 61GB 23min # 500 / LZF 8/s 56GB 23min # 1000 / None 78/s # 5000 / None 81/s # auto:(125,1,16,32) / None 11/s 61GB print('Starting to load %s into an HDF5 file with chunk size %i and compression %s...' % (config['dataset'], config['chunk_size'], config['compression'])) # Loop over train loader for i,(x,y) in enumerate(tqdm(train_loader)): # Stick X into the range [0, 255] since it's coming from the train loader x = (255 * ((x + 1) / 2.0)).byte().numpy() # Numpyify y y = y.numpy() # If we're on the first batch, prepare the hdf5 if i==0: with h5.File(config['data_root'] + '/ILSVRC%i.hdf5' % config['image_size'], 'w') as f: print('Producing dataset of len %d' % len(train_loader.dataset)) imgs_dset = f.create_dataset('imgs', x.shape,dtype='uint8', maxshape=(len(train_loader.dataset), 3, config['image_size'], config['image_size']), chunks=(config['chunk_size'], 3, config['image_size'], config['image_size']), compression=config['compression']) print('Image chunks chosen as ' + str(imgs_dset.chunks)) imgs_dset[...] = x labels_dset = f.create_dataset('labels', y.shape, dtype='int64', maxshape=(len(train_loader.dataset),), chunks=(config['chunk_size'],), compression=config['compression']) print('Label chunks chosen as ' + str(labels_dset.chunks)) labels_dset[...] = y # Else append to the hdf5 else: with h5.File(config['data_root'] + '/ILSVRC%i.hdf5' % config['image_size'], 'a') as f: f['imgs'].resize(f['imgs'].shape[0] + x.shape[0], axis=0) f['imgs'][-x.shape[0]:] = x f['labels'].resize(f['labels'].shape[0] + y.shape[0], axis=0) f['labels'][-y.shape[0]:] = y def main(): # parse command line and run parser = prepare_parser() config = vars(parser.parse_args()) print(config) run(config) if __name__ == '__main__': main()