""" BigGAN: The Authorized Unofficial PyTorch release Code by A. Brock and A. Andonian This code is an unofficial reimplementation of "Large-Scale GAN Training for High Fidelity Natural Image Synthesis," by A. Brock, J. Donahue, and K. Simonyan (arXiv 1809.11096). Let's go. """ import os import functools import math import numpy as np from tqdm import tqdm, trange import torch import torch.nn as nn from torch.nn import init import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter as P import torchvision # Import my stuff import inception_utils import utils import losses import train_fns from sync_batchnorm import patch_replication_callback # The main training file. Config is a dictionary specifying the configuration # of this training run. def run(config): # Update the config dict as necessary # This is for convenience, to add settings derived from the user-specified # configuration into the config-dict (e.g. inferring the number of classes # and size of the images from the dataset, passing in a pytorch object # for the activation specified as a string) config['resolution'] = utils.imsize_dict[config['dataset']] config['n_classes'] = utils.nclass_dict[config['dataset']] config['G_activation'] = utils.activation_dict[config['G_nl']] config['D_activation'] = utils.activation_dict[config['D_nl']] # By default, skip init if resuming training. if config['resume']: print('Skipping initialization for training resumption...') config['skip_init'] = True config = utils.update_config_roots(config) device = 'cuda' # Seed RNG utils.seed_rng(config['seed']) # Prepare root folders if necessary utils.prepare_root(config) # Setup cudnn.benchmark for free speed torch.backends.cudnn.benchmark = True # Import the model--this line allows us to dynamically select different files. model = __import__(config['model']) experiment_name = (config['experiment_name'] if config['experiment_name'] else utils.name_from_config(config)) print('Experiment name is %s' % experiment_name) # Next, build the model G = model.Generator(**config).to(device) D = model.Discriminator(**config).to(device) # If using EMA, prepare it if config['ema']: print('Preparing EMA for G with decay of {}'.format(config['ema_decay'])) G_ema = model.Generator(**{**config, 'skip_init':True, 'no_optim': True}).to(device) ema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start']) else: G_ema, ema = None, None # FP16? if config['G_fp16']: print('Casting G to float16...') G = G.half() if config['ema']: G_ema = G_ema.half() if config['D_fp16']: print('Casting D to fp16...') D = D.half() # Consider automatically reducing SN_eps? GD = model.G_D(G, D) print(G) print(D) print('Number of params in G: {} D: {}'.format( *[sum([p.data.nelement() for p in net.parameters()]) for net in [G,D]])) # Prepare state dict, which holds things like epoch # and itr # state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0, 'best_IS': 0, 'best_FID': 999999, 'config': config} # If loading from a pre-trained model, load weights if config['resume']: print('Loading weights...') utils.load_weights(G, D, state_dict, config['weights_root'], experiment_name, config['load_weights'] if config['load_weights'] else None, G_ema if config['ema'] else None) # If parallel, parallelize the GD module if config['parallel']: GD = nn.DataParallel(GD) if config['cross_replica']: patch_replication_callback(GD) # Prepare loggers for stats; metrics holds test metrics, # lmetrics holds any desired training metrics. test_metrics_fname = '%s/%s_log.jsonl' % (config['logs_root'], experiment_name) train_metrics_fname = '%s/%s' % (config['logs_root'], experiment_name) print('Inception Metrics will be saved to {}'.format(test_metrics_fname)) test_log = utils.MetricsLogger(test_metrics_fname, reinitialize=(not config['resume'])) print('Training Metrics will be saved to {}'.format(train_metrics_fname)) train_log = utils.MyLogger(train_metrics_fname, reinitialize=(not config['resume']), logstyle=config['logstyle']) # Write metadata utils.write_metadata(config['logs_root'], experiment_name, config, state_dict) # Prepare data; the Discriminator's batch size is all that needs to be passed # to the dataloader, as G doesn't require dataloading. # Note that at every loader iteration we pass in enough data to complete # a full D iteration (regardless of number of D steps and accumulations) D_batch_size = (config['batch_size'] * config['num_D_steps'] * config['num_D_accumulations']) loaders = utils.get_data_loaders(**{**config, 'batch_size': D_batch_size, 'start_itr': state_dict['itr']}) # Prepare inception metrics: FID and IS get_inception_metrics = inception_utils.prepare_inception_metrics(config['dataset'], config['parallel'], config['no_fid']) # Prepare noise and randomly sampled label arrays # Allow for different batch sizes in G G_batch_size = max(config['G_batch_size'], config['batch_size']) z_, y_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) # Prepare a fixed z & y to see individual sample evolution throghout training fixed_z, fixed_y = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) fixed_z.sample_() fixed_y.sample_() # Loaders are loaded, prepare the training function if config['which_train_fn'] == 'GAN': train = train_fns.GAN_training_function(G, D, GD, z_, y_, ema, state_dict, config) # Else, assume debugging and use the dummy train fn else: train = train_fns.dummy_training_function() # Prepare Sample function for use with inception metrics sample = functools.partial(utils.sample, G=(G_ema if config['ema'] and config['use_ema'] else G), z_=z_, y_=y_, config=config) print('Beginning training at epoch %d...' % state_dict['epoch']) # Train for specified number of epochs, although we mostly track G iterations. for epoch in range(state_dict['epoch'], config['num_epochs']): # Which progressbar to use? TQDM or my own? if config['pbar'] == 'mine': pbar = utils.progress(loaders[0],displaytype='s1k' if config['use_multiepoch_sampler'] else 'eta') else: pbar = tqdm(loaders[0]) for i, (x, y) in enumerate(pbar): # Increment the iteration counter state_dict['itr'] += 1 # Make sure G and D are in training mode, just in case they got set to eval # For D, which typically doesn't have BN, this shouldn't matter much. G.train() D.train() if config['ema']: G_ema.train() if config['D_fp16']: x, y = x.to(device).half(), y.to(device) else: x, y = x.to(device), y.to(device) metrics = train(x, y) train_log.log(itr=int(state_dict['itr']), **metrics) # Every sv_log_interval, log singular values if (config['sv_log_interval'] > 0) and (not (state_dict['itr'] % config['sv_log_interval'])): train_log.log(itr=int(state_dict['itr']), **{**utils.get_SVs(G, 'G'), **utils.get_SVs(D, 'D')}) # If using my progbar, print metrics. if config['pbar'] == 'mine': print(', '.join(['itr: %d' % state_dict['itr']] + ['%s : %+4.3f' % (key, metrics[key]) for key in metrics]), end=' ') # Save weights and copies as configured at specified interval if not (state_dict['itr'] % config['save_every']): if config['G_eval_mode']: print('Switchin G to eval mode...') G.eval() if config['ema']: G_ema.eval() train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name) # Test every specified interval if not (state_dict['itr'] % config['test_every']): if config['G_eval_mode']: print('Switchin G to eval mode...') G.eval() train_fns.test(G, D, G_ema, z_, y_, state_dict, config, sample, get_inception_metrics, experiment_name, test_log) # Increment epoch counter at end of epoch state_dict['epoch'] += 1 def main(): # parse command line and run parser = utils.prepare_parser() config = vars(parser.parse_args()) print(config) run(config) if __name__ == '__main__': main()