ai_platform_nlu/nlp/reading.py

233 lines
9.2 KiB
Python
Raw Normal View History

2022-12-07 10:49:21 +08:00
#! -*- coding: utf-8 -*-
# 10个epoch后在valid上能达到约0.77的分数
# (Accuracy=0.7282149325820084 F1=0.8207266829447049 Final=0.7744708077633566)
import json, os, re
2022-12-08 15:16:57 +08:00
2022-12-07 10:49:21 +08:00
os.environ['TF_KERAS'] = '1'
import numpy as np
from bert4keras.backend import keras, K
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer, load_vocab
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open
from keras.layers import Lambda
from keras.models import Model
from tqdm import tqdm
import tensorflow as tf
2022-12-08 15:16:57 +08:00
2022-12-07 10:49:21 +08:00
config = tf.compat.v1.ConfigProto()
2022-12-08 15:16:57 +08:00
config.gpu_options.allow_growth = True # 按需分配显存
tf_session = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=config)
2022-12-07 10:49:21 +08:00
tf.compat.v1.keras.backend.set_session(tf_session)
max_p_len = 256
max_q_len = 64
max_a_len = 32
batch_size = 32
epochs = 10
2022-12-08 15:16:57 +08:00
2022-12-07 10:49:21 +08:00
# # bert配置
# config_path = '../models/nezha_gpt/config.json'
# checkpoint_path = '../models/nezha_gpt/gpt.ckpt'
# dict_path = '../models/tokenizer/vocab.txt'
# # 标注数据
# webqa_data = json.load(open('../data/qa/WebQA.json'))
# sogou_data = json.load(open('../data/qa/SogouQA.json'))
# # 保存一个随机序供划分valid用
# if not os.path.exists('../random_order.json'):
# random_order = list(range(len(sogou_data)))
# np.random.shuffle(random_order)
# json.dump(random_order, open('../random_order.json', 'w'), indent=4)
# else:
# random_order = json.load(open('../random_order.json'))
# # 划分valid
# train_data = [sogou_data[j] for i, j in enumerate(random_order) if i % 3 != 0]
# valid_data = [sogou_data[j] for i, j in enumerate(random_order) if i % 3 == 0]
# train_data.extend(train_data)
# train_data.extend(webqa_data) # 将SogouQA和WebQA按2:1的比例混合
# # 加载并精简词表,建立分词器
# token_dict, keep_tokens = load_vocab(
# dict_path=dict_path,
# simplified=True,
# startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'],
# )
# tokenizer = Tokenizer(token_dict, do_lower_case=True)
# class data_generator(DataGenerator):
# """数据生成器
# """
# def __iter__(self, random=False):
# """单条样本格式为
# 输入:[CLS][MASK][MASK][SEP]问题[SEP]篇章[SEP]
# 输出:答案
# """
# batch_token_ids, batch_segment_ids, batch_a_token_ids = [], [], []
# for is_end, D in self.sample(random):
# question = D['question']
# answers = [p['answer'] for p in D['passages'] if p['answer']]
# passage = np.random.choice(D['passages'])['passage']
# passage = re.sub(u' |、||', ',', passage)
# final_answer = ''
# for answer in answers:
# if all([
# a in passage[:max_p_len - 2] for a in answer.split(' ')
# ]):
# final_answer = answer.replace(' ', ',')
# break
# a_token_ids, _ = tokenizer.encode(
# final_answer, maxlen=max_a_len + 1
# )
# q_token_ids, _ = tokenizer.encode(question, maxlen=max_q_len + 1)
# p_token_ids, _ = tokenizer.encode(passage, maxlen=max_p_len + 1)
# token_ids = [tokenizer._token_start_id]
# token_ids += ([tokenizer._token_mask_id] * max_a_len)
# token_ids += [tokenizer._token_end_id]
# token_ids += (q_token_ids[1:] + p_token_ids[1:])
# segment_ids = [0] * len(token_ids)
# batch_token_ids.append(token_ids)
# batch_segment_ids.append(segment_ids)
# batch_a_token_ids.append(a_token_ids[1:])
# if len(batch_token_ids) == self.batch_size or is_end:
# batch_token_ids = sequence_padding(batch_token_ids)
# batch_segment_ids = sequence_padding(batch_segment_ids)
# batch_a_token_ids = sequence_padding(
# batch_a_token_ids, max_a_len
# )
# yield [batch_token_ids, batch_segment_ids], batch_a_token_ids
# batch_token_ids, batch_segment_ids, batch_a_token_ids = [], [], []
def masked_cross_entropy(y_true, y_pred):
"""交叉熵作为loss并mask掉padding部分的预测
"""
y_true = K.reshape(y_true, [K.shape(y_true)[0], -1])
y_mask = K.cast(K.not_equal(y_true, 0), K.floatx())
cross_entropy = K.sparse_categorical_crossentropy(y_true, y_pred)
cross_entropy = K.sum(cross_entropy * y_mask) / K.sum(y_mask)
return cross_entropy
2022-12-08 15:16:57 +08:00
def build_reading_model(config_path: str, ckpt_path: str, keep_tokens: str, weight_path: str):
2022-12-07 10:49:21 +08:00
model = build_transformer_model(
config_path,
ckpt_path,
with_mlm=True,
keep_tokens=keep_tokens, # 只保留keep_tokens中的字精简原字表
)
output = Lambda(lambda x: x[:, 1:max_a_len + 1])(model.output)
model = Model(model.input, output)
model.compile(loss=masked_cross_entropy, optimizer=Adam(1e-5))
model.load_weights(weight_path)
return model
2022-12-08 15:16:57 +08:00
2022-12-07 10:49:21 +08:00
def get_ngram_set(x, n):
"""生成ngram合集返回结果格式是:
{(n-1)-gram: set([n-gram的第n个字集合])}
"""
result = {}
for i in range(len(x) - n + 1):
k = tuple(x[i:i + n])
if k[:-1] not in result:
result[k[:-1]] = set()
result[k[:-1]].add(k[-1])
return result
def gen_answer(question, passages, model, tokenizer):
"""由于是MLM模型所以可以直接argmax解码。
"""
all_p_token_ids, token_ids, segment_ids = [], [], []
for passage in passages:
passage = re.sub(u' |、||', ',', passage)
p_token_ids, _ = tokenizer.encode(passage, maxlen=max_p_len + 1)
q_token_ids, _ = tokenizer.encode(question, maxlen=max_q_len + 1)
all_p_token_ids.append(p_token_ids[1:])
token_ids.append([tokenizer._token_start_id])
token_ids[-1] += ([tokenizer._token_mask_id] * max_a_len)
token_ids[-1] += [tokenizer._token_end_id]
token_ids[-1] += (q_token_ids[1:] + p_token_ids[1:])
segment_ids.append([0] * len(token_ids[-1]))
token_ids = sequence_padding(token_ids)
segment_ids = sequence_padding(segment_ids)
probas = model.predict([token_ids, segment_ids])
results = {}
for t, p in zip(all_p_token_ids, probas):
a, score = tuple(), 0.
for i in range(max_a_len):
idxs = list(get_ngram_set(t, i + 1)[a])
if tokenizer._token_end_id not in idxs:
idxs.append(tokenizer._token_end_id)
# pi是将passage以外的token的概率置零
pi = np.zeros_like(p[i])
pi[idxs] = p[i, idxs]
a = a + (pi.argmax(),)
score += pi.max()
if a[-1] == tokenizer._token_end_id:
break
score = score / (i + 1)
a = tokenizer.decode(a)
if a:
results[a] = results.get(a, []) + [score]
results = {
2022-12-08 15:16:57 +08:00
k: (np.array(v) ** 2).sum() / (sum(v) + 1)
2022-12-07 10:49:21 +08:00
for k, v in results.items()
}
return results
def max_in_dict(d):
if d:
return sorted(d.items(), key=lambda s: -s[1])[0][0]
# def predict_to_file(data, filename):
# """将预测结果输出到文件,方便评估
# """
# with open(filename, 'w', encoding='utf-8') as f:
# for d in tqdm(iter(data), desc=u'正在预测(共%s条样本)' % len(data)):
# q_text = d['question']
# p_texts = [p['passage'] for p in d['passages']]
# a = gen_answer(q_text, p_texts)
# a = max_in_dict(a)
# if a:
# s = u'%s\t%s\n' % (d['id'], a)
# else:
# s = u'%s\t\n' % (d['id'])
# f.write(s)
# f.flush()
# class Evaluator(keras.callbacks.Callback):
# """评估与保存
# """
# def __init__(self):
# self.lowest = 1e10
# def on_epoch_end(self, epoch, logs=None):
# # 保存最优
# if logs['loss'] <= self.lowest:
# self.lowest = logs['loss']
# model.save_weights('../models/qa/best_model.weights')
if __name__ == '__main__':
model = build_reading_model()
model.load_weights('../models/qa/best_model.weights')
questions = "嬴政出生在哪里?"
2022-12-08 15:16:57 +08:00
passages = [
"秦始皇嬴政前259年—前210年嬴姓赵氏 ,名政(一说名“正”),又称赵政 、祖龙 ,也有吕政一说(详见“人物争议-姓名之争”目录)。秦庄襄王和赵姬之子。中国古代杰出的政治家、战略家、改革家,首次完成中国大一统的政治人物,也是中国第一个称皇帝的君主。",
"公元前221年秦统一六国之后秦王嬴政认为自己“德兼三皇功过五帝”遂采用三皇之“皇”、五帝之“帝”构成“皇帝”的称号是中国历史上第一个使用“皇帝”称号的君主所以自称“始皇帝”。",
"秦始皇有二十余子。长子扶苏,少子胡亥。",
"嬴政出生在当时赵国的邯郸廓城(在今城内中街以东,丛台西南的朱家巷一带),是当时的秦国王孙异人之子。"]
print(gen_answer(questions, passages))