ai_platform_cv/text2image/BigGAN_utils/TFHub/converter.py

397 lines
17 KiB
Python

"""Utilities for converting TFHub BigGAN generator weights to PyTorch.
Recommended usage:
To convert all BigGAN variants and generate test samples, use:
```bash
CUDA_VISIBLE_DEVICES=0 python converter.py --generate_samples
```
See `parse_args` for additional options.
"""
import argparse
import os
import sys
import h5py
import torch
import torch.nn as nn
from torchvision.utils import save_image
import tensorflow as tf
import tensorflow_hub as hub
import parse
# import reference biggan from this folder
import biggan_v1 as biggan_for_conversion
# Import model from main folder
sys.path.append('..')
import BigGAN
DEVICE = 'cuda'
HDF5_TMPL = 'biggan-{}.h5'
PTH_TMPL = 'biggan-{}.pth'
MODULE_PATH_TMPL = 'https://tfhub.dev/deepmind/biggan-{}/2'
Z_DIMS = {
128: 120,
256: 140,
512: 128}
RESOLUTIONS = list(Z_DIMS)
def dump_tfhub_to_hdf5(module_path, hdf5_path, redownload=False):
"""Loads TFHub weights and saves them to intermediate HDF5 file.
Args:
module_path ([Path-like]): Path to TFHub module.
hdf5_path ([Path-like]): Path to output HDF5 file.
Returns:
[h5py.File]: Loaded hdf5 file containing module weights.
"""
if os.path.exists(hdf5_path) and (not redownload):
print('Loading BigGAN hdf5 file from:', hdf5_path)
return h5py.File(hdf5_path, 'r')
print('Loading BigGAN module from:', module_path)
tf.reset_default_graph()
hub.Module(module_path)
print('Loaded BigGAN module from:', module_path)
initializer = tf.global_variables_initializer()
sess = tf.Session()
sess.run(initializer)
print('Saving BigGAN weights to :', hdf5_path)
h5f = h5py.File(hdf5_path, 'w')
for var in tf.global_variables():
val = sess.run(var)
h5f.create_dataset(var.name, data=val)
print(f'Saving {var.name} with shape {val.shape}')
h5f.close()
return h5py.File(hdf5_path, 'r')
class TFHub2Pytorch(object):
TF_ROOT = 'module'
NUM_GBLOCK = {
128: 5,
256: 6,
512: 7
}
w = 'w'
b = 'b'
u = 'u0'
v = 'u1'
gamma = 'gamma'
beta = 'beta'
def __init__(self, state_dict, tf_weights, resolution=256, load_ema=True, verbose=False):
self.state_dict = state_dict
self.tf_weights = tf_weights
self.resolution = resolution
self.verbose = verbose
if load_ema:
for name in ['w', 'b', 'gamma', 'beta']:
setattr(self, name, getattr(self, name) + '/ema_b999900')
def load(self):
self.load_generator()
return self.state_dict
def load_generator(self):
GENERATOR_ROOT = os.path.join(self.TF_ROOT, 'Generator')
for i in range(self.NUM_GBLOCK[self.resolution]):
name_tf = os.path.join(GENERATOR_ROOT, 'GBlock')
name_tf += f'_{i}' if i != 0 else ''
self.load_GBlock(f'GBlock.{i}.', name_tf)
self.load_attention('attention.', os.path.join(GENERATOR_ROOT, 'attention'))
self.load_linear('linear', os.path.join(self.TF_ROOT, 'linear'), bias=False)
self.load_snlinear('G_linear', os.path.join(GENERATOR_ROOT, 'G_Z', 'G_linear'))
self.load_colorize('colorize', os.path.join(GENERATOR_ROOT, 'conv_2d'))
self.load_ScaledCrossReplicaBNs('ScaledCrossReplicaBN',
os.path.join(GENERATOR_ROOT, 'ScaledCrossReplicaBN'))
def load_linear(self, name_pth, name_tf, bias=True):
self.state_dict[name_pth + '.weight'] = self.load_tf_tensor(name_tf, self.w).permute(1, 0)
if bias:
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.b)
def load_snlinear(self, name_pth, name_tf, bias=True):
self.state_dict[name_pth + '.module.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
self.state_dict[name_pth + '.module.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
self.state_dict[name_pth + '.module.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(1, 0)
if bias:
self.state_dict[name_pth + '.module.bias'] = self.load_tf_tensor(name_tf, self.b)
def load_colorize(self, name_pth, name_tf):
self.load_snconv(name_pth, name_tf)
def load_GBlock(self, name_pth, name_tf):
self.load_convs(name_pth, name_tf)
self.load_HyperBNs(name_pth, name_tf)
def load_convs(self, name_pth, name_tf):
self.load_snconv(name_pth + 'conv0', os.path.join(name_tf, 'conv0'))
self.load_snconv(name_pth + 'conv1', os.path.join(name_tf, 'conv1'))
self.load_snconv(name_pth + 'conv_sc', os.path.join(name_tf, 'conv_sc'))
def load_snconv(self, name_pth, name_tf, bias=True):
if self.verbose:
print(f'loading: {name_pth} from {name_tf}')
self.state_dict[name_pth + '.module.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
self.state_dict[name_pth + '.module.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
self.state_dict[name_pth + '.module.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(3, 2, 0, 1)
if bias:
self.state_dict[name_pth + '.module.bias'] = self.load_tf_tensor(name_tf, self.b).squeeze()
def load_conv(self, name_pth, name_tf, bias=True):
self.state_dict[name_pth + '.weight_u'] = self.load_tf_tensor(name_tf, self.u).squeeze()
self.state_dict[name_pth + '.weight_v'] = self.load_tf_tensor(name_tf, self.v).squeeze()
self.state_dict[name_pth + '.weight_bar'] = self.load_tf_tensor(name_tf, self.w).permute(3, 2, 0, 1)
if bias:
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.b)
def load_HyperBNs(self, name_pth, name_tf):
self.load_HyperBN(name_pth + 'HyperBN', os.path.join(name_tf, 'HyperBN'))
self.load_HyperBN(name_pth + 'HyperBN_1', os.path.join(name_tf, 'HyperBN_1'))
def load_ScaledCrossReplicaBNs(self, name_pth, name_tf):
self.state_dict[name_pth + '.bias'] = self.load_tf_tensor(name_tf, self.beta).squeeze()
self.state_dict[name_pth + '.weight'] = self.load_tf_tensor(name_tf, self.gamma).squeeze()
self.state_dict[name_pth + '.running_mean'] = self.load_tf_tensor(name_tf + 'bn', 'accumulated_mean')
self.state_dict[name_pth + '.running_var'] = self.load_tf_tensor(name_tf + 'bn', 'accumulated_var')
self.state_dict[name_pth + '.num_batches_tracked'] = torch.tensor(
self.tf_weights[os.path.join(name_tf + 'bn', 'accumulation_counter:0')][()], dtype=torch.float32)
def load_HyperBN(self, name_pth, name_tf):
if self.verbose:
print(f'loading: {name_pth} from {name_tf}')
beta = name_pth + '.beta_embed.module'
gamma = name_pth + '.gamma_embed.module'
self.state_dict[beta + '.weight_u'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.u).squeeze()
self.state_dict[gamma + '.weight_u'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.u).squeeze()
self.state_dict[beta + '.weight_v'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.v).squeeze()
self.state_dict[gamma + '.weight_v'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.v).squeeze()
self.state_dict[beta + '.weight_bar'] = self.load_tf_tensor(os.path.join(name_tf, 'beta'), self.w).permute(1, 0)
self.state_dict[gamma +
'.weight_bar'] = self.load_tf_tensor(os.path.join(name_tf, 'gamma'), self.w).permute(1, 0)
cr_bn_name = name_tf.replace('HyperBN', 'CrossReplicaBN')
self.state_dict[name_pth + '.bn.running_mean'] = self.load_tf_tensor(cr_bn_name, 'accumulated_mean')
self.state_dict[name_pth + '.bn.running_var'] = self.load_tf_tensor(cr_bn_name, 'accumulated_var')
self.state_dict[name_pth + '.bn.num_batches_tracked'] = torch.tensor(
self.tf_weights[os.path.join(cr_bn_name, 'accumulation_counter:0')][()], dtype=torch.float32)
def load_attention(self, name_pth, name_tf):
self.load_snconv(name_pth + 'theta', os.path.join(name_tf, 'theta'), bias=False)
self.load_snconv(name_pth + 'phi', os.path.join(name_tf, 'phi'), bias=False)
self.load_snconv(name_pth + 'g', os.path.join(name_tf, 'g'), bias=False)
self.load_snconv(name_pth + 'o_conv', os.path.join(name_tf, 'o_conv'), bias=False)
self.state_dict[name_pth + 'gamma'] = self.load_tf_tensor(name_tf, self.gamma)
def load_tf_tensor(self, prefix, var, device='0'):
name = os.path.join(prefix, var) + f':{device}'
return torch.from_numpy(self.tf_weights[name][:])
# Convert from v1: This function maps
def convert_from_v1(hub_dict, resolution=128):
weightname_dict = {'weight_u': 'u0', 'weight_bar': 'weight', 'bias': 'bias'}
convnum_dict = {'conv0': 'conv1', 'conv1': 'conv2', 'conv_sc': 'conv_sc'}
attention_blocknum = {128: 3, 256: 4, 512: 3}[resolution]
hub2me = {'linear.weight': 'shared.weight', # This is actually the shared weight
# Linear stuff
'G_linear.module.weight_bar': 'linear.weight',
'G_linear.module.bias': 'linear.bias',
'G_linear.module.weight_u': 'linear.u0',
# output layer stuff
'ScaledCrossReplicaBN.weight': 'output_layer.0.gain',
'ScaledCrossReplicaBN.bias': 'output_layer.0.bias',
'ScaledCrossReplicaBN.running_mean': 'output_layer.0.stored_mean',
'ScaledCrossReplicaBN.running_var': 'output_layer.0.stored_var',
'colorize.module.weight_bar': 'output_layer.2.weight',
'colorize.module.bias': 'output_layer.2.bias',
'colorize.module.weight_u': 'output_layer.2.u0',
# Attention stuff
'attention.gamma': 'blocks.%d.1.gamma' % attention_blocknum,
'attention.theta.module.weight_u': 'blocks.%d.1.theta.u0' % attention_blocknum,
'attention.theta.module.weight_bar': 'blocks.%d.1.theta.weight' % attention_blocknum,
'attention.phi.module.weight_u': 'blocks.%d.1.phi.u0' % attention_blocknum,
'attention.phi.module.weight_bar': 'blocks.%d.1.phi.weight' % attention_blocknum,
'attention.g.module.weight_u': 'blocks.%d.1.g.u0' % attention_blocknum,
'attention.g.module.weight_bar': 'blocks.%d.1.g.weight' % attention_blocknum,
'attention.o_conv.module.weight_u': 'blocks.%d.1.o.u0' % attention_blocknum,
'attention.o_conv.module.weight_bar':'blocks.%d.1.o.weight' % attention_blocknum,
}
# Loop over the hub dict and build the hub2me map
for name in hub_dict.keys():
if 'GBlock' in name:
if 'HyperBN' not in name: # it's a conv
out = parse.parse('GBlock.{:d}.{}.module.{}',name)
blocknum, convnum, weightname = out
if weightname not in weightname_dict:
continue # else hyperBN in
out_name = 'blocks.%d.0.%s.%s' % (blocknum, convnum_dict[convnum], weightname_dict[weightname]) # Increment conv number by 1
else: # hyperbn not conv
BNnum = 2 if 'HyperBN_1' in name else 1
if 'embed' in name:
out = parse.parse('GBlock.{:d}.{}.module.{}',name)
blocknum, gamma_or_beta, weightname = out
if weightname not in weightname_dict: # Ignore weight_v
continue
out_name = 'blocks.%d.0.bn%d.%s.%s' % (blocknum, BNnum, 'gain' if 'gamma' in gamma_or_beta else 'bias', weightname_dict[weightname])
else:
out = parse.parse('GBlock.{:d}.{}.bn.{}',name)
blocknum, dummy, mean_or_var = out
if 'num_batches_tracked' in mean_or_var:
continue
out_name = 'blocks.%d.0.bn%d.%s' % (blocknum, BNnum, 'stored_mean' if 'mean' in mean_or_var else 'stored_var')
hub2me[name] = out_name
# Invert the hub2me map
me2hub = {hub2me[item]: item for item in hub2me}
new_dict = {}
dimz_dict = {128: 20, 256: 20, 512:16}
for item in me2hub:
# Swap input dim ordering on batchnorm bois to account for my arbitrary change of ordering when concatenating Ys and Zs
if ('bn' in item and 'weight' in item) and ('gain' in item or 'bias' in item) and ('output_layer' not in item):
new_dict[item] = torch.cat([hub_dict[me2hub[item]][:, -128:], hub_dict[me2hub[item]][:, :dimz_dict[resolution]]], 1)
# Reshape the first linear weight, bias, and u0
elif item == 'linear.weight':
new_dict[item] = hub_dict[me2hub[item]].contiguous().view(4, 4, 96 * 16, -1).permute(2,0,1,3).contiguous().view(-1,dimz_dict[resolution])
elif item == 'linear.bias':
new_dict[item] = hub_dict[me2hub[item]].view(4, 4, 96 * 16).permute(2,0,1).contiguous().view(-1)
elif item == 'linear.u0':
new_dict[item] = hub_dict[me2hub[item]].view(4, 4, 96 * 16).permute(2,0,1).contiguous().view(1, -1)
elif me2hub[item] == 'linear.weight': # THIS IS THE SHARED WEIGHT NOT THE FIRST LINEAR LAYER
# Transpose shared weight so that it's an embedding
new_dict[item] = hub_dict[me2hub[item]].t()
elif 'weight_u' in me2hub[item]: # Unsqueeze u0s
new_dict[item] = hub_dict[me2hub[item]].unsqueeze(0)
else:
new_dict[item] = hub_dict[me2hub[item]]
return new_dict
def get_config(resolution):
attn_dict = {128: '64', 256: '128', 512: '64'}
dim_z_dict = {128: 120, 256: 140, 512: 128}
config = {'G_param': 'SN', 'D_param': 'SN',
'G_ch': 96, 'D_ch': 96,
'D_wide': True, 'G_shared': True,
'shared_dim': 128, 'dim_z': dim_z_dict[resolution],
'hier': True, 'cross_replica': False,
'mybn': False, 'G_activation': nn.ReLU(inplace=True),
'G_attn': attn_dict[resolution],
'norm_style': 'bn',
'G_init': 'ortho', 'skip_init': True, 'no_optim': True,
'G_fp16': False, 'G_mixed_precision': False,
'accumulate_stats': False, 'num_standing_accumulations': 16,
'G_eval_mode': True,
'BN_eps': 1e-04, 'SN_eps': 1e-04,
'num_G_SVs': 1, 'num_G_SV_itrs': 1, 'resolution': resolution,
'n_classes': 1000}
return config
def convert_biggan(resolution, weight_dir, redownload=False, no_ema=False, verbose=False):
module_path = MODULE_PATH_TMPL.format(resolution)
hdf5_path = os.path.join(weight_dir, HDF5_TMPL.format(resolution))
pth_path = os.path.join(weight_dir, PTH_TMPL.format(resolution))
tf_weights = dump_tfhub_to_hdf5(module_path, hdf5_path, redownload=redownload)
G_temp = getattr(biggan_for_conversion, f'Generator{resolution}')()
state_dict_temp = G_temp.state_dict()
converter = TFHub2Pytorch(state_dict_temp, tf_weights, resolution=resolution,
load_ema=(not no_ema), verbose=verbose)
state_dict_v1 = converter.load()
state_dict = convert_from_v1(state_dict_v1, resolution)
# Get the config, build the model
config = get_config(resolution)
G = BigGAN.Generator(**config)
G.load_state_dict(state_dict, strict=False) # Ignore missing sv0 entries
torch.save(state_dict, pth_path)
# output_location ='pretrained_weights/TFHub-PyTorch-128.pth'
return G
def generate_sample(G, z_dim, batch_size, filename, parallel=False):
G.eval()
G.to(DEVICE)
with torch.no_grad():
z = torch.randn(batch_size, G.dim_z).to(DEVICE)
y = torch.randint(low=0, high=1000, size=(batch_size,),
device=DEVICE, dtype=torch.int64, requires_grad=False)
if parallel:
images = nn.parallel.data_parallel(G, (z, G.shared(y)))
else:
images = G(z, G.shared(y))
save_image(images, filename, scale_each=True, normalize=True)
def parse_args():
usage = 'Parser for conversion script.'
parser = argparse.ArgumentParser(description=usage)
parser.add_argument(
'--resolution', '-r', type=int, default=None, choices=[128, 256, 512],
help='Resolution of TFHub module to convert. Converts all resolutions if None.')
parser.add_argument(
'--redownload', action='store_true', default=False,
help='Redownload weights and overwrite current hdf5 file, if present.')
parser.add_argument(
'--weights_dir', type=str, default='pretrained_weights')
parser.add_argument(
'--samples_dir', type=str, default='pretrained_samples')
parser.add_argument(
'--no_ema', action='store_true', default=False,
help='Do not load ema weights.')
parser.add_argument(
'--verbose', action='store_true', default=False,
help='Additionally logging.')
parser.add_argument(
'--generate_samples', action='store_true', default=False,
help='Generate test sample with pretrained model.')
parser.add_argument(
'--batch_size', type=int, default=64,
help='Batch size used for test sample.')
parser.add_argument(
'--parallel', action='store_true', default=False,
help='Parallelize G?')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
os.makedirs(args.weights_dir, exist_ok=True)
os.makedirs(args.samples_dir, exist_ok=True)
if args.resolution is not None:
G = convert_biggan(args.resolution, args.weights_dir,
redownload=args.redownload,
no_ema=args.no_ema, verbose=args.verbose)
if args.generate_samples:
filename = os.path.join(args.samples_dir, f'biggan{args.resolution}_samples.jpg')
print('Generating samples...')
generate_sample(G, Z_DIMS[args.resolution], args.batch_size, filename, args.parallel)
else:
for res in RESOLUTIONS:
G = convert_biggan(res, args.weights_dir,
redownload=args.redownload,
no_ema=args.no_ema, verbose=args.verbose)
if args.generate_samples:
filename = os.path.join(args.samples_dir, f'biggan{res}_samples.jpg')
print('Generating samples...')
generate_sample(G, Z_DIMS[res], args.batch_size, filename, args.parallel)