first commit

This commit is contained in:
赵敬皓 2022-12-07 10:49:21 +08:00
commit 8c33ecc8ca
12 changed files with 30607 additions and 0 deletions

10
Dockerfile Normal file
View File

@ -0,0 +1,10 @@
FROM python:3.7.13-slim
WORKDIR /app
ADD ./requirements.txt /app/
RUN pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
ADD . /app/
CMD ["python3", "run.py"]

0
README.md Normal file
View File

0
__init__.py Normal file
View File

4
nlp/__init__.py Normal file
View File

@ -0,0 +1,4 @@
import os
os.environ['TF_KERAS'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

63
nlp/chat.py Normal file
View File

@ -0,0 +1,63 @@
#! -*- coding: utf-8 -*-
# NEZHA模型做闲聊任务
# 测试脚本
# 测试环境tensorflow 2.5.3 + keras 2.3.1 + bert4keras 0.11
import os
os.environ['TF_KERAS'] = "1"
import numpy as np
from bert4keras.backend import keras, K
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
from bert4keras.snippets import AutoRegressiveDecoder
class ChatBot(AutoRegressiveDecoder):
"""基于随机采样对话机器人
"""
def __init__(self, start_id, end_id, maxlen, model, tokenizer):
super().__init__(start_id, end_id, maxlen)
self.model = model
self.tokenizer = tokenizer
@AutoRegressiveDecoder.wraps(default_rtype='probas')
def predict(self, inputs, output_ids, states):
token_ids, segment_ids = inputs
token_ids = np.concatenate([token_ids, output_ids], 1)
curr_segment_ids = np.ones_like(output_ids) - segment_ids[0, -1]
segment_ids = np.concatenate([segment_ids, curr_segment_ids], 1)
return self.model.predict([token_ids, segment_ids])[:, -1]
def response(self, texts, topk=5):
token_ids, segment_ids = [self.tokenizer._token_start_id], [0]
for i, text in enumerate(texts):
ids = self.tokenizer.encode(text)[0][1:]
token_ids.extend(ids)
segment_ids.extend([i % 2] * len(ids))
results = self.random_sample([token_ids, segment_ids], 1, topk)
return self.tokenizer.decode(results[0])
def build_chat_model(model_path, tokenizer):
# nezha配置
config_path = f'{model_path}config.json'
checkpoint_path = f'{model_path}model.ckpt'
# 建立并加载模型
model = build_transformer_model(
config_path,
checkpoint_path,
model='nezha',
application='lm',
)
chatbot = ChatBot(start_id=None, end_id=tokenizer._token_end_id, maxlen=32, model=model, tokenizer=tokenizer)
return chatbot
if __name__ == '__main__':
tokenizer = Tokenizer("../models/nezha_gpt_dialog/vocab.txt", do_lower_case=True)
chatbot = build_chat_model('../models/nezha_gpt_dialog', tokenizer)
text_list = ['绿遍山原白满川', '子规声里雨如烟']
print(chatbot.response(text_list))

28
nlp/hanlp_tools.py Normal file
View File

@ -0,0 +1,28 @@
import hanlp
from logzero import logger
from hanlp_common.document import Document
tok = hanlp.load('./.hanlp/tok/coarse_electra_small_20220616_012050/')
dep = hanlp.load('./.hanlp/dep/ctb9_dep_electra_small_20220216_100306/')
sts = hanlp.load('./.hanlp/sts/sts_electra_base_zh_20210530_200109/')
def text_analysis(text):
segments = tok(text)
logger.info(segments)
doc = Document(
tok=segments,
dep=dep(segments, conll=False),
)
rst = doc.to_pretty()
logger.info(rst)
return rst
def text_simi(src, tgt):
score = sts([(src, tgt)])[0]
result = ["negative", "positive"][round(score)]
return result
if __name__ == '__main__':
print(text_analysis("台湾省是中国不可分割的一部分。"))

228
nlp/reading.py Normal file
View File

@ -0,0 +1,228 @@
#! -*- coding: utf-8 -*-
# 10个epoch后在valid上能达到约0.77的分数
# (Accuracy=0.7282149325820084 F1=0.8207266829447049 Final=0.7744708077633566)
import json, os, re
os.environ['TF_KERAS'] = '1'
import numpy as np
from bert4keras.backend import keras, K
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer, load_vocab
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open
from keras.layers import Lambda
from keras.models import Model
from tqdm import tqdm
import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth=True # 按需分配显存
tf_session = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(),config=config)
tf.compat.v1.keras.backend.set_session(tf_session)
max_p_len = 256
max_q_len = 64
max_a_len = 32
batch_size = 32
epochs = 10
# # bert配置
# config_path = '../models/nezha_gpt/config.json'
# checkpoint_path = '../models/nezha_gpt/gpt.ckpt'
# dict_path = '../models/tokenizer/vocab.txt'
# # 标注数据
# webqa_data = json.load(open('../data/qa/WebQA.json'))
# sogou_data = json.load(open('../data/qa/SogouQA.json'))
# # 保存一个随机序供划分valid用
# if not os.path.exists('../random_order.json'):
# random_order = list(range(len(sogou_data)))
# np.random.shuffle(random_order)
# json.dump(random_order, open('../random_order.json', 'w'), indent=4)
# else:
# random_order = json.load(open('../random_order.json'))
# # 划分valid
# train_data = [sogou_data[j] for i, j in enumerate(random_order) if i % 3 != 0]
# valid_data = [sogou_data[j] for i, j in enumerate(random_order) if i % 3 == 0]
# train_data.extend(train_data)
# train_data.extend(webqa_data) # 将SogouQA和WebQA按2:1的比例混合
# # 加载并精简词表,建立分词器
# token_dict, keep_tokens = load_vocab(
# dict_path=dict_path,
# simplified=True,
# startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'],
# )
# tokenizer = Tokenizer(token_dict, do_lower_case=True)
# class data_generator(DataGenerator):
# """数据生成器
# """
# def __iter__(self, random=False):
# """单条样本格式为
# 输入:[CLS][MASK][MASK][SEP]问题[SEP]篇章[SEP]
# 输出:答案
# """
# batch_token_ids, batch_segment_ids, batch_a_token_ids = [], [], []
# for is_end, D in self.sample(random):
# question = D['question']
# answers = [p['answer'] for p in D['passages'] if p['answer']]
# passage = np.random.choice(D['passages'])['passage']
# passage = re.sub(u' |、||', ',', passage)
# final_answer = ''
# for answer in answers:
# if all([
# a in passage[:max_p_len - 2] for a in answer.split(' ')
# ]):
# final_answer = answer.replace(' ', ',')
# break
# a_token_ids, _ = tokenizer.encode(
# final_answer, maxlen=max_a_len + 1
# )
# q_token_ids, _ = tokenizer.encode(question, maxlen=max_q_len + 1)
# p_token_ids, _ = tokenizer.encode(passage, maxlen=max_p_len + 1)
# token_ids = [tokenizer._token_start_id]
# token_ids += ([tokenizer._token_mask_id] * max_a_len)
# token_ids += [tokenizer._token_end_id]
# token_ids += (q_token_ids[1:] + p_token_ids[1:])
# segment_ids = [0] * len(token_ids)
# batch_token_ids.append(token_ids)
# batch_segment_ids.append(segment_ids)
# batch_a_token_ids.append(a_token_ids[1:])
# if len(batch_token_ids) == self.batch_size or is_end:
# batch_token_ids = sequence_padding(batch_token_ids)
# batch_segment_ids = sequence_padding(batch_segment_ids)
# batch_a_token_ids = sequence_padding(
# batch_a_token_ids, max_a_len
# )
# yield [batch_token_ids, batch_segment_ids], batch_a_token_ids
# batch_token_ids, batch_segment_ids, batch_a_token_ids = [], [], []
def masked_cross_entropy(y_true, y_pred):
"""交叉熵作为loss并mask掉padding部分的预测
"""
y_true = K.reshape(y_true, [K.shape(y_true)[0], -1])
y_mask = K.cast(K.not_equal(y_true, 0), K.floatx())
cross_entropy = K.sparse_categorical_crossentropy(y_true, y_pred)
cross_entropy = K.sum(cross_entropy * y_mask) / K.sum(y_mask)
return cross_entropy
def build_reading_model(config_path:str, ckpt_path:str, keep_tokens:str, weight_path:str):
model = build_transformer_model(
config_path,
ckpt_path,
with_mlm=True,
keep_tokens=keep_tokens, # 只保留keep_tokens中的字精简原字表
)
output = Lambda(lambda x: x[:, 1:max_a_len + 1])(model.output)
model = Model(model.input, output)
model.compile(loss=masked_cross_entropy, optimizer=Adam(1e-5))
model.load_weights(weight_path)
return model
def get_ngram_set(x, n):
"""生成ngram合集返回结果格式是:
{(n-1)-gram: set([n-gram的第n个字集合])}
"""
result = {}
for i in range(len(x) - n + 1):
k = tuple(x[i:i + n])
if k[:-1] not in result:
result[k[:-1]] = set()
result[k[:-1]].add(k[-1])
return result
def gen_answer(question, passages, model, tokenizer):
"""由于是MLM模型所以可以直接argmax解码。
"""
all_p_token_ids, token_ids, segment_ids = [], [], []
for passage in passages:
passage = re.sub(u' |、||', ',', passage)
p_token_ids, _ = tokenizer.encode(passage, maxlen=max_p_len + 1)
q_token_ids, _ = tokenizer.encode(question, maxlen=max_q_len + 1)
all_p_token_ids.append(p_token_ids[1:])
token_ids.append([tokenizer._token_start_id])
token_ids[-1] += ([tokenizer._token_mask_id] * max_a_len)
token_ids[-1] += [tokenizer._token_end_id]
token_ids[-1] += (q_token_ids[1:] + p_token_ids[1:])
segment_ids.append([0] * len(token_ids[-1]))
token_ids = sequence_padding(token_ids)
segment_ids = sequence_padding(segment_ids)
probas = model.predict([token_ids, segment_ids])
results = {}
for t, p in zip(all_p_token_ids, probas):
a, score = tuple(), 0.
for i in range(max_a_len):
idxs = list(get_ngram_set(t, i + 1)[a])
if tokenizer._token_end_id not in idxs:
idxs.append(tokenizer._token_end_id)
# pi是将passage以外的token的概率置零
pi = np.zeros_like(p[i])
pi[idxs] = p[i, idxs]
a = a + (pi.argmax(),)
score += pi.max()
if a[-1] == tokenizer._token_end_id:
break
score = score / (i + 1)
a = tokenizer.decode(a)
if a:
results[a] = results.get(a, []) + [score]
results = {
k: (np.array(v)**2).sum() / (sum(v) + 1)
for k, v in results.items()
}
return results
def max_in_dict(d):
if d:
return sorted(d.items(), key=lambda s: -s[1])[0][0]
# def predict_to_file(data, filename):
# """将预测结果输出到文件,方便评估
# """
# with open(filename, 'w', encoding='utf-8') as f:
# for d in tqdm(iter(data), desc=u'正在预测(共%s条样本)' % len(data)):
# q_text = d['question']
# p_texts = [p['passage'] for p in d['passages']]
# a = gen_answer(q_text, p_texts)
# a = max_in_dict(a)
# if a:
# s = u'%s\t%s\n' % (d['id'], a)
# else:
# s = u'%s\t\n' % (d['id'])
# f.write(s)
# f.flush()
# class Evaluator(keras.callbacks.Callback):
# """评估与保存
# """
# def __init__(self):
# self.lowest = 1e10
# def on_epoch_end(self, epoch, logs=None):
# # 保存最优
# if logs['loss'] <= self.lowest:
# self.lowest = logs['loss']
# model.save_weights('../models/qa/best_model.weights')
if __name__ == '__main__':
model = build_reading_model()
model.load_weights('../models/qa/best_model.weights')
questions = "嬴政出生在哪里?"
passages = ["秦始皇嬴政前259年—前210年嬴姓赵氏 ,名政(一说名“正”),又称赵政 、祖龙 ,也有吕政一说(详见“人物争议-姓名之争”目录)。秦庄襄王和赵姬之子。中国古代杰出的政治家、战略家、改革家,首次完成中国大一统的政治人物,也是中国第一个称皇帝的君主。",
"公元前221年秦统一六国之后秦王嬴政认为自己“德兼三皇功过五帝”遂采用三皇之“皇”、五帝之“帝”构成“皇帝”的称号是中国历史上第一个使用“皇帝”称号的君主所以自称“始皇帝”。",
"秦始皇有二十余子。长子扶苏,少子胡亥。",
"嬴政出生在当时赵国的邯郸廓城(在今城内中街以东,丛台西南的朱家巷一带),是当时的秦国王孙异人之子。"]
print(gen_answer(questions, passages))

200
nlp/text_classification.py Normal file
View File

@ -0,0 +1,200 @@
#! -*- coding:utf-8 -*-
import os
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" #保证程序cuda序号与实际cuda序号对应
# os.environ['CUDA_VISIBLE_DEVICES'] = "0, 1" #代表仅使用第01号GPU
os.environ['TF_KERAS'] ='1'
import numpy as np
import pandas as pd
import tensorflow as tf
from logzero import logger
from bert4keras.backend import keras, set_gelu
from bert4keras.tokenizers import Tokenizer
from bert4keras.models import build_transformer_model
from bert4keras.optimizers import Adam, extend_with_piecewise_linear_lr
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.snippets import open
from keras.layers import Lambda, Dense
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth=True # 按需分配显存
tf_session = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(),config=config)
tf.compat.v1.keras.backend.set_session(tf_session)
from sklearn.model_selection import train_test_split
set_gelu('tanh') # 切换gelu版本
MAX_LEN = 128
BATCH_SIZE = 32
AdamLR = extend_with_piecewise_linear_lr(Adam, name='AdamLR')
# config_path = '/home/zhaojh/pretrain_models/roberta_base/bert_config.json'
# checkpoint_path = '/home/zhaojh/pretrain_models/roberta_base/bert_model.ckpt'
# dict_path = '/home/zhaojh/pretrain_models/roberta_base/vocab.txt'
# 建立分词器
# tokenizer = Tokenizer(dict_path, do_lower_case=True)
# def label_to_digit(data_df: pd.DataFrame, labels):
# data = list()
# for i in range(data_df.shape[0]):
# data.append((data_df.iloc[i]['text'], int(labels.index(data_df.iloc[i]['label']))))
# return data
# def load_data(all_data:pd.DataFrame):
# """加载数据
# 单条格式:(文本, 标签id)
# """
# logger.info(f"数据集大小:{all_data.shape}")
# assert ('text' in all_data.columns and 'label' in all_data.columns)
# use_data = all_data[['text', 'label']].copy()
# labels = use_data.label.unique().tolist()
# train, valid = train_test_split(use_data, test_size=0.3, random_state=42, shuffle=True)
# valid, test = train_test_split(valid, test_size=0.7, random_state=42, shuffle=True)
# # 转换数据集
# train_data = label_to_digit(train, labels)
# valid_data = label_to_digit(valid, labels)
# test_data = label_to_digit(test, labels)
# train_generator = MyDataGenerator(train_data, BATCH_SIZE)
# valid_generator = MyDataGenerator(valid_data, BATCH_SIZE)
# test_generator = MyDataGenerator(test_data, BATCH_SIZE)
# return train_generator, valid_generator, test_generator, labels
# class MyDataGenerator(DataGenerator):
# """数据生成器
# """
# def __iter__(self, random=False):
# batch_token_ids, batch_segment_ids, batch_labels = [], [], []
# for is_end, (text, label) in self.sample(random):
# token_ids, segment_ids = tokenizer.encode(text, maxlen=MAX_LEN)
# batch_token_ids.append(token_ids)
# batch_segment_ids.append(segment_ids)
# batch_labels.append([label])
# if len(batch_token_ids) == self.batch_size or is_end:
# batch_token_ids = sequence_padding(batch_token_ids)
# batch_segment_ids = sequence_padding(batch_segment_ids)
# batch_labels = sequence_padding(batch_labels)
# yield [batch_token_ids, batch_segment_ids], batch_labels
# batch_token_ids, batch_segment_ids, batch_labels = [], [], []
def build_model(config_path, ckpt_path, num_classes, lr):
# 加载预训练模型
bert = build_transformer_model(
config_path=config_path,
checkpoint_path=ckpt_path,
model='bert',
return_keras_model=False,
)
output = Lambda(lambda x: x[:, 0], name='CLS-token')(bert.model.output)
if num_classes == 2:
activitor = 'sigmoid'
else:
activitor = 'softmax'
output = Dense(
units=num_classes,
activation=activitor,
kernel_initializer=bert.initializer
)(output)
model = keras.models.Model(bert.model.input, output)
# 派生为带分段线性学习率的优化器。
AdamLR = extend_with_piecewise_linear_lr(Adam, name='AdamLR')
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=AdamLR(learning_rate=lr, lr_schedule={
1000: 1,
2000: 0.1
}),
metrics=['accuracy'],
)
return model
def evaluate(data, model):
total, right = 0., 0.
for x_true, y_true in data:
y_pred = model.predict(x_true).argmax(axis=1)
y_true = y_true[:, 0]
total += len(y_true)
right += (y_true == y_pred).sum()
return right / total
# class Evaluator(keras.callbacks.Callback):
# """评估与保存
# """
# def __init__(self, model, valid_generator, test_generator):
# super().__init__()
# self.best_val_acc = 0.
# self.model = model
# self.valid = valid_generator
# self.test = test_generator
# def on_epoch_end(self, epoch, logs=None):
# val_acc = evaluate(self.valid, self.model)
# if val_acc > self.best_val_acc:
# self.best_val_acc = val_acc
# self.model.save_weights('../models/text_classifier/best_model.weights')
# test_acc = evaluate(self.test, self.model)
# logger.info(f"val_acc: {val_acc}, best_val_acc:{self.best_val_acc}, test_acc: {test_acc}")
# def train_model(train_generator, valid_generator, test_generator, num_classes, epochs, lr):
# model = build_model(num_classes, lr)
# evaluator = Evaluator(model, valid_generator, test_generator)
# model.fit(
# train_generator.forfit(),
# steps_per_epoch=len(train_generator),
# epochs=epochs,
# callbacks=[evaluator]
# )
# model.load_weights('../models/text_classifier/best_model.weights')
# return model
def run_cls(model, tokenizer, test_text:str, labels=["negative", "positive"]):
token_ids, segment_ids = tokenizer.encode(test_text, maxlen=MAX_LEN)
tok_ids = sequence_padding([token_ids])
seg_ids = sequence_padding([segment_ids])
predicted_data = model.predict([tok_ids, seg_ids])[0]
return labels[np.argmax(predicted_data)]
# def train(df:pd.DataFrame, epochs:int=20, lr:float=1e-3):
# train, valid, test, labels = load_data(df)
# model = train_model(train, valid, test, len(labels), epochs, lr)
# # score = evaluate(test.forfit(), model)
# model.save('../models/text_classifier/best_model.h5')
# return model, labels
def load_cls_model(config_path:str, ckpt_path:str, weight_path:str):
"""load local classification model
Args:
config_path (str): config.json
ckpt_path (str): ckpt
weight_path (str): best weight
Returns:
keras.Model: pretrained model
"""
model = build_model(config_path, ckpt_path, 2, 0.001)
model.load_weights(weight_path)
return model
if __name__ == '__main__':
from keras.models import load_model
dict_path = '../models/tokenizer/vocab.txt'
tokenizer = Tokenizer(dict_path, do_lower_case=True)
model = load_model('../models/text_classifier/best_model.h5')
rst = run_cls(model, tokenizer, "这部电影太棒了")
print(rst)

54
nlp/text_gen.py Normal file
View File

@ -0,0 +1,54 @@
#! -*- coding: utf-8 -*-
import os
os.environ["TF_KERAS"] = "1"
import numpy as np
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
from bert4keras.snippets import AutoRegressiveDecoder
class ArticleCompletion(AutoRegressiveDecoder):
"""基于随机采样的文章续写
"""
def __init__(self, start_id, end_id, maxlen, minlen, config_path, ckpt_path):
super().__init__(start_id, end_id, maxlen, minlen)
self.model = build_transformer_model(
config_path=config_path,
checkpoint_path=ckpt_path,
segment_vocab_size=0,
application='lm',
)
@AutoRegressiveDecoder.wraps(default_rtype='probas')
def predict(self, inputs, output_ids, states):
token_ids = np.concatenate([inputs[0], output_ids], 1)
return self.last_token(self.model).predict(token_ids)
def generate(self, text, tokenizer, n=1, topp=0.95):
"""根据输入文本生成文本
Args:
text (str): 输入文本
tokenizer (Tokenizer): 分词工具
n (int, optional): 文本数. Defaults to 1.
topp (float, optional): 置信度. Defaults to 0.95.
Returns:
str: 生成的文本
"""
token_ids = tokenizer.encode(text)[0][:-1]
results = self.random_sample([token_ids], n, topp=topp) # 基于随机采样
return [text + tokenizer.decode(ids) for ids in results]
if __name__ == '__main__':
article_completion = ArticleCompletion(
start_id=None,
end_id=511, # 511是中文句号
maxlen=256,
minlen=128,
config_path='../models/nezha_gpt/config.json',
ckpt_path="../models/nezha_gpt/gpt.ckpt"
)
tokenizer = Tokenizer(f"../models/tokenizer/vocab.txt", do_lower_case=True)
print(article_completion.generate(u'中国科学院青岛生物能源与过程研究所泛能源大数据与战略研究中心', tokenizer))

29814
random_order.json Normal file

File diff suppressed because it is too large Load Diff

13
requirements.txt Normal file
View File

@ -0,0 +1,13 @@
Flask==2.1.0
protobuf==3.19.4
bert4keras==0.11.3
numpy~=1.19.2
hanlp==2.1.0b39
hanlp_common==0.0.18
Keras==2.3.1
logzero==1.7.0
pandas==1.3.5
scikit_learn==1.0.2
tensorflow==2.5.3
tqdm==4.64.0
librosa==0.9.2

193
run.py Normal file
View File

@ -0,0 +1,193 @@
# -*-coding:utf-8-*-
import os
import sys
import json
from flask import Flask, request, make_response
from logzero import logger
# current_path = os.path.dirname(os.path.abspath(__file__)) # for local
current_path = "/app" # for docker
logger.info(f"{current_path}")
app = Flask(__name__)
sys.path.append(f"{current_path}/nlp/")
os.environ["TF_KERAS"] = "1"
os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
from bert4keras.tokenizers import Tokenizer, load_vocab
from keras.models import load_model
from nlp.text_gen import ArticleCompletion
from nlp.chat import build_chat_model
from nlp.text_classification import run_cls as run_class, AdamLR
# from utils.translate import load_model as load_translator, run_test as run_translator
from nlp.hanlp_tools import text_analysis, text_simi
from nlp.reading import build_reading_model, gen_answer
general_tokenizer = Tokenizer(f"{current_path}/models/tokenizer/vocab.txt", do_lower_case=True) # 通用分词器
dialog_tokenizer = Tokenizer(f"{current_path}/models/nezha_gpt_dialog/vocab.txt", do_lower_case=True) # 对话分词器
token_dict, keep_tokens = load_vocab(
# 加载并精简词表,建立阅读理解词表
dict_path=f"{current_path}/models/tokenizer/vocab.txt",
simplified=True,
startswith=['[PAD]', '[UNK]', '[CLS]', '[SEP]', '[MASK]'],
)
reading_tokenizer = Tokenizer(token_dict, do_lower_case=True) # 阅读理解分词器
cls_model = load_model(f"{current_path}/models/text_classifier/best_model.h5") # 加载分类模型
gen_model = ArticleCompletion(
# 加载文本生成模型
start_id=None,
end_id=511, # 511是中文句号
maxlen=256,
minlen=128,
config_path=f"{current_path}/models/nezha_gpt/config.json",
ckpt_path=f"{current_path}/models/nezha_gpt/gpt.ckpt"
)
chatbot = build_chat_model(
# 加载对话模型
f"{current_path}/models/nezha_gpt_dialog/",
dialog_tokenizer)
# translator, trans_data = load_translator(
# # 加载翻译模型
# f"{current_path}/models/translator/translation.h5",
# f"{current_path}/data/translator/train.txt",
# f"{current_path}/data/translator/dev.txt"
# )
reading_model = build_reading_model(
# 加载阅读理解模型
f"{current_path}/models/nezha_gpt/config.json",
f"{current_path}/models/nezha_gpt/gpt.ckpt",
keep_tokens,
f"{current_path}/models/qa/best_model.weights"
)
app = Flask(__name__)
@app.route('/text_cls/', methods=["POST"])
def run_cls():
resp = make_response()
if request.method == "POST":
text = request.form.get('text')
if text is not None and text != '':
resp.response = run_class(cls_model, general_tokenizer, text)
resp.status_code = 200
return resp
else:
resp.status_code = 406
return resp
else:
resp.status_code=405
return resp
@app.route('/text_gen/', methods=["POST"])
def run_gen():
resp = make_response()
if request.method == "POST":
text = request.form.get('text')
logger.info(f"将对文本'{text}'进行续写")
if text != "":
rest = gen_model.generate(text, general_tokenizer)
logger.info(rest)
resp.response = rest
resp.status_code = 200
return resp
else:
resp.status_code = 406
return resp
else:
resp.status_code=405
return resp
@app.route('/chat/', methods=["POST"])
def run_chat():
# todo: 这个模块可以用grpc流式服务做。
# 如果用flask 就把历史对话都按照list的方式传进来
# 历史对话可以用json传
resp = make_response()
if request.method == "POST":
dialog_history = request.form.get("dialog_history")
dialog_history = dialog_history.split('')
logger.info(f"将对文本'{dialog_history}'进行对话")
if len(dialog_history) > 0:
rest = chatbot.response(dialog_history)
logger.info(rest)
resp.response = rest
resp.status_code = 200
return resp
else:
resp.status_code = 406
return resp
else:
resp.status_code=405
return resp
# @app.route('/translate/', methods=["POST"])
# def run_translate():
# resp = make_response()
# if request.method == "POST":
# text = request.json.get('text')
# if text is None or text.strip() == "":
# resp.status_code = 406
# return resp
# rest = run_translator(text, translator, trans_data)
# resp.status_code = 200
# resp.response = rest
# return resp
# else:
# resp.status_code=405
# return resp
@app.route('/simi/', methods=["POST"])
def run_match():
resp = make_response()
if request.method == "POST":
src = request.form.get('text_1')
tgt = request.form.get('text_2')
resp.response = str(text_simi(src, tgt))
resp.status_code = 200
return resp
else:
resp.status_code=405
return resp
@app.route('/dependency/', methods=["POST"])
def run_depend():
resp = make_response()
if request.method == "POST":
text = request.form.get('text')
if text is None or text.strip() == "":
resp.status_code=406
return resp
resp.response = str(text_analysis(text))
resp.status_code = 200
return resp
else:
resp.status_code=405
return resp
@app.route('/reading/', methods=["POST"])
def run_reading():
resp = make_response()
if request.method == "POST":
question = request.form.get("question")
passages = request.form.get("passages")
passages = [x + '' for x in passages.split('')]
if len(passages) == 0 or question is None or question.strip() == "":
resp.status_code=406
return resp
resp.response = json.dumps(gen_answer(question, passages, reading_model, reading_tokenizer))
resp.status_code = 200
return resp
else:
resp.status_code=405
return resp
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8903, debug=True)