392 KiB
392 KiB
In [1]:
import pandas as pd
In [2]:
data = pd.read_excel('./data/20240123/煤炭数据.xlsx', header=[1]) data.head()
Out[2]:
灰分(d) | 挥发分(daf) | 活化剂种类 | 活化剂比例 | 混合方式 | 活化温度 | 活化时间 | 升温速率 | 比表面积 | 总孔体积 | 微孔体积 | Unnamed: 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 11.25 | 17.06 | KOH | 3.0 | 研磨 | 800 | 1.0 | 5.0 | 2784.0 | 1.0830 | 0.853 | 刘宇昊\n煤基活性炭的制备及其电化学性能研究 学位论文 |
1 | 8.53 | 13.46 | KOH | 3.0 | 研磨 | 800 | 1.0 | 5.0 | 2934.0 | 1.2290 | 1.074 | NaN |
2 | 18.08 | 13.85 | KOH | 3.0 | 研磨 | 800 | 1.0 | 5.0 | 3059.0 | 1.3044 | 1.011 | NaN |
3 | 11.42 | 12.31 | KOH | 3.0 | 研磨 | 800 | 1.0 | 5.0 | 2365.0 | 0.8030 | 0.605 | NaN |
4 | 11.60 | 8.49 | KOH | 3.0 | 研磨 | 800 | 1.0 | 5.0 | 2988.0 | 1.2820 | 0.944 | NaN |
In [3]:
data.drop(columns=data.columns[-1], inplace=True)
In [4]:
data.columns
Out[4]:
Index(['灰分(d)', '挥发分(daf)', '活化剂种类', '活化剂比例', '混合方式', '活化温度', '活化时间', '升温速率',
'比表面积', '总孔体积', '微孔体积'],
dtype='object')
In [5]:
object_cols = ['活化剂种类', '混合方式']
In [6]:
data = pd.get_dummies(data, columns=object_cols)
In [7]:
out_cols = ['比表面积', '总孔体积', '微孔体积'] feature_cols = [x for x in data.columns if x not in out_cols]
In [8]:
train_data = data.reset_index(drop=True)
In [9]:
train_data.shape
Out[9]:
(174, 12)
In [10]:
import xgboost as xgb from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error, r2_score
In [11]:
from sklearn.model_selection import KFold, train_test_split kf = KFold(n_splits=6, shuffle=True, random_state=42)
In [12]:
import numpy as np
In [13]:
params_xgb = {"objective": 'reg:squarederror', "subsample": 0.8, "max_depth": 20, "eta": 0.01, "colsample_bytree": 0.9,} num_boost_round = 1000
In [14]:
import matplotlib.pyplot as plt
In [15]:
plt.rcParams["font.sans-serif"] = ["SimHei"] # 设置字体 plt.rcParams["axes.unicode_minus"] = False # 正常显示负号
In [16]:
eva_total = list() index_list = list() eva_cols = ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2'] for col in out_cols: eva_list = list() train_data = train_data[~train_data[col].isna()].reset_index(drop=True) cur_test = list() cur_real = list() for (train_index, test_index) in kf.split(train_data): train = train_data.loc[train_index] valid = train_data.loc[test_index] X_train, Y_train = train[feature_cols], train[col] X_valid, Y_valid = valid[feature_cols], valid[col] dtrain = xgb.DMatrix(X_train, Y_train) dvalid = xgb.DMatrix(X_valid, Y_valid) watchlist = [(dvalid, 'eval')] gb_model = xgb.train(params_xgb, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=100, verbose_eval=False) y_pred = gb_model.predict(xgb.DMatrix(X_valid)) y_true = Y_valid.values MSE = mean_squared_error(y_true, y_pred) RMSE = np.sqrt(mean_squared_error(y_true, y_pred)) MAE = mean_absolute_error(y_true, y_pred) MAPE = mean_absolute_percentage_error(y_true, y_pred) R_2 = r2_score(y_true, y_pred) cur_test.extend(y_pred[:7]) cur_real.extend(y_true[:7]) print('MSE:', round(MSE, 4), end=', ') print('RMSE:', round(RMSE, 4), end=', ') print('MAE:', round(MAE, 4), end=', ') print('MAPE:', round(MAPE*100, 2), '%', end=', ') print('R_2:', round(R_2, 4)) #R方为负就说明拟合效果比平均值差 eva_list.append([MSE, RMSE, MAE, MAPE, R_2]) plt.figure(figsize=(12, 8)) plt.plot(range(len(cur_test)), cur_real, 'o-', label='real') plt.plot(range(len(cur_test)), cur_test, '*-', label='pred') plt.legend(loc='best') plt.title(f'{col}') plt.show() eva_total.append(np.mean(eva_list, axis=0)) index_list.append(f"{col}")
MSE: 159642.0815, RMSE: 399.5524, MAE: 274.5969, MAPE: 24.34 %, R_2: 0.7942 MSE: 193553.7041, RMSE: 439.9474, MAE: 328.694, MAPE: 35.35 %, R_2: 0.814 MSE: 220477.246, RMSE: 469.55, MAE: 306.6159, MAPE: 22.42 %, R_2: 0.7381 MSE: 290738.4856, RMSE: 539.2017, MAE: 385.6497, MAPE: 63.87 %, R_2: 0.6771 MSE: 198924.8773, RMSE: 446.01, MAE: 301.0048, MAPE: 31.69 %, R_2: 0.5602 MSE: 129420.5336, RMSE: 359.7507, MAE: 268.3835, MAPE: 38.83 %, R_2: 0.8213
MSE: 0.0829, RMSE: 0.2879, MAE: 0.193, MAPE: 55.19 %, R_2: 0.7327 MSE: 0.0702, RMSE: 0.2649, MAE: 0.1854, MAPE: 20.28 %, R_2: 0.8429 MSE: 0.0386, RMSE: 0.1964, MAE: 0.1393, MAPE: 19.43 %, R_2: 0.8072 MSE: 0.0497, RMSE: 0.2229, MAE: 0.1722, MAPE: 26.26 %, R_2: 0.8521 MSE: 0.0634, RMSE: 0.2519, MAE: 0.1608, MAPE: 37.87 %, R_2: 0.4996 MSE: 0.0488, RMSE: 0.2209, MAE: 0.1573, MAPE: 56.68 %, R_2: 0.8303
MSE: 0.0212, RMSE: 0.1456, MAE: 0.1027, MAPE: 19.78 %, R_2: 0.6947 MSE: 0.0632, RMSE: 0.2514, MAE: 0.1479, MAPE: 22.03 %, R_2: 0.6062 MSE: 0.0898, RMSE: 0.2997, MAE: 0.1758, MAPE: 27.82 %, R_2: 0.3597 MSE: 0.0234, RMSE: 0.153, MAE: 0.1014, MAPE: 21.71 %, R_2: 0.499 MSE: 0.0434, RMSE: 0.2083, MAE: 0.1318, MAPE: 46.08 %, R_2: 0.5236 MSE: 0.056, RMSE: 0.2366, MAE: 0.1601, MAPE: 23.9 %, R_2: 0.2317
In [17]:
pd.DataFrame.from_records(eva_total, index=index_list, columns=eva_cols)
Out[17]:
MSE | RMSE | MAE | MAPE | R2 | |
---|---|---|---|---|---|
比表面积 | 198792.821359 | 442.335351 | 310.824134 | 0.360828 | 0.734146 |
总孔体积 | 0.058931 | 0.240825 | 0.167995 | 0.359498 | 0.760793 |
微孔体积 | 0.049497 | 0.215764 | 0.136619 | 0.268889 | 0.485802 |
In [ ]: