{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "6b84fefd-5936-4da4-ab6b-5b944329ad1d", "metadata": {}, "outputs": [], "source": [ "import os\n", "os.environ['CUDA_DEVICE_ORDER'] = 'PCB_BUS_ID'\n", "os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1'" ] }, { "cell_type": "code", "execution_count": 2, "id": "9cf130e3-62ef-46e0-bbdc-b13d9d29318d", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", "import matplotlib.pyplot as plt\n", "#新增加的两行\n", "from pylab import mpl\n", "# 设置显示中文字体\n", "mpl.rcParams[\"font.sans-serif\"] = [\"SimHei\"]\n", "\n", "mpl.rcParams[\"axes.unicode_minus\"] = False" ] }, { "cell_type": "code", "execution_count": 3, "id": "752381a5-0aeb-4c54-bc48-f9c3f8fc5d17", "metadata": {}, "outputs": [], "source": [ "data = pd.read_csv('./data/20240102/train_data.csv')" ] }, { "cell_type": "code", "execution_count": 4, "id": "04b177a7-2f02-4e23-8ea9-29f34cf3eafc", "metadata": {}, "outputs": [], "source": [ "out_cols = [x for x in data.columns if '碳材料' in x]" ] }, { "cell_type": "code", "execution_count": 5, "id": "31169fbf-d78e-42f7-87f3-71ba3dd0979d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['碳材料结构特征-比表面积', '碳材料结构特征-总孔体积', '碳材料结构特征-微孔体积', '碳材料结构特征-平均孔径']" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "out_cols" ] }, { "cell_type": "code", "execution_count": 6, "id": "a40bee0f-011a-4edb-80f8-4e2f40e755fd", "metadata": {}, "outputs": [], "source": [ "train_data = data.dropna(subset=out_cols).fillna(0)" ] }, { "cell_type": "code", "execution_count": 7, "id": "535d37b6-b9de-4025-ac8f-62f5bdbe2451", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-01-04 16:14:39.388684: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0\n" ] } ], "source": [ "import tensorflow as tf\n", "from tensorflow import keras\n", "from tensorflow.keras import layers\n", "import tensorflow.keras.backend as K" ] }, { "cell_type": "code", "execution_count": 8, "id": "c2318ce6-60d2-495c-91cd-67ca53609cf8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From /tmp/ipykernel_43672/337460670.py:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use `tf.config.list_physical_devices('GPU')` instead.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2024-01-04 16:14:40.311876: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA\n", "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", "2024-01-04 16:14:40.319726: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1\n", "2024-01-04 16:14:40.406804: E tensorflow/stream_executor/cuda/cuda_driver.cc:328] failed call to cuInit: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal\n", "2024-01-04 16:14:40.406829: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: zhaojh-yv621\n", "2024-01-04 16:14:40.406833: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: zhaojh-yv621\n", "2024-01-04 16:14:40.406963: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:200] libcuda reported version is: 520.61.5\n", "2024-01-04 16:14:40.406982: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:204] kernel reported version is: 520.61.5\n", "2024-01-04 16:14:40.406985: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:310] kernel version seems to match DSO: 520.61.5\n" ] }, { "data": { "text/plain": [ "False" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tf.test.is_gpu_available()" ] }, { "cell_type": "code", "execution_count": 9, "id": "1c85d462-f248-4ffb-908f-eb4b20eab179", "metadata": {}, "outputs": [], "source": [ "class TransformerBlock(layers.Layer):\n", " def __init__(self, embed_dim, num_heads, ff_dim, name, rate=0.1):\n", " super().__init__()\n", " self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim, name=name)\n", " self.ffn = keras.Sequential(\n", " [layers.Dense(ff_dim, activation=\"relu\"), layers.Dense(embed_dim),]\n", " )\n", " self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)\n", " self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)\n", " self.dropout1 = layers.Dropout(rate)\n", " self.dropout2 = layers.Dropout(rate)\n", "\n", " def call(self, inputs, training):\n", " attn_output = self.att(inputs, inputs)\n", " attn_output = self.dropout1(attn_output, training=training)\n", " out1 = self.layernorm1(inputs + attn_output)\n", " ffn_output = self.ffn(out1)\n", " ffn_output = self.dropout2(ffn_output, training=training)\n", " return self.layernorm2(out1 + ffn_output)" ] }, { "cell_type": "code", "execution_count": 10, "id": "790284a3-b9d3-4144-b481-38a7c3ecb4b9", "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras import Model" ] }, { "cell_type": "code", "execution_count": 11, "id": "cd9a1ca1-d0ca-4cb5-9ef5-fd5d63576cd2", "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.initializers import Constant" ] }, { "cell_type": "code", "execution_count": 12, "id": "9bc02f29-0fb7-420d-99a8-435eadc06e29", "metadata": {}, "outputs": [], "source": [ "# Custom loss layer\n", "class CustomMultiLossLayer(layers.Layer):\n", " def __init__(self, nb_outputs=2, **kwargs):\n", " self.nb_outputs = nb_outputs\n", " self.is_placeholder = True\n", " super(CustomMultiLossLayer, self).__init__(**kwargs)\n", " \n", " def build(self, input_shape=None):\n", " # initialise log_vars\n", " self.log_vars = []\n", " for i in range(self.nb_outputs):\n", " self.log_vars += [self.add_weight(name='log_var' + str(i), shape=(1,),\n", " initializer=tf.initializers.he_normal(), trainable=True)]\n", " super(CustomMultiLossLayer, self).build(input_shape)\n", "\n", " def multi_loss(self, ys_true, ys_pred):\n", " assert len(ys_true) == self.nb_outputs and len(ys_pred) == self.nb_outputs\n", " loss = 0\n", " for y_true, y_pred, log_var in zip(ys_true, ys_pred, self.log_vars):\n", " mse = (y_true - y_pred) ** 2.\n", " pre = K.exp(-log_var[0])\n", " loss += tf.abs(tf.reduce_logsumexp(pre * mse + log_var[0], axis=-1))\n", " return K.mean(loss)\n", "\n", " def call(self, inputs):\n", " ys_true = inputs[:self.nb_outputs]\n", " ys_pred = inputs[self.nb_outputs:]\n", " loss = self.multi_loss(ys_true, ys_pred)\n", " self.add_loss(loss, inputs=inputs)\n", " # We won't actually use the output.\n", " return K.concatenate(inputs, -1)" ] }, { "cell_type": "code", "execution_count": 13, "id": "a190207e-5a59-4813-9660-758760cf1b73", "metadata": {}, "outputs": [], "source": [ "num_heads, ff_dim = 1, 12" ] }, { "cell_type": "code", "execution_count": 38, "id": "80f32155-e71f-4615-8d0c-01dfd04988fe", "metadata": {}, "outputs": [], "source": [ "def get_prediction_model():\n", " def build_output(out, out_name):\n", " self_block = TransformerBlock(64, num_heads, ff_dim, name=f'{out_name}_attn')\n", " out = self_block(out)\n", " out = layers.GlobalAveragePooling1D()(out)\n", " out = layers.Dropout(0.1)(out)\n", " out = layers.Dense(32, activation=\"relu\")(out)\n", " # out = layers.Dense(1, name=out_name, activation=\"sigmoid\")(out)\n", " return out\n", " inputs = layers.Input(shape=(1,len(feature_cols)), name='input')\n", " x = layers.Conv1D(filters=64, kernel_size=1, activation='relu')(inputs)\n", " # x = layers.Dropout(rate=0.1)(x)\n", " lstm_out = layers.Bidirectional(layers.LSTM(units=64, return_sequences=True))(x)\n", " lstm_out = layers.Dense(128, activation='relu')(lstm_out)\n", " transformer_block = TransformerBlock(128, num_heads, ff_dim, name='first_attn')\n", " out = transformer_block(lstm_out)\n", " out = layers.GlobalAveragePooling1D()(out)\n", " out = layers.Dropout(0.1)(out)\n", " out = layers.Dense(64, activation='relu')(out)\n", " out = K.expand_dims(out, axis=1)\n", "\n", " bet = build_output(out, 'bet')\n", " mesco = build_output(out, 'mesco')\n", " micro = build_output(out, 'micro')\n", " avg = build_output(out, 'avg')\n", "\n", " bet = layers.Dense(1, activation='sigmoid', name='bet')(bet)\n", " mesco = layers.Dense(1, activation='sigmoid', name='mesco')(mesco)\n", " micro = layers.Dense(1, activation='sigmoid', name='micro')(micro)\n", " avg = layers.Dense(1, activation='sigmoid', name='avg')(avg)\n", "\n", " model = Model(inputs=[inputs], outputs=[bet, mesco, micro, avg])\n", " return model\n" ] }, { "cell_type": "code", "execution_count": 39, "id": "264001b1-5e4a-4786-96fd-2b5c70ab3212", "metadata": {}, "outputs": [], "source": [ "def get_trainable_model(prediction_model):\n", " inputs = layers.Input(shape=(1,len(feature_cols)), name='input')\n", " bet, mesco, micro, avg = prediction_model(inputs)\n", " bet_real = layers.Input(shape=(1,), name='bet_real')\n", " mesco_real = layers.Input(shape=(1,), name='mesco_real')\n", " micro_real = layers.Input(shape=(1,), name='micro_real')\n", " avg_real = layers.Input(shape=(1,), name='avg_real')\n", " out = CustomMultiLossLayer(nb_outputs=4)([bet_real, mesco_real, micro_real, avg_real, bet, mesco, micro, avg])\n", " return Model([inputs, bet_real, mesco_real, micro_real, avg_real], out)" ] }, { "cell_type": "code", "execution_count": 40, "id": "1eebdab3-1f88-48a1-b5e0-bc8787528c1b", "metadata": {}, "outputs": [], "source": [ "maxs = train_data.max()\n", "mins = train_data.min()\n", "for col in train_data.columns:\n", " if maxs[col] - mins[col] == 0:\n", " continue\n", " train_data[col] = (train_data[col] - mins[col]) / (maxs[col] - mins[col])" ] }, { "cell_type": "code", "execution_count": 41, "id": "7f27bd56-4f6b-4242-9f79-c7d6b3ee2f13", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
热处理条件-热处理次数热处理条件-是否是中温停留第一次热处理-温度第一次热处理-升温速率第一次热处理-保留时间第二次热处理-温度第二次热处理-升温速率·第二次热处理-保留时间共碳化-是否是共碳化物质共碳化-共碳化物质/沥青...模板剂-种类_二氧化硅模板剂-种类_氢氧化镁模板剂-种类_氧化钙模板剂-种类_氧化锌模板剂-种类_氧化镁模板剂-种类_氯化钠模板剂-种类_氯化钾模板剂-种类_碱式碳酸镁模板剂-种类_碳酸钙模板剂-种类_纤维素
00.00.00.1666670.30.50.0000000.00.0000000.00.0...00.01.000.00.000.00.00.0
10.00.00.3333330.30.50.0000000.00.0000000.00.0...00.01.000.00.000.00.00.0
20.00.00.3333330.30.50.0000000.00.0000000.00.0...00.01.000.00.000.00.00.0
30.00.00.3333330.30.50.0000000.00.0000000.00.0...00.01.000.00.000.00.00.0
41.00.00.1666670.30.50.6666670.50.6666670.00.0...00.00.000.00.001.00.00.0
..................................................................
1440.00.00.3333330.30.00.0000000.00.0000000.00.0...00.00.000.00.000.00.00.0
1450.00.00.5000000.30.00.0000000.00.0000000.00.0...00.00.000.00.000.00.00.0
1460.00.00.6666670.30.00.0000000.00.0000000.00.0...00.00.000.00.000.00.00.0
1470.00.00.5000000.30.00.0000000.00.0000000.00.0...00.00.000.00.000.00.00.0
1480.00.00.5000000.30.00.0000000.00.0000000.00.0...00.00.000.00.000.00.00.0
\n", "

123 rows × 42 columns

\n", "
" ], "text/plain": [ " 热处理条件-热处理次数 热处理条件-是否是中温停留 第一次热处理-温度 第一次热处理-升温速率 第一次热处理-保留时间 \\\n", "0 0.0 0.0 0.166667 0.3 0.5 \n", "1 0.0 0.0 0.333333 0.3 0.5 \n", "2 0.0 0.0 0.333333 0.3 0.5 \n", "3 0.0 0.0 0.333333 0.3 0.5 \n", "4 1.0 0.0 0.166667 0.3 0.5 \n", ".. ... ... ... ... ... \n", "144 0.0 0.0 0.333333 0.3 0.0 \n", "145 0.0 0.0 0.500000 0.3 0.0 \n", "146 0.0 0.0 0.666667 0.3 0.0 \n", "147 0.0 0.0 0.500000 0.3 0.0 \n", "148 0.0 0.0 0.500000 0.3 0.0 \n", "\n", " 第二次热处理-温度 第二次热处理-升温速率· 第二次热处理-保留时间 共碳化-是否是共碳化物质 共碳化-共碳化物质/沥青 ... \\\n", "0 0.000000 0.0 0.000000 0.0 0.0 ... \n", "1 0.000000 0.0 0.000000 0.0 0.0 ... \n", "2 0.000000 0.0 0.000000 0.0 0.0 ... \n", "3 0.000000 0.0 0.000000 0.0 0.0 ... \n", "4 0.666667 0.5 0.666667 0.0 0.0 ... \n", ".. ... ... ... ... ... ... \n", "144 0.000000 0.0 0.000000 0.0 0.0 ... \n", "145 0.000000 0.0 0.000000 0.0 0.0 ... \n", "146 0.000000 0.0 0.000000 0.0 0.0 ... \n", "147 0.000000 0.0 0.000000 0.0 0.0 ... \n", "148 0.000000 0.0 0.000000 0.0 0.0 ... \n", "\n", " 模板剂-种类_二氧化硅 模板剂-种类_氢氧化镁 模板剂-种类_氧化钙 模板剂-种类_氧化锌 模板剂-种类_氧化镁 模板剂-种类_氯化钠 \\\n", "0 0 0.0 1.0 0 0.0 0.0 \n", "1 0 0.0 1.0 0 0.0 0.0 \n", "2 0 0.0 1.0 0 0.0 0.0 \n", "3 0 0.0 1.0 0 0.0 0.0 \n", "4 0 0.0 0.0 0 0.0 0.0 \n", ".. ... ... ... ... ... ... \n", "144 0 0.0 0.0 0 0.0 0.0 \n", "145 0 0.0 0.0 0 0.0 0.0 \n", "146 0 0.0 0.0 0 0.0 0.0 \n", "147 0 0.0 0.0 0 0.0 0.0 \n", "148 0 0.0 0.0 0 0.0 0.0 \n", "\n", " 模板剂-种类_氯化钾 模板剂-种类_碱式碳酸镁 模板剂-种类_碳酸钙 模板剂-种类_纤维素 \n", "0 0 0.0 0.0 0.0 \n", "1 0 0.0 0.0 0.0 \n", "2 0 0.0 0.0 0.0 \n", "3 0 0.0 0.0 0.0 \n", "4 0 1.0 0.0 0.0 \n", ".. ... ... ... ... \n", "144 0 0.0 0.0 0.0 \n", "145 0 0.0 0.0 0.0 \n", "146 0 0.0 0.0 0.0 \n", "147 0 0.0 0.0 0.0 \n", "148 0 0.0 0.0 0.0 \n", "\n", "[123 rows x 42 columns]" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data" ] }, { "cell_type": "code", "execution_count": 42, "id": "baf45a3d-dc01-44fc-9f0b-456964ac2cdb", "metadata": {}, "outputs": [], "source": [ "# feature_cols = [x for x in train_data.columns if x not in out_cols and '第二次' not in x]\n", "feature_cols = [x for x in train_data.columns if x not in out_cols]\n", "use_cols = feature_cols + out_cols" ] }, { "cell_type": "code", "execution_count": 43, "id": "f2d27538-d2bc-4202-b0cf-d3e0949b4686", "metadata": {}, "outputs": [], "source": [ "use_data = train_data.copy()\n", "for col in use_cols:\n", " use_data[col] = use_data[col].astype('float32')" ] }, { "cell_type": "code", "execution_count": 44, "id": "54c1df2c-c297-4b8d-be8a-3a99cff22545", "metadata": {}, "outputs": [], "source": [ "train, valid = train_test_split(use_data[use_cols], test_size=0.2, random_state=42, shuffle=True)\n", "valid, test = train_test_split(valid, test_size=0.5, random_state=42, shuffle=True)" ] }, { "cell_type": "code", "execution_count": 45, "id": "e7a914da-b9c2-40d9-96e0-459b0888adba", "metadata": {}, "outputs": [], "source": [ "prediction_model = get_prediction_model()\n", "trainable_model = get_trainable_model(prediction_model)" ] }, { "cell_type": "code", "execution_count": 46, "id": "4f832a1e-48e2-4467-b381-35b9d2f1271a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"model_4\"\n", "__________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "==================================================================================================\n", "input (InputLayer) [(None, 1, 38)] 0 \n", "__________________________________________________________________________________________________\n", "conv1d_3 (Conv1D) (None, 1, 64) 2496 input[0][0] \n", "__________________________________________________________________________________________________\n", "bidirectional_3 (Bidirectional) (None, 1, 128) 66048 conv1d_3[0][0] \n", "__________________________________________________________________________________________________\n", "dense_28 (Dense) (None, 1, 128) 16512 bidirectional_3[0][0] \n", "__________________________________________________________________________________________________\n", "transformer_block_7 (Transforme (None, 1, 128) 202640 dense_28[0][0] \n", "__________________________________________________________________________________________________\n", "global_average_pooling1d_7 (Glo (None, 128) 0 transformer_block_7[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_23 (Dropout) (None, 128) 0 global_average_pooling1d_7[0][0] \n", "__________________________________________________________________________________________________\n", "dense_31 (Dense) (None, 64) 8256 dropout_23[0][0] \n", "__________________________________________________________________________________________________\n", "tf.expand_dims_3 (TFOpLambda) (None, 1, 64) 0 dense_31[0][0] \n", "__________________________________________________________________________________________________\n", "transformer_block_8 (Transforme (None, 1, 64) 52176 tf.expand_dims_3[0][0] \n", "__________________________________________________________________________________________________\n", "transformer_block_9 (Transforme (None, 1, 64) 52176 tf.expand_dims_3[0][0] \n", "__________________________________________________________________________________________________\n", "transformer_block_10 (Transform (None, 1, 64) 52176 tf.expand_dims_3[0][0] \n", "__________________________________________________________________________________________________\n", "transformer_block_11 (Transform (None, 1, 64) 52176 tf.expand_dims_3[0][0] \n", "__________________________________________________________________________________________________\n", "global_average_pooling1d_8 (Glo (None, 64) 0 transformer_block_8[0][0] \n", "__________________________________________________________________________________________________\n", "global_average_pooling1d_9 (Glo (None, 64) 0 transformer_block_9[0][0] \n", "__________________________________________________________________________________________________\n", "global_average_pooling1d_10 (Gl (None, 64) 0 transformer_block_10[0][0] \n", "__________________________________________________________________________________________________\n", "global_average_pooling1d_11 (Gl (None, 64) 0 transformer_block_11[0][0] \n", "__________________________________________________________________________________________________\n", "dense_34 (Dense) (None, 32) 2080 global_average_pooling1d_8[0][0] \n", "__________________________________________________________________________________________________\n", "dense_37 (Dense) (None, 32) 2080 global_average_pooling1d_9[0][0] \n", "__________________________________________________________________________________________________\n", "dense_40 (Dense) (None, 32) 2080 global_average_pooling1d_10[0][0]\n", "__________________________________________________________________________________________________\n", "dense_43 (Dense) (None, 32) 2080 global_average_pooling1d_11[0][0]\n", "__________________________________________________________________________________________________\n", "bet (Dense) (None, 1) 33 dense_34[0][0] \n", "__________________________________________________________________________________________________\n", "mesco (Dense) (None, 1) 33 dense_37[0][0] \n", "__________________________________________________________________________________________________\n", "micro (Dense) (None, 1) 33 dense_40[0][0] \n", "__________________________________________________________________________________________________\n", "avg (Dense) (None, 1) 33 dense_43[0][0] \n", "==================================================================================================\n", "Total params: 513,108\n", "Trainable params: 513,108\n", "Non-trainable params: 0\n", "__________________________________________________________________________________________________\n" ] } ], "source": [ "prediction_model.summary()" ] }, { "cell_type": "code", "execution_count": 47, "id": "9289f452-a5a4-40c4-b942-f6cb2e348548", "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras import optimizers\n", "from tensorflow.python.keras.utils.vis_utils import plot_model" ] }, { "cell_type": "code", "execution_count": 48, "id": "2494ef5a-5b2b-4f11-b6cd-dc39503c9106", "metadata": {}, "outputs": [], "source": [ "X = np.expand_dims(train[feature_cols].values, axis=1)\n", "Y = [x for x in train[out_cols].values.T]\n", "Y_valid = [x for x in valid[out_cols].values.T]" ] }, { "cell_type": "code", "execution_count": 49, "id": "9a62dea1-4f05-411b-9756-a91623580581", "metadata": {}, "outputs": [], "source": [ "from keras.callbacks import ReduceLROnPlateau\n", "reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')" ] }, { "cell_type": "code", "execution_count": 50, "id": "cf869e4d-0fce-45a2-afff-46fd9b30fd1c", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-01-04 16:17:21.543163: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)\n", "2024-01-04 16:17:21.562835: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2200000000 Hz\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/160\n", "13/13 [==============================] - 6s 103ms/step - loss: 5.1128 - val_loss: 4.4845\n", "Epoch 2/160\n", "13/13 [==============================] - 0s 30ms/step - loss: 4.4173 - val_loss: 4.3305\n", "Epoch 3/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 4.0913 - val_loss: 4.4123\n", "Epoch 4/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 4.0410 - val_loss: 4.3142\n", "Epoch 5/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 3.9933 - val_loss: 4.5518\n", "Epoch 6/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 4.1234 - val_loss: 4.3268\n", "Epoch 7/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 4.0470 - val_loss: 4.2908\n", "Epoch 8/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 4.1230 - val_loss: 4.4964\n", "Epoch 9/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 3.8889 - val_loss: 4.0178\n", "Epoch 10/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 3.6648 - val_loss: 3.9010\n", "Epoch 11/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 3.7712 - val_loss: 3.9471\n", "Epoch 12/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 3.5449 - val_loss: 3.8723\n", "Epoch 13/160\n", "13/13 [==============================] - 0s 26ms/step - loss: 3.3373 - val_loss: 3.8543\n", "Epoch 14/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 3.5200 - val_loss: 3.8259\n", "Epoch 15/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 3.5623 - val_loss: 3.8838\n", "Epoch 16/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 3.3898 - val_loss: 3.8122\n", "Epoch 17/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 3.2718 - val_loss: 3.8799\n", "Epoch 18/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 3.3303 - val_loss: 3.7849\n", "Epoch 19/160\n", "13/13 [==============================] - 0s 26ms/step - loss: 3.2860 - val_loss: 3.7713\n", "Epoch 20/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 3.2669 - val_loss: 3.5689\n", "Epoch 21/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 3.2366 - val_loss: 3.5238\n", "Epoch 22/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 3.0037 - val_loss: 3.6039\n", "Epoch 23/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 3.2087 - val_loss: 3.5221\n", "Epoch 24/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 3.0619 - val_loss: 3.5939\n", "Epoch 25/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 3.0423 - val_loss: 3.2731\n", "Epoch 26/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 3.0533 - val_loss: 3.2256\n", "Epoch 27/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 3.0105 - val_loss: 3.2154\n", "Epoch 28/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 2.9607 - val_loss: 3.2926\n", "Epoch 29/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 3.0072 - val_loss: 3.5834\n", "Epoch 30/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.9276 - val_loss: 3.1635\n", "Epoch 31/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.8930 - val_loss: 3.1363\n", "Epoch 32/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.7904 - val_loss: 3.0188\n", "Epoch 33/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 2.6856 - val_loss: 2.9808\n", "Epoch 34/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 2.6503 - val_loss: 3.0943\n", "Epoch 35/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 2.5339 - val_loss: 2.9359\n", "Epoch 36/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 2.5369 - val_loss: 2.9704\n", "Epoch 37/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 2.5478 - val_loss: 2.9344\n", "Epoch 38/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 2.7129 - val_loss: 2.8326\n", "Epoch 39/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 2.3453 - val_loss: 2.8198\n", "Epoch 40/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 2.4666 - val_loss: 2.7701\n", "Epoch 41/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 2.3401 - val_loss: 2.7727\n", "Epoch 42/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.4369 - val_loss: 2.7568\n", "Epoch 43/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.2170 - val_loss: 2.6998\n", "Epoch 44/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 2.1565 - val_loss: 2.6711\n", "Epoch 45/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.1251 - val_loss: 2.6134\n", "Epoch 46/160\n", "13/13 [==============================] - 0s 30ms/step - loss: 2.1728 - val_loss: 2.6394\n", "Epoch 47/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.0609 - val_loss: 2.6568\n", "Epoch 48/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.0893 - val_loss: 2.6603\n", "Epoch 49/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 2.0615 - val_loss: 2.6517\n", "Epoch 50/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 2.0500 - val_loss: 2.6041\n", "Epoch 51/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.9309 - val_loss: 2.6218\n", "Epoch 52/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.9971 - val_loss: 2.4494\n", "Epoch 53/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 1.8514 - val_loss: 2.3886\n", "Epoch 54/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.7823 - val_loss: 2.5517\n", "Epoch 55/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.7059 - val_loss: 2.3293\n", "Epoch 56/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.7039 - val_loss: 2.3810\n", "Epoch 57/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.6961 - val_loss: 2.4552\n", "Epoch 58/160\n", "13/13 [==============================] - 0s 31ms/step - loss: 1.7350 - val_loss: 2.3526\n", "Epoch 59/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.5840 - val_loss: 2.2976\n", "Epoch 60/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.4915 - val_loss: 2.3516\n", "Epoch 61/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.5910 - val_loss: 2.2383\n", "Epoch 62/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.6101 - val_loss: 2.1474\n", "Epoch 63/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.4698 - val_loss: 2.1210\n", "Epoch 64/160\n", "13/13 [==============================] - 0s 31ms/step - loss: 1.4796 - val_loss: 2.0695\n", "Epoch 65/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.4472 - val_loss: 1.9768\n", "Epoch 66/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.6250 - val_loss: 2.1760\n", "Epoch 67/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.4058 - val_loss: 2.0605\n", "Epoch 68/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.4318 - val_loss: 2.1487\n", "Epoch 69/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.3285 - val_loss: 1.8259\n", "Epoch 70/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.4306 - val_loss: 1.7314\n", "Epoch 71/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.3449 - val_loss: 1.7509\n", "Epoch 72/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.2737 - val_loss: 1.8892\n", "Epoch 73/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.3647 - val_loss: 1.8109\n", "Epoch 74/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.3075 - val_loss: 1.8175\n", "Epoch 75/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.2765 - val_loss: 1.7334\n", "Epoch 76/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.2761 - val_loss: 1.7685\n", "Epoch 77/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.1870 - val_loss: 1.7683\n", "Epoch 78/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.1441 - val_loss: 1.8794\n", "Epoch 79/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.1193 - val_loss: 1.9073\n", "Epoch 80/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 1.1361 - val_loss: 1.8016\n", "Epoch 81/160\n", "13/13 [==============================] - 0s 26ms/step - loss: 1.0629 - val_loss: 1.8359\n", "Epoch 82/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.1137 - val_loss: 1.9310\n", "Epoch 83/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0947 - val_loss: 1.9212\n", "Epoch 84/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0225 - val_loss: 1.9027\n", "Epoch 85/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0892 - val_loss: 1.8943\n", "Epoch 86/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0387 - val_loss: 1.9131\n", "Epoch 87/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.0590 - val_loss: 1.8768\n", "Epoch 88/160\n", "13/13 [==============================] - 0s 27ms/step - loss: 1.0909 - val_loss: 1.8732\n", "Epoch 89/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.0632 - val_loss: 1.8506\n", "Epoch 90/160\n", "13/13 [==============================] - 0s 26ms/step - loss: 1.0703 - val_loss: 1.8108\n", "Epoch 91/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.0262 - val_loss: 1.8143\n", "Epoch 92/160\n", "13/13 [==============================] - 0s 27ms/step - loss: 1.0330 - val_loss: 1.8132\n", "Epoch 93/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0440 - val_loss: 1.8156\n", "Epoch 94/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0279 - val_loss: 1.8182\n", "Epoch 95/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0713 - val_loss: 1.8191\n", "Epoch 96/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0401 - val_loss: 1.8187\n", "Epoch 97/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0318 - val_loss: 1.8193\n", "Epoch 98/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0306 - val_loss: 1.8233\n", "Epoch 99/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0348 - val_loss: 1.8268\n", "Epoch 100/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 1.0165 - val_loss: 1.8276\n", "Epoch 101/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0826 - val_loss: 1.8275\n", "Epoch 102/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0631 - val_loss: 1.8269\n", "Epoch 103/160\n", "13/13 [==============================] - 0s 31ms/step - loss: 0.9980 - val_loss: 1.8268\n", "Epoch 104/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0245 - val_loss: 1.8270\n", "Epoch 105/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.1240 - val_loss: 1.8272\n", "Epoch 106/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0099 - val_loss: 1.8275\n", "Epoch 107/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0435 - val_loss: 1.8272\n", "Epoch 108/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0166 - val_loss: 1.8257\n", "Epoch 109/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.0462 - val_loss: 1.8256\n", "Epoch 110/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.1261 - val_loss: 1.8256\n", "Epoch 111/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0418 - val_loss: 1.8256\n", "Epoch 112/160\n", "13/13 [==============================] - 0s 27ms/step - loss: 0.9933 - val_loss: 1.8255\n", "Epoch 113/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0758 - val_loss: 1.8255\n", "Epoch 114/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0435 - val_loss: 1.8254\n", "Epoch 115/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0265 - val_loss: 1.8254\n", "Epoch 116/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0268 - val_loss: 1.8254\n", "Epoch 117/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0709 - val_loss: 1.8254\n", "Epoch 118/160\n", "13/13 [==============================] - 0s 36ms/step - loss: 1.0304 - val_loss: 1.8253\n", "Epoch 119/160\n", "13/13 [==============================] - 0s 25ms/step - loss: 1.0074 - val_loss: 1.8254\n", "Epoch 120/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0375 - val_loss: 1.8254\n", "Epoch 121/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0196 - val_loss: 1.8254\n", "Epoch 122/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0706 - val_loss: 1.8254\n", "Epoch 123/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0120 - val_loss: 1.8254\n", "Epoch 124/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0962 - val_loss: 1.8254\n", "Epoch 125/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 0.9942 - val_loss: 1.8254\n", "Epoch 126/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.0419 - val_loss: 1.8254\n", "Epoch 127/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.1072 - val_loss: 1.8254\n", "Epoch 128/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.0153 - val_loss: 1.8254\n", "Epoch 129/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0324 - val_loss: 1.8254\n", "Epoch 130/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0363 - val_loss: 1.8254\n", "Epoch 131/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 1.0624 - val_loss: 1.8254\n", "Epoch 132/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.1191 - val_loss: 1.8254\n", "Epoch 133/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0297 - val_loss: 1.8254\n", "Epoch 134/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0494 - val_loss: 1.8254\n", "Epoch 135/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0162 - val_loss: 1.8254\n", "Epoch 136/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 0.9976 - val_loss: 1.8254\n", "Epoch 137/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0401 - val_loss: 1.8254\n", "Epoch 138/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 0.9879 - val_loss: 1.8254\n", "Epoch 139/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0398 - val_loss: 1.8254\n", "Epoch 140/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0297 - val_loss: 1.8254\n", "Epoch 141/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0344 - val_loss: 1.8254\n", "Epoch 142/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0372 - val_loss: 1.8254\n", "Epoch 143/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.0513 - val_loss: 1.8254\n", "Epoch 144/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.0447 - val_loss: 1.8254\n", "Epoch 145/160\n", "13/13 [==============================] - 0s 26ms/step - loss: 1.0532 - val_loss: 1.8254\n", "Epoch 146/160\n", "13/13 [==============================] - 0s 29ms/step - loss: 1.0670 - val_loss: 1.8254\n", "Epoch 147/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.0499 - val_loss: 1.8254\n", "Epoch 148/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 1.0295 - val_loss: 1.8254\n", "Epoch 149/160\n", "13/13 [==============================] - 0s 27ms/step - loss: 1.1065 - val_loss: 1.8254\n", "Epoch 150/160\n", "13/13 [==============================] - 0s 27ms/step - loss: 1.1115 - val_loss: 1.8254\n", "Epoch 151/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.1047 - val_loss: 1.8254\n", "Epoch 152/160\n", "13/13 [==============================] - 0s 26ms/step - loss: 1.0098 - val_loss: 1.8254\n", "Epoch 153/160\n", "13/13 [==============================] - 0s 34ms/step - loss: 0.9954 - val_loss: 1.8254\n", "Epoch 154/160\n", "13/13 [==============================] - 0s 27ms/step - loss: 1.0815 - val_loss: 1.8254\n", "Epoch 155/160\n", "13/13 [==============================] - 0s 28ms/step - loss: 1.1248 - val_loss: 1.8254\n", "Epoch 156/160\n", "13/13 [==============================] - 0s 35ms/step - loss: 1.0116 - val_loss: 1.8254\n", "Epoch 157/160\n", "13/13 [==============================] - 0s 31ms/step - loss: 1.0502 - val_loss: 1.8254\n", "Epoch 158/160\n", "13/13 [==============================] - 0s 33ms/step - loss: 1.0578 - val_loss: 1.8254\n", "Epoch 159/160\n", "13/13 [==============================] - 0s 32ms/step - loss: 1.0356 - val_loss: 1.8254\n", "Epoch 160/160\n", "13/13 [==============================] - 0s 27ms/step - loss: 1.0162 - val_loss: 1.8254\n" ] } ], "source": [ "trainable_model.compile(optimizer='adam', loss=None)\n", "hist = trainable_model.fit([X, Y[0], Y[1], Y[2], Y[3]], epochs=160, batch_size=8, verbose=1, \n", " validation_data=[np.expand_dims(valid[feature_cols].values, axis=1), Y_valid[0], Y_valid[1], Y_valid[2], Y_valid[3]],\n", " callbacks=[reduce_lr]\n", " )" ] }, { "cell_type": "code", "execution_count": 27, "id": "67bfbe88-5f2c-4659-b2dc-eb9f1b824d04", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[array([[0.00237915],\n", " [0.21877757],\n", " [0.00211415],\n", " [0.00235748],\n", " [0.2187585 ],\n", " [0.25013232],\n", " [0.00218698],\n", " [0.00213578],\n", " [0.0021604 ],\n", " [0.00213698],\n", " [0.00215602],\n", " [0.00211859],\n", " [0.00211859]], dtype=float32),\n", " array([[0.26313323],\n", " [0.43726084],\n", " [0.257788 ],\n", " [0.2622419 ],\n", " [0.43731606],\n", " [0.41615662],\n", " [0.2588436 ],\n", " [0.2605151 ],\n", " [0.2610975 ],\n", " [0.26035452],\n", " [0.25860977],\n", " [0.25888485],\n", " [0.2590733 ]], dtype=float32),\n", " array([[0.03315076],\n", " [0.43969226],\n", " [0.0066632 ],\n", " [0.0311569 ],\n", " [0.4396916 ],\n", " [0.46122804],\n", " [0.01751196],\n", " [0.0046435 ],\n", " [0.00397068],\n", " [0.00480857],\n", " [0.01166728],\n", " [0.00597936],\n", " [0.00580207]], dtype=float32),\n", " array([[0.2627051 ],\n", " [0.25722986],\n", " [0.30297792],\n", " [0.26330546],\n", " [0.25718838],\n", " [0.30138326],\n", " [0.27484083],\n", " [0.3198207 ],\n", " [0.3352574 ],\n", " [0.31860778],\n", " [0.28594404],\n", " [0.30712652],\n", " [0.3081199 ]], dtype=float32)]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rst = prediction_model.predict(np.expand_dims(test[feature_cols], axis=1))\n", "rst" ] }, { "cell_type": "code", "execution_count": 28, "id": "7de501e9-05a2-424c-a5f4-85d43ad37592", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[0.44671712167235617,\n", " 0.995773503303174,\n", " 0.8775154468883085,\n", " 0.9863306026616467]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[np.exp(K.get_value(log_var[0]))**0.5 for log_var in trainable_model.layers[-1].log_vars]" ] }, { "cell_type": "code", "execution_count": 29, "id": "b0d5d8ad-aadd-4218-b5b7-9691a2d3eeef", "metadata": {}, "outputs": [], "source": [ "pred_rst = pd.DataFrame.from_records(np.squeeze(np.asarray(rst), axis=2).T, columns=out_cols)" ] }, { "cell_type": "code", "execution_count": 30, "id": "0a2bcb45-da86-471b-a61d-314e29430d6a", "metadata": {}, "outputs": [], "source": [ "real_rst = test[out_cols].copy()" ] }, { "cell_type": "code", "execution_count": 31, "id": "e124f7c0-fdd5-43b9-b649-ff7d9dd59641", "metadata": {}, "outputs": [], "source": [ "for col in out_cols:\n", " pred_rst[col] = pred_rst[col] * (maxs[col] - mins[col]) + mins[col]\n", " real_rst[col] = real_rst[col] * (maxs[col] - mins[col]) + mins[col]" ] }, { "cell_type": "code", "execution_count": 32, "id": "5c69d03b-34fd-4dbf-aec6-c15093bb22ab", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['碳材料结构特征-比表面积', '碳材料结构特征-总孔体积', '碳材料结构特征-微孔体积', '碳材料结构特征-平均孔径'], dtype='object')" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "real_rst.columns" ] }, { "cell_type": "code", "execution_count": 33, "id": "21739f82-d82a-4bde-8537-9504b68a96d5", "metadata": {}, "outputs": [], "source": [ "y_pred_pm25 = pred_rst['碳材料结构特征-比表面积'].values.reshape(-1,)\n", "y_pred_pm10 = pred_rst['碳材料结构特征-总孔体积'].values.reshape(-1,)\n", "y_pred_so2 = pred_rst['碳材料结构特征-微孔体积'].values.reshape(-1,)\n", "y_pred_no2 = pred_rst['碳材料结构特征-平均孔径'].values.reshape(-1,)\n", "y_true_pm25 = real_rst['碳材料结构特征-比表面积'].values.reshape(-1,)\n", "y_true_pm10 = real_rst['碳材料结构特征-总孔体积'].values.reshape(-1,)\n", "y_true_so2 = real_rst['碳材料结构特征-微孔体积'].values.reshape(-1,)\n", "y_true_no2 = real_rst['碳材料结构特征-平均孔径'].values.reshape(-1,)" ] }, { "cell_type": "code", "execution_count": 34, "id": "26ea6cfa-efad-443c-9dd9-844f8be42b91", "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, mean_absolute_percentage_error" ] }, { "cell_type": "code", "execution_count": 35, "id": "28072e7c-c9d5-4ff6-940d-e94ae879afc9", "metadata": {}, "outputs": [], "source": [ "def print_eva(y_true, y_pred, tp):\n", " MSE = mean_squared_error(y_true, y_pred)\n", " RMSE = np.sqrt(MSE)\n", " MAE = mean_absolute_error(y_true, y_pred)\n", " MAPE = mean_absolute_percentage_error(y_true, y_pred)\n", " R_2 = r2_score(y_true, y_pred)\n", " print(f\"COL: {tp}, MSE: {format(MSE, '.2E')}\", end=',')\n", " print(f'RMSE: {round(RMSE, 4)}', end=',')\n", " print(f'MAPE: {round(MAPE, 4) * 100} %', end=',')\n", " print(f'MAE: {round(MAE, 4)}', end=',')\n", " print(f'R_2: {round(R_2, 4)}')\n", " return [MSE, RMSE, MAE, MAPE, R_2]" ] }, { "cell_type": "code", "execution_count": 36, "id": "4ec4caa9-7c46-4fc8-a94b-cb659e924304", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "COL: 比表面积, MSE: 2.59E+06,RMSE: 1609.7549,MAPE: 90.44 %,MAE: 1456.9479,R_2: -3.4577\n", "COL: 总孔体积, MSE: 2.74E-01,RMSE: 0.5234,MAPE: 36.559999999999995 %,MAE: 0.4001,R_2: 0.1427\n", "COL: 微孔体积, MSE: 1.45E-01,RMSE: 0.3802,MAPE: 77.27000000000001 %,MAE: 0.324,R_2: -2.0216\n", "COL: 平均孔径, MSE: 1.44E+00,RMSE: 1.201,MAPE: 42.24 %,MAE: 1.0489,R_2: -0.0048\n" ] } ], "source": [ "pm25_eva = print_eva(y_true_pm25, y_pred_pm25, tp='比表面积')\n", "pm10_eva = print_eva(y_true_pm10, y_pred_pm10, tp='总孔体积')\n", "so2_eva = print_eva(y_true_so2, y_pred_so2, tp='微孔体积')\n", "nox_eva = print_eva(y_true_no2, y_pred_no2, tp='平均孔径')" ] }, { "cell_type": "code", "execution_count": null, "id": "ac4a4339-ec7d-4266-8197-5276c2395288", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "f15cbb91-1ce7-4fb0-979a-a4bdc452a1ec", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" } }, "nbformat": 4, "nbformat_minor": 5 }