103 lines
4.0 KiB
Python
103 lines
4.0 KiB
Python
# Differentiable Augmentation for Data-Efficient GAN Training
|
|
# Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han
|
|
# https://arxiv.org/pdf/2006.10738
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
|
|
|
|
def DiffAugment(x, policy='', channels_first=True):
|
|
if policy:
|
|
if not channels_first:
|
|
x = x.permute(0, 3, 1, 2)
|
|
for p in policy.split(','):
|
|
for f in AUGMENT_FNS[p]:
|
|
x = f(x)
|
|
if not channels_first:
|
|
x = x.permute(0, 2, 3, 1)
|
|
x = x.contiguous()
|
|
return x
|
|
|
|
|
|
def rand_brightness(x):
|
|
x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
|
|
return x
|
|
|
|
|
|
def rand_saturation(x):
|
|
x_mean = x.mean(dim=1, keepdim=True)
|
|
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
|
|
return x
|
|
|
|
|
|
def rand_contrast(x):
|
|
x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
|
|
x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
|
|
return x
|
|
|
|
|
|
def rand_translation(x, ratio=0.125): ### ratio: org: 0.125
|
|
shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
|
translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
|
|
translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
|
|
grid_batch, grid_x, grid_y = torch.meshgrid(
|
|
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
|
torch.arange(x.size(2), dtype=torch.long, device=x.device),
|
|
torch.arange(x.size(3), dtype=torch.long, device=x.device),
|
|
)
|
|
grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
|
|
grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
|
|
x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
|
|
x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2).contiguous()
|
|
return x
|
|
|
|
def rand_resize(x, min_ratio=0.8, max_ratio=1.2): ### ratio: org: 0.125
|
|
resize_ratio = np.random.rand()*(max_ratio-min_ratio) + min_ratio
|
|
resized_img = F.interpolate(x, size=int(resize_ratio*x.shape[3]), mode='bilinear')
|
|
org_size = x.shape[3]
|
|
#print('ORG:', x.shape)
|
|
#print('RESIZED:', resized_img.shape)
|
|
if int(resize_ratio*x.shape[3]) < x.shape[3]:
|
|
left_pad = (x.shape[3]-int(resize_ratio*x.shape[3]))/2.
|
|
left_pad = int(left_pad)
|
|
right_pad = x.shape[3] - left_pad - resized_img.shape[3]
|
|
#print('PAD:', left_pad, right_pad)
|
|
x = F.pad(resized_img, (left_pad, right_pad, left_pad, right_pad), "constant", 0.)
|
|
#print('SMALL:', x.shape)
|
|
else:
|
|
left = (int(resize_ratio*x.shape[3])-x.shape[3])/2.
|
|
left = int(left)
|
|
#print('LEFT:', left)
|
|
x = resized_img[:, :, left:(left+x.shape[3]), left:(left+x.shape[3])]
|
|
#print('LARGE:', x.shape)
|
|
assert x.shape[2] == org_size
|
|
assert x.shape[3] == org_size
|
|
|
|
return x
|
|
|
|
|
|
def rand_cutout(x, ratio=0.5):
|
|
cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
|
|
offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
|
|
offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
|
|
grid_batch, grid_x, grid_y = torch.meshgrid(
|
|
torch.arange(x.size(0), dtype=torch.long, device=x.device),
|
|
torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
|
|
torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
|
|
)
|
|
grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
|
|
grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
|
|
mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
|
|
mask[grid_batch, grid_x, grid_y] = 0
|
|
x = x * mask.unsqueeze(1)
|
|
return x
|
|
|
|
|
|
AUGMENT_FNS = {
|
|
'color': [rand_brightness, rand_saturation, rand_contrast],
|
|
'translation': [rand_translation],
|
|
'resize': [rand_resize],
|
|
'cutout': [rand_cutout],
|
|
}
|