ai_platform_cv/run.py

143 lines
4.7 KiB
Python

# -*-coding:utf-8-*-
import os
import sys
from logzero import logger
current_path = os.path.dirname(__file__)
logger.info(current_path)
sys.path.append(f"{current_path}/text2image/")
sys.path.append(f"{current_path}/text2image/BigGAN_utils/")
import json
import base64
from flask import Flask, request, make_response
import cv2
# from io import BytesIO
# import torch
from mmpose.apis import init_pose_model
# from text2image.run_text2img import text2image
# from detection.detection import detector
# from segmentation.segment_pred import run_seg
# from ocr.ocr import run_tr
from backbone.backbone_infer import run_backbone_infer
DEVICE = 'cpu'
# model_5x = torch.hub.load(f'{current_path}/detection/yolov5/','yolov5x', source='local', pretrained=True)
# model_5s = torch.hub.load(f'{current_path}/detection/yolov5/','yolov5s', source='local', pretrained=True)
# model_seg = torch.load(f'{current_path}/segmentation/models/best_model_pvgc.pth', map_location=DEVICE)
pose_config_file = f'{current_path}/backbone/associative_embedding_hrnet_w32_coco_512x512.py'
pose_ckpt_file = f'{current_path}/backbone/models/hrnet_w32_coco_512x512-bcb8c247_20200816.pth'
pose_model = init_pose_model(pose_config_file, pose_ckpt_file, device='cpu') # or device='cuda:0'
app=Flask(__name__)
# @app.route('/text2image/',methods=["POST"])
# def run_text2img():
# if request.method == "POST":
# text = request.form.get('text')
# logger.info(f"{text}")
# img = text2image(text)
# output_buffer = BytesIO()
# img.save(output_buffer, format='png')
# byte_data = output_buffer.getvalue()
# b64_code = base64.b64encode(byte_data).decode('utf-8')
# resp = make_response(b64_code)
# resp.status_code = 200
# return resp
# else:
# resp = make_response()
# resp.status_code=405
# return resp
# @app.route('/detection/', methods=["POST"])
# def run_detection():
# if request.method == "POST":
# img = request.files.get('image')
# model_type = request.form.get('model_type')
# try:
# img = cv2.imread(img)
# except:
# resp = make_response()
# resp.status_code = 406
# return resp
# if model_type.lower().strip() == 'yolov5x':
# rst, _ = detector(img, model_5x)
# else:
# rst, _ = detector(img, model_5s)
# logger.info(rst.shape)
# img_str = cv2.imencode('.png', rst)[1].tobytes()
# b64_code = base64.b64encode(img_str).decode('utf-8')
# resp = make_response(b64_code)
# resp.status_code = 200
# return b64_code
# else:
# resp = make_response()
# resp.status_code=405
# return resp
# @app.route('/ocr/', methods=["POST"])
# def run_ocr():
# resp = make_response()
# if request.method == "POST":
# img = request.files.get('image')
# try:
# img = cv2.imread(img)
# except:
# resp.status_code = 406
# return resp
# text = run_tr(img)
# resp.status_code = 200
# resp.data = json.dumps({'result':text})
# return resp
# else:
# resp.status_code=405
# return resp
# @app.route('/segmentation/', methods=["POST"])
# def run_segmentation():
# if request.method == "POST":
# img_upload = request.files.get('image')
# try:
# img = cv2.imread(img_upload)
# except:
# resp = make_response()
# resp.status_code = 406
# return resp
# result = run_seg(img, model_seg)
# img_str = cv2.imencode('.png', result)[1].tobytes()
# b64_code = base64.b64encode(img_str).decode('utf-8')
# resp = make_response(b64_code)
# resp.status_code = 200
# return resp
# else:
# resp = make_response()
# resp.status_code=405
# return resp
@app.route('/backbone/', methods=["POST"])
def run_backbone():
if request.method == "POST":
img_upload = request.files.get('image')
try:
img = cv2.imread(img_upload)
except:
resp = make_response()
resp.status_code = 406
return resp
pose, result = run_backbone_infer(img, pose_model)
img_str = cv2.imencode('.png', result)[1].tobytes()
b64_code = base64.b64encode(img_str).decode('utf-8')
resp = make_response(b64_code)
resp.status_code = 200
return resp
else:
resp = make_response()
resp.status_code=405
return resp
if __name__ == '__main__':
img = cv2.imread('./1.jpg')
pose, rst = run_backbone_infer(img, pose_model)
cv2.imwrite('./1_bb.jpg', rst)