964 KiB
964 KiB
In [1]:
from statistics import mean import matplotlib.pyplot as plt from sklearn.metrics import explained_variance_score,r2_score,median_absolute_error,mean_squared_error,mean_absolute_error from scipy import stats import numpy as np plt.rcParams["font.sans-serif"] = ["SimHei"] # 设置字体 plt.rcParams["font.size"] = 16 plt.rcParams["axes.unicode_minus"] = False # 正常显示负号
In [20]:
def scatter_out_1(x,y): ## x,y为两个需要做对比分析的两个量。 # ==========计算评价指标========== BIAS = mean(x - y) MSE = mean_squared_error(x, y) RMSE = np.power(MSE, 0.5) R2 = r2_score(x, y) MAE = mean_absolute_error(x, y) EV = explained_variance_score(x, y) print('==========算法评价指标==========') print('BIAS:', '%.3f' % (BIAS)) print('Explained Variance(EV):', '%.3f' % (EV)) print('Mean Absolute Error(MAE):', '%.3f' % (MAE)) print('Mean squared error(MSE):', '%.3f' % (MSE)) print('Root Mean Squard Error(RMSE):', '%.3f' % (RMSE)) print('R_squared:', '%.3f' % (R2)) # ===========Calculate the point density========== xy = np.vstack([x, y]) z = stats.gaussian_kde(xy)(xy) # ===========Sort the points by density, so that the densest points are plotted last=========== idx = z.argsort() x, y, z = x[idx], y[idx], z[idx] def best_fit_slope_and_intercept(xs, ys): m = (((mean(xs) * mean(ys)) - mean(xs * ys)) / ((mean(xs) * mean(xs)) - mean(xs * xs))) b = mean(ys) - m * mean(xs) return m, b m, b = best_fit_slope_and_intercept(x, y) regression_line = [] for a in x: regression_line.append((m * a) + b) fig,ax=plt.subplots(figsize=(12,9),dpi=600) scatter=ax.scatter(x,y,marker='o',c=z, edgecolors='b',s=15,label='LST',cmap='Spectral_r') cbar=plt.colorbar(scatter,shrink=1,orientation='vertical',extend='both',pad=0.015,aspect=30,label='frequency', ) plt.plot([0,35],[0,35],'black',lw=1.5) # 画的1:1线,线的颜色为black,线宽为0.8 plt.plot(x,regression_line,'red',lw=1.5) # 预测与实测数据之间的回归线 plt.axis([0,35,0,35]) # 设置线的范围 plt.title("总孔体积拟合结果 $10^2 cm^3$", fontdict={"fontsize":16}) plt.xlabel('预测值', fontdict={"fontsize":16}) plt.ylabel('真实值', fontdict={"fontsize":16}) plt.text(0.5,34, '$N=%.f$' % len(y), fontdict={"fontsize":16}) # text的位置需要根据x,y的大小范围进行调整。 plt.text(0.5,33, '$R^2=%.3f$' % R2, fontdict={"fontsize":16}) plt.text(0.5,32, '$BIAS=%.4f$' % BIAS, fontdict={"fontsize":16}) plt.text(0.5,31, '$RMSE=%.3f$' % RMSE, fontdict={"fontsize":16}) plt.xlim(0,35) # 设置x坐标轴的显示范围 plt.ylim(0,35) # 设置y坐标轴的显示范围 plt.savefig('./总孔体积.png',dpi=300, bbox_inches='tight',pad_inches=0) plt.show()
In [21]:
import pandas as pd
In [22]:
df = pd.read_csv('./rst/总孔体积_比表.csv')
In [23]:
df.describe()
Out[23]:
真实值 | 预测值 | |
---|---|---|
count | 184.000000 | 184.000000 |
mean | 267.871020 | 272.776239 |
std | 696.475264 | 693.395059 |
min | 0.060000 | 0.069085 |
25% | 0.539250 | 0.570501 |
50% | 0.877000 | 0.889113 |
75% | 1.673250 | 1.551479 |
max | 3322.000000 | 3225.575700 |
In [24]:
scatter_out_1(df['预测值'].values/100, df['真实值'].values/100)
==========算法评价指标========== BIAS: 0.049 Explained Variance(EV): 0.921 Mean Absolute Error(MAE): 0.622 Mean squared error(MSE): 3.797 Root Mean Squard Error(RMSE): 1.949 R_squared: 0.921
In [12]:
samples = np.random.choice(df.index.values, 50, replace=False) plt.figure(figsize=(12, 9)) plt.plot(range(len(samples)), df.iloc[samples]['预测值'].values, 'o-', label='预测值') plt.plot(range(len(samples)), df.iloc[samples]['真实值'].values, '*-', label='真实值') plt.xlabel('预测值 $(10^2 cm^3/g)$', fontdict={"fontsize":16}) plt.ylabel('真实值 $(10^2 cm^3/g)$', fontdict={"fontsize":16}) plt.title('氮气吸附量拟合结果') plt.legend(loc='best') plt.show()
In [ ]: