coal_materials/.ipynb_checkpoints/multi-task-NN-checkpoint.ipynb

219 KiB
Raw Permalink Blame History

In [1]:
import os
In [3]:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
#新增加的两行
from pylab import mpl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]

mpl.rcParams["axes.unicode_minus"] = False
In [4]:
data = pd.read_excel('./data/20240123/煤炭数据.xlsx', header=[1])
data.drop(columns=data.columns[11:], inplace=True)
In [5]:
object_cols = ['活化剂种类', '混合方式']
data = pd.get_dummies(data, columns=object_cols)
In [6]:
out_cols = ['比表面积', '总孔体积', '微孔体积']
feature_cols = [x for x in data.columns if x not in out_cols]
In [7]:
train_data = data.dropna(subset=out_cols).ffill().reset_index(drop=True)
train_data
Out[7]:
灰分(d) 挥发分(daf 活化剂比例 活化温度 活化时间 升温速率 比表面积 总孔体积 微孔体积 活化剂种类_KOH 混合方式_浸渍 混合方式_研磨
0 11.25 17.06 3.0 800 1.0 5.0 2784.0 1.0830 0.853 1 0 1
1 8.53 13.46 3.0 800 1.0 5.0 2934.0 1.2290 1.074 1 0 1
2 18.08 13.85 3.0 800 1.0 5.0 3059.0 1.3044 1.011 1 0 1
3 11.42 12.31 3.0 800 1.0 5.0 2365.0 0.8030 0.605 1 0 1
4 11.60 8.49 3.0 800 1.0 5.0 2988.0 1.2820 0.944 1 0 1
... ... ... ... ... ... ... ... ... ... ... ... ...
153 4.18 9.77 1.5 800 1.0 5.0 1772.0 0.7383 0.660 1 0 1
154 4.18 9.77 2.0 800 1.0 5.0 2382.0 1.0370 0.899 1 0 1
155 4.18 9.77 2.5 800 1.0 5.0 2996.0 1.3520 1.162 1 0 1
156 4.18 9.77 3.0 800 1.0 5.0 3142.0 1.6080 1.204 1 0 1
157 4.18 9.77 3.5 800 1.0 5.0 3389.0 2.0410 1.022 1 0 1

158 rows × 12 columns

In [10]:
import seaborn as sns
In [11]:
train_data['比表面积'] = np.log1p(train_data['比表面积'])
In [12]:
import tensorflow as tf
import keras
from keras import layers
import keras.backend as K
2024-04-08 11:13:19.810980: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
In [13]:
class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, name, rate=0.1):
        super().__init__()
        self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim, name=name)
        self.ffn = keras.Sequential(
            [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
        )
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(rate)
        self.dropout2 = layers.Dropout(rate)

    def call(self, inputs, training):
        attn_output = self.att(inputs, inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)
In [14]:
from keras import Model
In [15]:
from keras.initializers import Constant
In [16]:
# Custom loss layer
class CustomMultiLossLayer(layers.Layer):
    def __init__(self, nb_outputs=2, **kwargs):
        self.nb_outputs = nb_outputs
        self.is_placeholder = True
        super(CustomMultiLossLayer, self).__init__(**kwargs)
        
    def build(self, input_shape=None):
        # initialise log_vars
        self.log_vars = []
        for i in range(self.nb_outputs):
            self.log_vars += [self.add_weight(name='log_var' + str(i), shape=(1,),
                                              initializer=tf.initializers.he_normal(), trainable=True)]
        super(CustomMultiLossLayer, self).build(input_shape)

    def multi_loss(self, ys_true, ys_pred):
        assert len(ys_true) == self.nb_outputs and len(ys_pred) == self.nb_outputs
        loss = 0
        for y_true, y_pred, log_var in zip(ys_true, ys_pred, self.log_vars):
            mse = (y_true - y_pred) ** 2.
            pre = K.exp(-log_var[0])
            loss += tf.abs(tf.reduce_logsumexp(pre * mse + log_var[0], axis=-1))
        return K.mean(loss)

    def call(self, inputs):
        ys_true = inputs[:self.nb_outputs]
        ys_pred = inputs[self.nb_outputs:]
        loss = self.multi_loss(ys_true, ys_pred)
        self.add_loss(loss, inputs=inputs)
        # We won't actually use the output.
        return K.concatenate(inputs, -1)
In [17]:
num_heads, ff_dim = 3, 12
In [18]:
def get_prediction_model():
    def build_output(out, out_name):
        # self_block = TransformerBlock(64, num_heads, ff_dim, name=f'{out_name}_attn')
        # out = self_block(out)
        # out = layers.GlobalAveragePooling1D()(out)
        # out = layers.Dropout(0.1)(out)
        out = layers.Dense(32, activation="relu")(out)
        return out
    inputs = layers.Input(shape=(1,len(feature_cols)), name='input')
    x = layers.Conv1D(filters=64, kernel_size=1, activation='relu')(inputs)
    x = layers.Dropout(rate=0.1)(x)
    lstm_out = layers.Bidirectional(layers.LSTM(units=64, return_sequences=True))(x)
    out = layers.Dense(128, activation='relu')(lstm_out)
    transformer_block = TransformerBlock(128, num_heads, ff_dim, name='first_attn')
    out = transformer_block(lstm_out)
    out = layers.GlobalAveragePooling1D()(out)
    out = layers.Dropout(0.1)(out)
    out = layers.Dense(64, activation='relu')(out)
    # out = K.expand_dims(out, axis=1)

    bet = build_output(out, 'bet')
    mesco = build_output(out, 'mesco')
    micro = build_output(out, 'micro')

    bet = layers.Dense(1, activation='sigmoid', name='bet2')(bet)
    mesco = layers.Dense(1, activation='sigmoid', name='mesco2')(mesco)
    micro = layers.Dense(1, activation='sigmoid', name='micro2')(micro)

    model = Model(inputs=[inputs], outputs=[bet, mesco, micro])
    return model
In [19]:
def get_trainable_model(prediction_model):
    inputs = layers.Input(shape=(1,len(feature_cols)), name='input')
    bet, mesco, micro = prediction_model(inputs)
    bet_real = layers.Input(shape=(1,), name='bet_real')
    mesco_real = layers.Input(shape=(1,), name='mesco_real')
    micro_real = layers.Input(shape=(1,), name='micro_real')
    out = CustomMultiLossLayer(nb_outputs=3)([bet_real, mesco_real, micro_real, bet, mesco, micro])
    return Model([inputs, bet_real, mesco_real, micro_real], out)
In [20]:
maxs = train_data.max()
mins = train_data.min()
for col in train_data.columns:
    train_data[col] = train_data[col].astype(float)
    if maxs[col] - mins[col] == 0:
        continue
    train_data[col] = (train_data[col] - mins[col]) / (maxs[col] - mins[col])
In [21]:
train_data
Out[21]:
灰分(d) 挥发分(daf 活化剂比例 活化温度 活化时间 升温速率 比表面积 总孔体积 微孔体积 活化剂种类_KOH 混合方式_浸渍 混合方式_研磨
0 0.265345 0.224627 0.491525 0.62963 0.142857 0.0 0.916251 0.371910 0.417894 1.0 0.0 1.0
1 0.201133 0.160752 0.491525 0.62963 0.142857 0.0 0.929645 0.426592 0.538462 1.0 0.0 1.0
2 0.426582 0.167672 0.491525 0.62963 0.142857 0.0 0.940237 0.454831 0.504092 1.0 0.0 1.0
3 0.269358 0.140348 0.491525 0.62963 0.142857 0.0 0.874116 0.267041 0.282597 1.0 0.0 1.0
4 0.273607 0.072569 0.491525 0.62963 0.142857 0.0 0.934281 0.446442 0.467540 1.0 0.0 1.0
... ... ... ... ... ... ... ... ... ... ... ... ...
153 0.098442 0.095280 0.237288 0.62963 0.142857 0.0 0.797597 0.242809 0.312602 1.0 0.0 1.0
154 0.098442 0.095280 0.322034 0.62963 0.142857 0.0 0.875983 0.354682 0.442990 1.0 0.0 1.0
155 0.098442 0.095280 0.406780 0.62963 0.142857 0.0 0.934960 0.472659 0.586470 1.0 0.0 1.0
156 0.098442 0.095280 0.491525 0.62963 0.142857 0.0 0.947009 0.568539 0.609384 1.0 0.0 1.0
157 0.098442 0.095280 0.576271 0.62963 0.142857 0.0 0.966042 0.730712 0.510093 1.0 0.0 1.0

158 rows × 12 columns

In [22]:
# feature_cols = [x for x in train_data.columns if x not in out_cols and '第二次' not in x]
feature_cols = [x for x in train_data.columns if x not in out_cols]
use_cols = feature_cols + out_cols
In [23]:
use_data = train_data[use_cols].copy()
for col in use_cols:
    use_data[col] = use_data[col].astype('float32')
In [24]:
from sklearn.model_selection import KFold
kf = KFold(n_splits=10, shuffle=True, random_state=42)
In [25]:
from keras import optimizers
In [26]:
from keras.callbacks import ReduceLROnPlateau
reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
In [27]:
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, mean_absolute_percentage_error
def print_eva(y_true, y_pred, tp):
    MSE = mean_squared_error(y_true, y_pred)
    RMSE = np.sqrt(MSE)
    MAE = mean_absolute_error(y_true, y_pred)
    MAPE = mean_absolute_percentage_error(y_true, y_pred)
    R_2 = r2_score(y_true, y_pred)
    print(f"COL: {tp}, MSE: {format(MSE, '.2E')}", end=',')
    print(f'RMSE: {round(RMSE, 4)}', end=',')
    print(f'MAPE: {round(MAPE, 4) * 100} %', end=',')
    print(f'MAE: {round(MAE, 4)}', end=',')
    print(f'R_2: {round(R_2, 4)}')
    return [MSE, RMSE, MAE, MAPE, R_2]
In [ ]:
total_bet = list()
total_micro = list()
total_mesco = list()
for train_index, test_index in kf.split(use_data):
    test = use_data.iloc[test_index].copy()
    train = use_data.iloc[train_index].copy()
    train, valid = train_test_split(train, test_size=0.2, random_state=42, shuffle=True)
    prediction_model = get_prediction_model()
    trainable_model = get_trainable_model(prediction_model)
    X = np.expand_dims(train[feature_cols].values, axis=1)
    Y = [x for x in train[out_cols].values.T]
    Y_valid = [x for x in valid[out_cols].values.T]
    X_valid = np.expand_dims(valid[feature_cols].values, axis=1)
    trainable_model.compile(optimizer='adam', loss=None)
    hist = trainable_model.fit([X, Y[0], Y[1], Y[2]], epochs=280, batch_size=8, verbose=1, 
                               validation_data=[X_valid, Y_valid[0], Y_valid[1], Y_valid[2]],
                               callbacks=[reduce_lr]
                               )
    rst = prediction_model.predict(np.expand_dims(test[feature_cols], axis=1))
    pred_rst = pd.DataFrame.from_records(np.squeeze(np.asarray(rst), axis=2).T, columns=out_cols)
    real_rst = test[out_cols].copy()
    for col in out_cols:
        pred_rst[col] = pred_rst[col] * (maxs[col] - mins[col]) + mins[col]
        real_rst[col] = real_rst[col] * (maxs[col] - mins[col]) + mins[col]
    pred_rst['比表面积'] = np.expm1(pred_rst['比表面积'])
    real_rst['比表面积'] = np.expm1(real_rst['比表面积'])
    y_pred_pm25 = pred_rst['比表面积'].values.reshape(-1,)
    y_pred_pm10 = pred_rst['总孔体积'].values.reshape(-1,)
    y_pred_so2 = pred_rst['微孔体积'].values.reshape(-1,)
    y_true_pm25 = real_rst['比表面积'].values.reshape(-1,)
    y_true_pm10 = real_rst['总孔体积'].values.reshape(-1,)
    y_true_so2 = real_rst['微孔体积'].values.reshape(-1,)
    bet_eva = print_eva(y_true_pm25, y_pred_pm25, tp='比表面积')
    mesco_eva = print_eva(y_true_pm10, y_pred_pm10, tp='总孔体积')
    micro_eva = print_eva(y_true_so2, y_pred_so2, tp='微孔体积')
    total_bet.append(bet_eva)
    total_mesco.append(mesco_eva)
    total_micro.append(micro_eva)
2024-04-08 11:13:33.925432: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
2024-04-08 11:13:33.947575: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:9c:00.0 name: NVIDIA A100-PCIE-40GB computeCapability: 8.0
coreClock: 1.41GHz coreCount: 108 deviceMemorySize: 39.44GiB deviceMemoryBandwidth: 1.41TiB/s
2024-04-08 11:13:33.947605: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
2024-04-08 11:13:33.968875: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
2024-04-08 11:13:33.968940: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
2024-04-08 11:13:33.972012: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
2024-04-08 11:13:33.972302: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
2024-04-08 11:13:33.972899: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
2024-04-08 11:13:33.973713: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
2024-04-08 11:13:33.973880: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
2024-04-08 11:13:33.976420: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2024-04-08 11:13:33.976836: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-04-08 11:13:33.986546: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:9c:00.0 name: NVIDIA A100-PCIE-40GB computeCapability: 8.0
coreClock: 1.41GHz coreCount: 108 deviceMemorySize: 39.44GiB deviceMemoryBandwidth: 1.41TiB/s
2024-04-08 11:13:33.989040: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2024-04-08 11:13:33.989091: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
2024-04-08 11:13:34.622398: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
2024-04-08 11:13:34.622417: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0 
2024-04-08 11:13:34.622422: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N 
2024-04-08 11:13:34.626343: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 37675 MB memory) -> physical GPU (device: 0, name: NVIDIA A100-PCIE-40GB, pci bus id: 0000:9c:00.0, compute capability: 8.0)
2024-04-08 11:13:47.978373: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
2024-04-08 11:13:47.994803: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2200000000 Hz
Epoch 1/280
2024-04-08 11:14:01.812069: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
2024-04-08 11:14:02.937519: I tensorflow/stream_executor/cuda/cuda_dnn.cc:359] Loaded cuDNN version 8700
2024-04-08 11:14:03.573600: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
2024-04-08 11:14:03.574110: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
2024-04-08 11:14:03.806121: I tensorflow/stream_executor/cuda/cuda_blas.cc:1838] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.
15/15 [==============================] - 18s 101ms/step - loss: 6.0853 - val_loss: 6.0270
Epoch 2/280
15/15 [==============================] - 0s 13ms/step - loss: 6.0146 - val_loss: 5.9848
Epoch 3/280
15/15 [==============================] - 0s 13ms/step - loss: 5.9665 - val_loss: 5.9331
Epoch 4/280
15/15 [==============================] - 0s 13ms/step - loss: 5.9214 - val_loss: 5.8883
Epoch 5/280
15/15 [==============================] - 0s 13ms/step - loss: 5.8715 - val_loss: 5.8414
Epoch 6/280
15/15 [==============================] - 0s 12ms/step - loss: 5.8291 - val_loss: 5.7992
Epoch 7/280
15/15 [==============================] - 0s 14ms/step - loss: 5.7840 - val_loss: 5.7525
Epoch 8/280
15/15 [==============================] - 0s 14ms/step - loss: 5.7362 - val_loss: 5.7064
Epoch 9/280
15/15 [==============================] - 0s 12ms/step - loss: 5.6912 - val_loss: 5.6601
Epoch 10/280
15/15 [==============================] - 0s 16ms/step - loss: 5.6494 - val_loss: 5.6172
Epoch 11/280
15/15 [==============================] - 0s 13ms/step - loss: 5.6031 - val_loss: 5.5690
Epoch 12/280
15/15 [==============================] - 0s 12ms/step - loss: 5.5554 - val_loss: 5.5244
Epoch 13/280
15/15 [==============================] - 0s 12ms/step - loss: 5.5094 - val_loss: 5.4814
Epoch 14/280
15/15 [==============================] - 0s 12ms/step - loss: 5.4629 - val_loss: 5.4334
Epoch 15/280
15/15 [==============================] - 0s 13ms/step - loss: 5.4173 - val_loss: 5.3924
Epoch 16/280
15/15 [==============================] - 0s 13ms/step - loss: 5.3758 - val_loss: 5.3440
Epoch 17/280
15/15 [==============================] - 0s 14ms/step - loss: 5.3243 - val_loss: 5.2960
Epoch 18/280
15/15 [==============================] - 0s 14ms/step - loss: 5.2835 - val_loss: 5.2535
Epoch 19/280
15/15 [==============================] - 0s 13ms/step - loss: 5.2403 - val_loss: 5.2099
Epoch 20/280
15/15 [==============================] - 0s 12ms/step - loss: 5.1915 - val_loss: 5.1600
Epoch 21/280
15/15 [==============================] - 0s 13ms/step - loss: 5.1437 - val_loss: 5.1163
Epoch 22/280
15/15 [==============================] - 0s 13ms/step - loss: 5.1032 - val_loss: 5.0668
Epoch 23/280
15/15 [==============================] - 0s 14ms/step - loss: 5.0552 - val_loss: 5.0426
Epoch 24/280
15/15 [==============================] - 0s 13ms/step - loss: 5.0285 - val_loss: 4.9953
Epoch 25/280
15/15 [==============================] - 0s 14ms/step - loss: 4.9751 - val_loss: 4.9410
Epoch 26/280
15/15 [==============================] - 0s 14ms/step - loss: 4.9293 - val_loss: 4.9016
Epoch 27/280
15/15 [==============================] - 0s 14ms/step - loss: 4.8772 - val_loss: 4.8457
Epoch 28/280
15/15 [==============================] - 0s 12ms/step - loss: 4.8378 - val_loss: 4.8094
Epoch 29/280
15/15 [==============================] - 0s 13ms/step - loss: 4.7859 - val_loss: 4.7582
Epoch 30/280
15/15 [==============================] - 0s 13ms/step - loss: 4.7452 - val_loss: 4.7266
Epoch 31/280
15/15 [==============================] - 0s 14ms/step - loss: 4.7049 - val_loss: 4.6671
Epoch 32/280
15/15 [==============================] - 0s 14ms/step - loss: 4.6538 - val_loss: 4.6273
Epoch 33/280
15/15 [==============================] - 0s 13ms/step - loss: 4.6117 - val_loss: 4.5850
Epoch 34/280
15/15 [==============================] - 0s 13ms/step - loss: 4.5648 - val_loss: 4.5436
Epoch 35/280
15/15 [==============================] - 0s 14ms/step - loss: 4.5190 - val_loss: 4.4914
Epoch 36/280
15/15 [==============================] - 0s 13ms/step - loss: 4.4741 - val_loss: 4.4457
Epoch 37/280
15/15 [==============================] - 0s 12ms/step - loss: 4.4274 - val_loss: 4.4000
Epoch 38/280
15/15 [==============================] - 0s 13ms/step - loss: 4.3819 - val_loss: 4.3606
Epoch 39/280
15/15 [==============================] - 0s 13ms/step - loss: 4.3497 - val_loss: 4.3305
Epoch 40/280
15/15 [==============================] - 0s 13ms/step - loss: 4.3177 - val_loss: 4.3048
Epoch 41/280
15/15 [==============================] - 0s 14ms/step - loss: 4.2876 - val_loss: 4.2689
Epoch 42/280
15/15 [==============================] - 0s 14ms/step - loss: 4.2592 - val_loss: 4.2384
Epoch 43/280
15/15 [==============================] - 0s 12ms/step - loss: 4.2289 - val_loss: 4.2159
Epoch 44/280
15/15 [==============================] - 0s 15ms/step - loss: 4.1975 - val_loss: 4.1815
Epoch 45/280
15/15 [==============================] - 0s 13ms/step - loss: 4.1707 - val_loss: 4.1547
Epoch 46/280
15/15 [==============================] - 0s 13ms/step - loss: 4.1543 - val_loss: 4.1404
Epoch 47/280
15/15 [==============================] - 0s 13ms/step - loss: 4.1142 - val_loss: 4.1112
Epoch 48/280
15/15 [==============================] - 0s 13ms/step - loss: 4.0801 - val_loss: 4.0668
Epoch 49/280
15/15 [==============================] - 0s 13ms/step - loss: 4.0530 - val_loss: 4.0336
Epoch 50/280
15/15 [==============================] - 0s 12ms/step - loss: 4.0184 - val_loss: 4.0059
Epoch 51/280
15/15 [==============================] - 0s 13ms/step - loss: 3.9920 - val_loss: 3.9744
Epoch 52/280
15/15 [==============================] - 0s 14ms/step - loss: 3.9605 - val_loss: 3.9486
Epoch 53/280
15/15 [==============================] - 0s 12ms/step - loss: 3.9278 - val_loss: 3.9156
Epoch 54/280
15/15 [==============================] - 0s 13ms/step - loss: 3.8994 - val_loss: 3.8840
Epoch 55/280
15/15 [==============================] - 0s 14ms/step - loss: 3.8660 - val_loss: 3.8531
Epoch 56/280
15/15 [==============================] - 0s 13ms/step - loss: 3.8381 - val_loss: 3.8223
Epoch 57/280
15/15 [==============================] - 0s 13ms/step - loss: 3.8065 - val_loss: 3.7922
Epoch 58/280
15/15 [==============================] - 0s 13ms/step - loss: 3.7815 - val_loss: 3.7619
Epoch 59/280
15/15 [==============================] - 0s 13ms/step - loss: 3.7489 - val_loss: 3.7333
Epoch 60/280
15/15 [==============================] - 0s 14ms/step - loss: 3.7183 - val_loss: 3.7022
Epoch 61/280
15/15 [==============================] - 0s 14ms/step - loss: 3.6889 - val_loss: 3.6773
Epoch 62/280
15/15 [==============================] - 0s 14ms/step - loss: 3.6607 - val_loss: 3.6405
Epoch 63/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6283 - val_loss: 3.6107
Epoch 64/280
15/15 [==============================] - 0s 12ms/step - loss: 3.5965 - val_loss: 3.5830
Epoch 65/280
15/15 [==============================] - 0s 14ms/step - loss: 3.5705 - val_loss: 3.5539
Epoch 66/280
15/15 [==============================] - 0s 13ms/step - loss: 3.5388 - val_loss: 3.5255
Epoch 67/280
15/15 [==============================] - 0s 12ms/step - loss: 3.5076 - val_loss: 3.4899
Epoch 68/280
15/15 [==============================] - 0s 11ms/step - loss: 3.4752 - val_loss: 3.4631
Epoch 69/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4472 - val_loss: 3.4308
Epoch 70/280
15/15 [==============================] - 0s 14ms/step - loss: 3.4196 - val_loss: 3.4010
Epoch 71/280
15/15 [==============================] - 0s 12ms/step - loss: 3.3878 - val_loss: 3.3734
Epoch 72/280
15/15 [==============================] - 0s 14ms/step - loss: 3.3587 - val_loss: 3.3409
Epoch 73/280
15/15 [==============================] - 0s 14ms/step - loss: 3.3293 - val_loss: 3.3142
Epoch 74/280
15/15 [==============================] - 0s 13ms/step - loss: 3.2995 - val_loss: 3.2816
Epoch 75/280
15/15 [==============================] - 0s 13ms/step - loss: 3.2690 - val_loss: 3.2501
Epoch 76/280
15/15 [==============================] - 0s 14ms/step - loss: 3.2388 - val_loss: 3.2263
Epoch 77/280
15/15 [==============================] - 0s 14ms/step - loss: 3.2082 - val_loss: 3.1885
Epoch 78/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1786 - val_loss: 3.1581
Epoch 79/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1471 - val_loss: 3.1334
Epoch 80/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1202 - val_loss: 3.1044
Epoch 81/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0861 - val_loss: 3.0721
Epoch 82/280
15/15 [==============================] - 0s 14ms/step - loss: 3.0574 - val_loss: 3.0442
Epoch 83/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0296 - val_loss: 3.0117
Epoch 84/280
15/15 [==============================] - 0s 14ms/step - loss: 3.0023 - val_loss: 2.9930
Epoch 85/280
15/15 [==============================] - 0s 13ms/step - loss: 2.9710 - val_loss: 2.9580
Epoch 86/280
15/15 [==============================] - 0s 14ms/step - loss: 2.9474 - val_loss: 2.9242
Epoch 87/280
15/15 [==============================] - 0s 13ms/step - loss: 2.9095 - val_loss: 2.9010
Epoch 88/280
15/15 [==============================] - 0s 12ms/step - loss: 2.8816 - val_loss: 2.8642
Epoch 89/280
15/15 [==============================] - 0s 14ms/step - loss: 2.8502 - val_loss: 2.8332
Epoch 90/280
15/15 [==============================] - 0s 13ms/step - loss: 2.8203 - val_loss: 2.8042
Epoch 91/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7879 - val_loss: 2.7716
Epoch 92/280
15/15 [==============================] - 0s 14ms/step - loss: 2.7570 - val_loss: 2.7430
Epoch 93/280
15/15 [==============================] - 0s 12ms/step - loss: 2.7259 - val_loss: 2.7168
Epoch 94/280
15/15 [==============================] - 0s 14ms/step - loss: 2.7021 - val_loss: 2.6885
Epoch 95/280
15/15 [==============================] - 0s 16ms/step - loss: 2.6682 - val_loss: 2.6570
Epoch 96/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6432 - val_loss: 2.6263
Epoch 97/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6101 - val_loss: 2.5897
Epoch 98/280
15/15 [==============================] - 0s 12ms/step - loss: 2.5778 - val_loss: 2.5681
Epoch 99/280
15/15 [==============================] - 0s 13ms/step - loss: 2.5558 - val_loss: 2.5327
Epoch 100/280
15/15 [==============================] - 0s 17ms/step - loss: 2.5251 - val_loss: 2.5061
Epoch 101/280
15/15 [==============================] - 0s 13ms/step - loss: 2.4936 - val_loss: 2.4761
Epoch 102/280
15/15 [==============================] - 0s 13ms/step - loss: 2.4649 - val_loss: 2.4512
Epoch 103/280
15/15 [==============================] - 0s 12ms/step - loss: 2.4312 - val_loss: 2.4154
Epoch 104/280
15/15 [==============================] - 0s 12ms/step - loss: 2.4000 - val_loss: 2.3838
Epoch 105/280
15/15 [==============================] - 0s 13ms/step - loss: 2.3727 - val_loss: 2.3540
Epoch 106/280
15/15 [==============================] - 0s 14ms/step - loss: 2.3407 - val_loss: 2.3310
Epoch 107/280
15/15 [==============================] - 0s 13ms/step - loss: 2.3078 - val_loss: 2.3006
Epoch 108/280
15/15 [==============================] - 0s 12ms/step - loss: 2.2818 - val_loss: 2.2619
Epoch 109/280
15/15 [==============================] - 0s 13ms/step - loss: 2.2515 - val_loss: 2.2308
Epoch 110/280
15/15 [==============================] - 0s 12ms/step - loss: 2.2204 - val_loss: 2.2044
Epoch 111/280
15/15 [==============================] - 0s 14ms/step - loss: 2.1891 - val_loss: 2.1807
Epoch 112/280
15/15 [==============================] - 0s 11ms/step - loss: 2.1606 - val_loss: 2.1410
Epoch 113/280
15/15 [==============================] - 0s 14ms/step - loss: 2.1317 - val_loss: 2.1113
Epoch 114/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0990 - val_loss: 2.0811
Epoch 115/280
15/15 [==============================] - 0s 12ms/step - loss: 2.0764 - val_loss: 2.0522
Epoch 116/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0421 - val_loss: 2.0214
Epoch 117/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0155 - val_loss: 1.9915
Epoch 118/280
15/15 [==============================] - 0s 12ms/step - loss: 1.9799 - val_loss: 1.9629
Epoch 119/280
15/15 [==============================] - 0s 14ms/step - loss: 1.9494 - val_loss: 1.9385
Epoch 120/280
15/15 [==============================] - 0s 13ms/step - loss: 1.9251 - val_loss: 1.9051
Epoch 121/280
15/15 [==============================] - 0s 13ms/step - loss: 1.8949 - val_loss: 1.8759
Epoch 122/280
15/15 [==============================] - 0s 13ms/step - loss: 1.8644 - val_loss: 1.8706
Epoch 123/280
15/15 [==============================] - 0s 13ms/step - loss: 1.8489 - val_loss: 1.8308
Epoch 124/280
15/15 [==============================] - 0s 17ms/step - loss: 1.8087 - val_loss: 1.7977
Epoch 125/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7749 - val_loss: 1.7688
Epoch 126/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7534 - val_loss: 1.7378
Epoch 127/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7127 - val_loss: 1.7045
Epoch 128/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6865 - val_loss: 1.6744
Epoch 129/280
15/15 [==============================] - 0s 12ms/step - loss: 1.6573 - val_loss: 1.6427
Epoch 130/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6235 - val_loss: 1.6109
Epoch 131/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5967 - val_loss: 1.5835
Epoch 132/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5669 - val_loss: 1.5545
Epoch 133/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5339 - val_loss: 1.5174
Epoch 134/280
15/15 [==============================] - 0s 14ms/step - loss: 1.5093 - val_loss: 1.4934
Epoch 135/280
15/15 [==============================] - 0s 14ms/step - loss: 1.4793 - val_loss: 1.4596
Epoch 136/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4495 - val_loss: 1.4335
Epoch 137/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4142 - val_loss: 1.4022
Epoch 138/280
15/15 [==============================] - 0s 12ms/step - loss: 1.3924 - val_loss: 1.3786
Epoch 139/280
15/15 [==============================] - 0s 12ms/step - loss: 1.3609 - val_loss: 1.3442
Epoch 140/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3259 - val_loss: 1.3106
Epoch 141/280
15/15 [==============================] - 0s 16ms/step - loss: 1.3040 - val_loss: 1.2859
Epoch 142/280
15/15 [==============================] - 0s 12ms/step - loss: 1.2730 - val_loss: 1.2550
Epoch 143/280
15/15 [==============================] - 0s 12ms/step - loss: 1.2509 - val_loss: 1.2333
Epoch 144/280
15/15 [==============================] - 0s 14ms/step - loss: 1.2160 - val_loss: 1.1922
Epoch 145/280
15/15 [==============================] - 0s 11ms/step - loss: 1.1840 - val_loss: 1.1680
Epoch 146/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1514 - val_loss: 1.1352
Epoch 147/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1227 - val_loss: 1.1014
Epoch 148/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0908 - val_loss: 1.0708
Epoch 149/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0584 - val_loss: 1.0415
Epoch 150/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0349 - val_loss: 1.0432
Epoch 151/280
15/15 [==============================] - 0s 14ms/step - loss: 1.0144 - val_loss: 0.9994
Epoch 152/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9710 - val_loss: 0.9684
Epoch 153/280
15/15 [==============================] - 0s 12ms/step - loss: 0.9420 - val_loss: 0.9297
Epoch 154/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9124 - val_loss: 0.9023
Epoch 155/280
15/15 [==============================] - 0s 12ms/step - loss: 0.8858 - val_loss: 0.8702
Epoch 156/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8488 - val_loss: 0.8434
Epoch 157/280
15/15 [==============================] - 0s 11ms/step - loss: 0.8263 - val_loss: 0.8078
Epoch 158/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7939 - val_loss: 0.7735
Epoch 159/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7592 - val_loss: 0.7428
Epoch 160/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7293 - val_loss: 0.7199
Epoch 161/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7086 - val_loss: 0.6938
Epoch 162/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6708 - val_loss: 0.6575
Epoch 163/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6533 - val_loss: 0.6233
Epoch 164/280
15/15 [==============================] - 0s 14ms/step - loss: 0.6125 - val_loss: 0.5980
Epoch 165/280
15/15 [==============================] - 0s 14ms/step - loss: 0.5825 - val_loss: 0.5767
Epoch 166/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5650 - val_loss: 0.5598
Epoch 167/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5533 - val_loss: 0.5545
Epoch 168/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5384 - val_loss: 0.5321
Epoch 169/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5180 - val_loss: 0.5248
Epoch 170/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5119 - val_loss: 0.5090
Epoch 171/280
15/15 [==============================] - 0s 14ms/step - loss: 0.4882 - val_loss: 0.5010
Epoch 172/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4835 - val_loss: 0.4774
Epoch 173/280
15/15 [==============================] - 0s 11ms/step - loss: 0.4757 - val_loss: 0.4660
Epoch 174/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4536 - val_loss: 0.4500
Epoch 175/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4341 - val_loss: 0.4243
Epoch 176/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4202 - val_loss: 0.4098
Epoch 177/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4045 - val_loss: 0.3962
Epoch 178/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3846 - val_loss: 0.3807
Epoch 179/280
15/15 [==============================] - 0s 11ms/step - loss: 0.3694 - val_loss: 0.3647
Epoch 180/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3567 - val_loss: 0.3471
Epoch 181/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3420 - val_loss: 0.3336
Epoch 182/280
15/15 [==============================] - 0s 14ms/step - loss: 0.3252 - val_loss: 0.3194
Epoch 183/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3148 - val_loss: 0.3046
Epoch 184/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2958 - val_loss: 0.2945
Epoch 185/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2874 - val_loss: 0.2774
Epoch 186/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2675 - val_loss: 0.2683
Epoch 187/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2531 - val_loss: 0.2504
Epoch 188/280
15/15 [==============================] - 0s 15ms/step - loss: 0.2370 - val_loss: 0.2337
Epoch 189/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2288 - val_loss: 0.2140
Epoch 190/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2054 - val_loss: 0.2039
Epoch 191/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1923 - val_loss: 0.1865
Epoch 192/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1747 - val_loss: 0.1732
Epoch 193/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1657 - val_loss: 0.1587
Epoch 194/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1380 - val_loss: 0.1423
Epoch 195/280
15/15 [==============================] - 0s 15ms/step - loss: 0.1289 - val_loss: 0.1306
Epoch 196/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1186 - val_loss: 0.1169
Epoch 197/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0992 - val_loss: 0.1038
Epoch 198/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0894 - val_loss: 0.0899
Epoch 199/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0703 - val_loss: 0.0739
Epoch 200/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0535 - val_loss: 0.0572
Epoch 201/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0530 - val_loss: 0.0662
Epoch 202/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0280 - val_loss: 0.0423
Epoch 203/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0258 - val_loss: 0.0344
Epoch 204/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0237 - val_loss: 0.0353
Epoch 205/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0324 - val_loss: 0.0419
Epoch 206/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0205 - val_loss: 0.0343
Epoch 207/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0245 - val_loss: 0.0331
Epoch 208/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0255 - val_loss: 0.0392
Epoch 209/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0245 - val_loss: 0.0384
Epoch 210/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0255 - val_loss: 0.0319
Epoch 211/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0230 - val_loss: 0.0292
Epoch 212/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0255 - val_loss: 0.0305
Epoch 213/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0235 - val_loss: 0.0340
Epoch 214/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0225 - val_loss: 0.0325
Epoch 215/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0210 - val_loss: 0.0295
Epoch 216/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0240 - val_loss: 0.0353
Epoch 217/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0175 - val_loss: 0.0366
Epoch 218/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0189 - val_loss: 0.0321
Epoch 219/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0204 - val_loss: 0.0327
Epoch 220/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0251 - val_loss: 0.0379
Epoch 221/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0216 - val_loss: 0.0369
Epoch 222/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0206 - val_loss: 0.0367
Epoch 223/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0264 - val_loss: 0.0361
Epoch 224/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0181 - val_loss: 0.0352
Epoch 225/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0139 - val_loss: 0.0349
Epoch 226/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0186 - val_loss: 0.0348
Epoch 227/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0128 - val_loss: 0.0348
Epoch 228/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0186 - val_loss: 0.0349
Epoch 229/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0150 - val_loss: 0.0350
Epoch 230/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0171 - val_loss: 0.0343
Epoch 231/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0158 - val_loss: 0.0342
Epoch 232/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0156 - val_loss: 0.0341
Epoch 233/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0125 - val_loss: 0.0339
Epoch 234/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0167 - val_loss: 0.0338
Epoch 235/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0136 - val_loss: 0.0336
Epoch 236/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0172 - val_loss: 0.0336
Epoch 237/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0151 - val_loss: 0.0337
Epoch 238/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0164 - val_loss: 0.0338
Epoch 239/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0135 - val_loss: 0.0339
Epoch 240/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0125 - val_loss: 0.0340
Epoch 241/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0179 - val_loss: 0.0342
Epoch 242/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0139 - val_loss: 0.0342
Epoch 243/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0180 - val_loss: 0.0342
Epoch 244/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0127 - val_loss: 0.0342
Epoch 245/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0156 - val_loss: 0.0342
Epoch 246/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0189 - val_loss: 0.0342
Epoch 247/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0139 - val_loss: 0.0341
Epoch 248/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0172 - val_loss: 0.0341
Epoch 249/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0198 - val_loss: 0.0341
Epoch 250/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0154 - val_loss: 0.0341
Epoch 251/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0162 - val_loss: 0.0341
Epoch 252/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0159 - val_loss: 0.0342
Epoch 253/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0143 - val_loss: 0.0342
Epoch 254/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0157 - val_loss: 0.0342
Epoch 255/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0159 - val_loss: 0.0341
Epoch 256/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0216 - val_loss: 0.0342
Epoch 257/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0193 - val_loss: 0.0341
Epoch 258/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0234 - val_loss: 0.0341
Epoch 259/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0154 - val_loss: 0.0341
Epoch 260/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0154 - val_loss: 0.0341
Epoch 261/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0209 - val_loss: 0.0341
Epoch 262/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0173 - val_loss: 0.0341
Epoch 263/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0196 - val_loss: 0.0341
Epoch 264/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0162 - val_loss: 0.0341
Epoch 265/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0134 - val_loss: 0.0341
Epoch 266/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0238 - val_loss: 0.0341
Epoch 267/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0129 - val_loss: 0.0341
Epoch 268/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0138 - val_loss: 0.0341
Epoch 269/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0160 - val_loss: 0.0341
Epoch 270/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0193 - val_loss: 0.0341
Epoch 271/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0197 - val_loss: 0.0341
Epoch 272/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0152 - val_loss: 0.0341
Epoch 273/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0137 - val_loss: 0.0341
Epoch 274/280
15/15 [==============================] - 0s 10ms/step - loss: 0.0105 - val_loss: 0.0341
Epoch 275/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0147 - val_loss: 0.0341
Epoch 276/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0125 - val_loss: 0.0341
Epoch 277/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0176 - val_loss: 0.0341
Epoch 278/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0139 - val_loss: 0.0341
Epoch 279/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0161 - val_loss: 0.0341
Epoch 280/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0167 - val_loss: 0.0341
COL: 比表面积, MSE: 1.32E-01,RMSE: 0.3629,MAPE: 3.6700000000000004 %,MAE: 0.2619,R_2: 0.2356
COL: 总孔体积, MSE: 7.52E-02,RMSE: 0.2742,MAPE: 27.810000000000002 %,MAE: 0.1978,R_2: 0.5771
COL: 微孔体积, MSE: 3.16E-02,RMSE: 0.1779,MAPE: 27.389999999999997 %,MAE: 0.1412,R_2: 0.3639
Epoch 1/280
15/15 [==============================] - 6s 93ms/step - loss: 1.8382 - val_loss: 1.6969
Epoch 2/280
15/15 [==============================] - 0s 11ms/step - loss: 1.6804 - val_loss: 1.6477
Epoch 3/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6384 - val_loss: 1.6156
Epoch 4/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6002 - val_loss: 1.5794
Epoch 5/280
15/15 [==============================] - 0s 14ms/step - loss: 1.5757 - val_loss: 1.5500
Epoch 6/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5482 - val_loss: 1.5252
Epoch 7/280
15/15 [==============================] - 0s 14ms/step - loss: 1.5112 - val_loss: 1.4768
Epoch 8/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4720 - val_loss: 1.4442
Epoch 9/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4436 - val_loss: 1.4154
Epoch 10/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4106 - val_loss: 1.3848
Epoch 11/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3779 - val_loss: 1.3495
Epoch 12/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3496 - val_loss: 1.3266
Epoch 13/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3157 - val_loss: 1.2910
Epoch 14/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2770 - val_loss: 1.2666
Epoch 15/280
15/15 [==============================] - 0s 14ms/step - loss: 1.2492 - val_loss: 1.2274
Epoch 16/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2195 - val_loss: 1.1976
Epoch 17/280
15/15 [==============================] - 0s 14ms/step - loss: 1.1825 - val_loss: 1.1668
Epoch 18/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1551 - val_loss: 1.1331
Epoch 19/280
15/15 [==============================] - 0s 14ms/step - loss: 1.1302 - val_loss: 1.1090
Epoch 20/280
15/15 [==============================] - 0s 14ms/step - loss: 1.1015 - val_loss: 1.0747
Epoch 21/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0671 - val_loss: 1.0434
Epoch 22/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0422 - val_loss: 1.0214
Epoch 23/280
15/15 [==============================] - 0s 12ms/step - loss: 1.0175 - val_loss: 0.9870
Epoch 24/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9689 - val_loss: 0.9571
Epoch 25/280
15/15 [==============================] - 0s 16ms/step - loss: 0.9638 - val_loss: 0.9219
Epoch 26/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9229 - val_loss: 0.8921
Epoch 27/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8851 - val_loss: 0.8686
Epoch 28/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8600 - val_loss: 0.8591
Epoch 29/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8503 - val_loss: 0.8390
Epoch 30/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8302 - val_loss: 0.8242
Epoch 31/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8137 - val_loss: 0.8139
Epoch 32/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7981 - val_loss: 0.7926
Epoch 33/280
15/15 [==============================] - 0s 12ms/step - loss: 0.7801 - val_loss: 0.7753
Epoch 34/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7702 - val_loss: 0.7752
Epoch 35/280
15/15 [==============================] - 0s 12ms/step - loss: 0.7537 - val_loss: 0.7512
Epoch 36/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7407 - val_loss: 0.7492
Epoch 37/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7295 - val_loss: 0.7353
Epoch 38/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7083 - val_loss: 0.7060
Epoch 39/280
15/15 [==============================] - 0s 14ms/step - loss: 0.6915 - val_loss: 0.6916
Epoch 40/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6770 - val_loss: 0.6797
Epoch 41/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6640 - val_loss: 0.6657
Epoch 42/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6501 - val_loss: 0.6506
Epoch 43/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6339 - val_loss: 0.6335
Epoch 44/280
15/15 [==============================] - 0s 11ms/step - loss: 0.6152 - val_loss: 0.6280
Epoch 45/280
15/15 [==============================] - 0s 12ms/step - loss: 0.6174 - val_loss: 0.6014
Epoch 46/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5801 - val_loss: 0.5853
Epoch 47/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5731 - val_loss: 0.5724
Epoch 48/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5564 - val_loss: 0.5611
Epoch 49/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5450 - val_loss: 0.5549
Epoch 50/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5287 - val_loss: 0.5268
Epoch 51/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5126 - val_loss: 0.5114
Epoch 52/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5044 - val_loss: 0.4975
Epoch 53/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4773 - val_loss: 0.4839
Epoch 54/280
15/15 [==============================] - 0s 11ms/step - loss: 0.4700 - val_loss: 0.4683
Epoch 55/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4451 - val_loss: 0.4576
Epoch 56/280
15/15 [==============================] - 0s 14ms/step - loss: 0.4326 - val_loss: 0.4369
Epoch 57/280
15/15 [==============================] - 0s 14ms/step - loss: 0.4194 - val_loss: 0.4308
Epoch 58/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4123 - val_loss: 0.4054
Epoch 59/280
15/15 [==============================] - 0s 14ms/step - loss: 0.3949 - val_loss: 0.4015
Epoch 60/280
15/15 [==============================] - 0s 14ms/step - loss: 0.3771 - val_loss: 0.3864
Epoch 61/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3633 - val_loss: 0.3728
Epoch 62/280
15/15 [==============================] - 0s 14ms/step - loss: 0.3432 - val_loss: 0.3576
Epoch 63/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3261 - val_loss: 0.3386
Epoch 64/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3135 - val_loss: 0.3321
Epoch 65/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3005 - val_loss: 0.3138
Epoch 66/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2829 - val_loss: 0.2991
Epoch 67/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2684 - val_loss: 0.2838
Epoch 68/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2604 - val_loss: 0.2645
Epoch 69/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2434 - val_loss: 0.2493
Epoch 70/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2266 - val_loss: 0.2490
Epoch 71/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2219 - val_loss: 0.2254
Epoch 72/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1932 - val_loss: 0.2080
Epoch 73/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1783 - val_loss: 0.1971
Epoch 74/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1630 - val_loss: 0.1745
Epoch 75/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1646 - val_loss: 0.1629
Epoch 76/280
15/15 [==============================] - 0s 16ms/step - loss: 0.1398 - val_loss: 0.1502
Epoch 77/280
15/15 [==============================] - 0s 11ms/step - loss: 0.1169 - val_loss: 0.1299
Epoch 78/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1055 - val_loss: 0.1099
Epoch 79/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0943 - val_loss: 0.0993
Epoch 80/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0771 - val_loss: 0.0771
Epoch 81/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0663 - val_loss: 0.0752
Epoch 82/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0494 - val_loss: 0.0607
Epoch 83/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0305 - val_loss: 0.0504
Epoch 84/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0391 - val_loss: 0.0555
Epoch 85/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0289 - val_loss: 0.0447
Epoch 86/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0353 - val_loss: 0.0503
Epoch 87/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0326 - val_loss: 0.0529
Epoch 88/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0402 - val_loss: 0.0522
Epoch 89/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0297 - val_loss: 0.0481
Epoch 90/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0336 - val_loss: 0.0483
Epoch 91/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0217 - val_loss: 0.0504
Epoch 92/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0344 - val_loss: 0.0517
Epoch 93/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0288 - val_loss: 0.0526
Epoch 94/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0282 - val_loss: 0.0534
Epoch 95/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0334 - val_loss: 0.0468
Epoch 96/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0389 - val_loss: 0.0455
Epoch 97/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0284 - val_loss: 0.0468
Epoch 98/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0207 - val_loss: 0.0488
Epoch 99/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0242 - val_loss: 0.0493
Epoch 100/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0262 - val_loss: 0.0494
Epoch 101/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0213 - val_loss: 0.0492
Epoch 102/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0205 - val_loss: 0.0484
Epoch 103/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0183 - val_loss: 0.0486
Epoch 104/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0204 - val_loss: 0.0498
Epoch 105/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0251 - val_loss: 0.0499
Epoch 106/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0247 - val_loss: 0.0500
Epoch 107/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0222 - val_loss: 0.0499
Epoch 108/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0292 - val_loss: 0.0498
Epoch 109/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0247 - val_loss: 0.0498
Epoch 110/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0193 - val_loss: 0.0499
Epoch 111/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0191 - val_loss: 0.0500
Epoch 112/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0298 - val_loss: 0.0500
Epoch 113/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0323 - val_loss: 0.0499
Epoch 114/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0219 - val_loss: 0.0500
Epoch 115/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0245 - val_loss: 0.0499
Epoch 116/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0209 - val_loss: 0.0499
Epoch 117/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0213 - val_loss: 0.0499
Epoch 118/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0222 - val_loss: 0.0499
Epoch 119/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0214 - val_loss: 0.0499
Epoch 120/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0270 - val_loss: 0.0499
Epoch 121/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0230 - val_loss: 0.0499
Epoch 122/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0274 - val_loss: 0.0499
Epoch 123/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0183 - val_loss: 0.0499
Epoch 124/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0231 - val_loss: 0.0499
Epoch 125/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0288 - val_loss: 0.0499
Epoch 126/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0327 - val_loss: 0.0499
Epoch 127/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0328 - val_loss: 0.0499
Epoch 128/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0210 - val_loss: 0.0499
Epoch 129/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0301 - val_loss: 0.0499
Epoch 130/280
15/15 [==============================] - 0s 17ms/step - loss: 0.0311 - val_loss: 0.0499
Epoch 131/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0202 - val_loss: 0.0499
Epoch 132/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0228 - val_loss: 0.0499
Epoch 133/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0276 - val_loss: 0.0499
Epoch 134/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0227 - val_loss: 0.0499
Epoch 135/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0256 - val_loss: 0.0499
Epoch 136/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0312 - val_loss: 0.0499
Epoch 137/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0258 - val_loss: 0.0499
Epoch 138/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0158 - val_loss: 0.0499
Epoch 139/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0223 - val_loss: 0.0499
Epoch 140/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0243 - val_loss: 0.0499
Epoch 141/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0214 - val_loss: 0.0499
Epoch 142/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0260 - val_loss: 0.0499
Epoch 143/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0251 - val_loss: 0.0499
Epoch 144/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0221 - val_loss: 0.0499
Epoch 145/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0294 - val_loss: 0.0499
Epoch 146/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0243 - val_loss: 0.0499
Epoch 147/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0230 - val_loss: 0.0499
Epoch 148/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0273 - val_loss: 0.0499
Epoch 149/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0237 - val_loss: 0.0499
Epoch 150/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0260 - val_loss: 0.0499
Epoch 151/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0207 - val_loss: 0.0499
Epoch 152/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0241 - val_loss: 0.0499
Epoch 153/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0192 - val_loss: 0.0499
Epoch 154/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0232 - val_loss: 0.0499
Epoch 155/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0295 - val_loss: 0.0499
Epoch 156/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0226 - val_loss: 0.0499
Epoch 157/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0268 - val_loss: 0.0499
Epoch 158/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0231 - val_loss: 0.0499
Epoch 159/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0213 - val_loss: 0.0499
Epoch 160/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0246 - val_loss: 0.0499
Epoch 161/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0207 - val_loss: 0.0499
Epoch 162/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0284 - val_loss: 0.0499
Epoch 163/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0242 - val_loss: 0.0499
Epoch 164/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0195 - val_loss: 0.0499
Epoch 165/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0277 - val_loss: 0.0499
Epoch 166/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0177 - val_loss: 0.0499
Epoch 167/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0304 - val_loss: 0.0499
Epoch 168/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0262 - val_loss: 0.0499
Epoch 169/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0261 - val_loss: 0.0499
Epoch 170/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0205 - val_loss: 0.0499
Epoch 171/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0191 - val_loss: 0.0499
Epoch 172/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0266 - val_loss: 0.0499
Epoch 173/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0207 - val_loss: 0.0499
Epoch 174/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0273 - val_loss: 0.0499
Epoch 175/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0229 - val_loss: 0.0499
Epoch 176/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0256 - val_loss: 0.0499
Epoch 177/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0262 - val_loss: 0.0499
Epoch 178/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0264 - val_loss: 0.0499
Epoch 179/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0271 - val_loss: 0.0499
Epoch 180/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0233 - val_loss: 0.0499
Epoch 181/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0247 - val_loss: 0.0499
Epoch 182/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0301 - val_loss: 0.0499
Epoch 183/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0224 - val_loss: 0.0499
Epoch 184/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0169 - val_loss: 0.0499
Epoch 185/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0184 - val_loss: 0.0499
Epoch 186/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0293 - val_loss: 0.0499
Epoch 187/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0186 - val_loss: 0.0499
Epoch 188/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0299 - val_loss: 0.0499
Epoch 189/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0243 - val_loss: 0.0499
Epoch 190/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0177 - val_loss: 0.0499
Epoch 191/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0194 - val_loss: 0.0499
Epoch 192/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0252 - val_loss: 0.0499
Epoch 193/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0247 - val_loss: 0.0499
Epoch 194/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0274 - val_loss: 0.0499
Epoch 195/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0220 - val_loss: 0.0499
Epoch 196/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0175 - val_loss: 0.0499
Epoch 197/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0171 - val_loss: 0.0499
Epoch 198/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0188 - val_loss: 0.0499
Epoch 199/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0247 - val_loss: 0.0499
Epoch 200/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0245 - val_loss: 0.0499
Epoch 201/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0224 - val_loss: 0.0499
Epoch 202/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0202 - val_loss: 0.0499
Epoch 203/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0268 - val_loss: 0.0499
Epoch 204/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0283 - val_loss: 0.0499
Epoch 205/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0184 - val_loss: 0.0499
Epoch 206/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0243 - val_loss: 0.0499
Epoch 207/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0278 - val_loss: 0.0499
Epoch 208/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0249 - val_loss: 0.0499
Epoch 209/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0195 - val_loss: 0.0499
Epoch 210/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0202 - val_loss: 0.0499
Epoch 211/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0269 - val_loss: 0.0499
Epoch 212/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0226 - val_loss: 0.0499
Epoch 213/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0217 - val_loss: 0.0499
Epoch 214/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0192 - val_loss: 0.0499
Epoch 215/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0250 - val_loss: 0.0499
Epoch 216/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0247 - val_loss: 0.0499
Epoch 217/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0222 - val_loss: 0.0499
Epoch 218/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0226 - val_loss: 0.0499
Epoch 219/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0227 - val_loss: 0.0499
Epoch 220/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0190 - val_loss: 0.0499
Epoch 221/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0195 - val_loss: 0.0499
Epoch 222/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0199 - val_loss: 0.0499
Epoch 223/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0219 - val_loss: 0.0499
Epoch 224/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0232 - val_loss: 0.0499
Epoch 225/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0178 - val_loss: 0.0499
Epoch 226/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0207 - val_loss: 0.0499
Epoch 227/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0196 - val_loss: 0.0499
Epoch 228/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0252 - val_loss: 0.0499
Epoch 229/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0268 - val_loss: 0.0499
Epoch 230/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0223 - val_loss: 0.0499
Epoch 231/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0230 - val_loss: 0.0499
Epoch 232/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0302 - val_loss: 0.0499
Epoch 233/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0258 - val_loss: 0.0499
Epoch 234/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0197 - val_loss: 0.0499
Epoch 235/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0269 - val_loss: 0.0499
Epoch 236/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0221 - val_loss: 0.0499
Epoch 237/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0231 - val_loss: 0.0499
Epoch 238/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0264 - val_loss: 0.0499
Epoch 239/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0209 - val_loss: 0.0499
Epoch 240/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0218 - val_loss: 0.0499
Epoch 241/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0236 - val_loss: 0.0499
Epoch 242/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0241 - val_loss: 0.0499
Epoch 243/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0218 - val_loss: 0.0499
Epoch 244/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0288 - val_loss: 0.0499
Epoch 245/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0215 - val_loss: 0.0499
Epoch 246/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0214 - val_loss: 0.0499
Epoch 247/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0200 - val_loss: 0.0499
Epoch 248/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0210 - val_loss: 0.0499
Epoch 249/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0224 - val_loss: 0.0499
Epoch 250/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0229 - val_loss: 0.0499
Epoch 251/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0239 - val_loss: 0.0499
Epoch 252/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0214 - val_loss: 0.0499
Epoch 253/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0289 - val_loss: 0.0499
Epoch 254/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0197 - val_loss: 0.0499
Epoch 255/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0209 - val_loss: 0.0499
Epoch 256/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0258 - val_loss: 0.0499
Epoch 257/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0222 - val_loss: 0.0499
Epoch 258/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0233 - val_loss: 0.0499
Epoch 259/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0274 - val_loss: 0.0499
Epoch 260/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0236 - val_loss: 0.0499
Epoch 261/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0203 - val_loss: 0.0499
Epoch 262/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0251 - val_loss: 0.0499
Epoch 263/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0271 - val_loss: 0.0499
Epoch 264/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0238 - val_loss: 0.0499
Epoch 265/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0251 - val_loss: 0.0499
Epoch 266/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0235 - val_loss: 0.0499
Epoch 267/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0247 - val_loss: 0.0499
Epoch 268/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0193 - val_loss: 0.0499
Epoch 269/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0287 - val_loss: 0.0499
Epoch 270/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0232 - val_loss: 0.0499
Epoch 271/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0186 - val_loss: 0.0499
Epoch 272/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0232 - val_loss: 0.0499
Epoch 273/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0179 - val_loss: 0.0499
Epoch 274/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0298 - val_loss: 0.0499
Epoch 275/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0185 - val_loss: 0.0499
Epoch 276/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0225 - val_loss: 0.0499
Epoch 277/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0300 - val_loss: 0.0499
Epoch 278/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0246 - val_loss: 0.0499
Epoch 279/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0168 - val_loss: 0.0499
Epoch 280/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0242 - val_loss: 0.0499
COL: 比表面积, MSE: 1.83E-01,RMSE: 0.4274,MAPE: 3.84 %,MAE: 0.2752,R_2: 0.4599
COL: 总孔体积, MSE: 1.35E-01,RMSE: 0.368,MAPE: 29.43 %,MAE: 0.251,R_2: 0.582
COL: 微孔体积, MSE: 1.75E-01,RMSE: 0.4187,MAPE: 32.84 %,MAE: 0.2536,R_2: 0.2184
Epoch 1/280
15/15 [==============================] - 6s 86ms/step - loss: 2.5093 - val_loss: 2.2921
Epoch 2/280
15/15 [==============================] - 0s 12ms/step - loss: 2.2438 - val_loss: 2.2513
Epoch 3/280
15/15 [==============================] - 0s 12ms/step - loss: 2.2354 - val_loss: 2.1929
Epoch 4/280
15/15 [==============================] - 0s 15ms/step - loss: 2.1850 - val_loss: 2.2179
Epoch 5/280
15/15 [==============================] - 0s 13ms/step - loss: 2.1398 - val_loss: 2.1617
Epoch 6/280
15/15 [==============================] - 0s 13ms/step - loss: 2.1034 - val_loss: 2.1344
Epoch 7/280
15/15 [==============================] - 0s 14ms/step - loss: 2.1028 - val_loss: 2.0470
Epoch 8/280
15/15 [==============================] - 0s 14ms/step - loss: 2.0489 - val_loss: 2.0199
Epoch 9/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0085 - val_loss: 2.0242
Epoch 10/280
15/15 [==============================] - 0s 13ms/step - loss: 1.9942 - val_loss: 1.9674
Epoch 11/280
15/15 [==============================] - 0s 13ms/step - loss: 1.9434 - val_loss: 1.9257
Epoch 12/280
15/15 [==============================] - 0s 14ms/step - loss: 1.9492 - val_loss: 1.8951
Epoch 13/280
15/15 [==============================] - 0s 13ms/step - loss: 1.9382 - val_loss: 1.8804
Epoch 14/280
15/15 [==============================] - 0s 13ms/step - loss: 1.9204 - val_loss: 1.8696
Epoch 15/280
15/15 [==============================] - 0s 12ms/step - loss: 1.8749 - val_loss: 1.8513
Epoch 16/280
15/15 [==============================] - 0s 13ms/step - loss: 1.8301 - val_loss: 1.7955
Epoch 17/280
15/15 [==============================] - 0s 12ms/step - loss: 1.8124 - val_loss: 1.7826
Epoch 18/280
15/15 [==============================] - 0s 14ms/step - loss: 1.8018 - val_loss: 1.7692
Epoch 19/280
15/15 [==============================] - 0s 14ms/step - loss: 1.7991 - val_loss: 1.7415
Epoch 20/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7584 - val_loss: 1.7389
Epoch 21/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7315 - val_loss: 1.7086
Epoch 22/280
15/15 [==============================] - 0s 14ms/step - loss: 1.7082 - val_loss: 1.6742
Epoch 23/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6990 - val_loss: 1.7330
Epoch 24/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7054 - val_loss: 1.6404
Epoch 25/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6263 - val_loss: 1.6385
Epoch 26/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6006 - val_loss: 1.6112
Epoch 27/280
15/15 [==============================] - 0s 14ms/step - loss: 1.5858 - val_loss: 1.5762
Epoch 28/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5689 - val_loss: 1.6333
Epoch 29/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5803 - val_loss: 1.5680
Epoch 30/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5278 - val_loss: 1.5337
Epoch 31/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5164 - val_loss: 1.5049
Epoch 32/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5023 - val_loss: 1.4911
Epoch 33/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4772 - val_loss: 1.4716
Epoch 34/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4323 - val_loss: 1.4509
Epoch 35/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4409 - val_loss: 1.4576
Epoch 36/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4506 - val_loss: 1.4298
Epoch 37/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4344 - val_loss: 1.4233
Epoch 38/280
15/15 [==============================] - 0s 14ms/step - loss: 1.3917 - val_loss: 1.3796
Epoch 39/280
15/15 [==============================] - 0s 14ms/step - loss: 1.3798 - val_loss: 1.3587
Epoch 40/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3458 - val_loss: 1.3256
Epoch 41/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3357 - val_loss: 1.3232
Epoch 42/280
15/15 [==============================] - 0s 14ms/step - loss: 1.2982 - val_loss: 1.2909
Epoch 43/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2903 - val_loss: 1.2806
Epoch 44/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2797 - val_loss: 1.2819
Epoch 45/280
15/15 [==============================] - 0s 14ms/step - loss: 1.2652 - val_loss: 1.2418
Epoch 46/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2416 - val_loss: 1.2181
Epoch 47/280
15/15 [==============================] - 0s 12ms/step - loss: 1.1992 - val_loss: 1.1981
Epoch 48/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1843 - val_loss: 1.1742
Epoch 49/280
15/15 [==============================] - 0s 12ms/step - loss: 1.1733 - val_loss: 1.1714
Epoch 50/280
15/15 [==============================] - 0s 14ms/step - loss: 1.1635 - val_loss: 1.1432
Epoch 51/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1295 - val_loss: 1.1217
Epoch 52/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1078 - val_loss: 1.0999
Epoch 53/280
15/15 [==============================] - 0s 12ms/step - loss: 1.0884 - val_loss: 1.0842
Epoch 54/280
15/15 [==============================] - 0s 12ms/step - loss: 1.0660 - val_loss: 1.0670
Epoch 55/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0480 - val_loss: 1.0427
Epoch 56/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0226 - val_loss: 1.0279
Epoch 57/280
15/15 [==============================] - 0s 14ms/step - loss: 1.0134 - val_loss: 1.0064
Epoch 58/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9996 - val_loss: 0.9869
Epoch 59/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9771 - val_loss: 0.9727
Epoch 60/280
15/15 [==============================] - 0s 12ms/step - loss: 0.9675 - val_loss: 0.9556
Epoch 61/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9433 - val_loss: 0.9389
Epoch 62/280
15/15 [==============================] - 0s 14ms/step - loss: 0.9366 - val_loss: 0.9140
Epoch 63/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9133 - val_loss: 0.9077
Epoch 64/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8954 - val_loss: 0.8816
Epoch 65/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8708 - val_loss: 0.8689
Epoch 66/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8601 - val_loss: 0.8506
Epoch 67/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8415 - val_loss: 0.8326
Epoch 68/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8209 - val_loss: 0.8159
Epoch 69/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8046 - val_loss: 0.8116
Epoch 70/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7990 - val_loss: 0.7809
Epoch 71/280
15/15 [==============================] - 0s 12ms/step - loss: 0.7824 - val_loss: 0.7674
Epoch 72/280
15/15 [==============================] - 0s 14ms/step - loss: 0.7634 - val_loss: 0.7477
Epoch 73/280
15/15 [==============================] - 0s 12ms/step - loss: 0.7432 - val_loss: 0.7355
Epoch 74/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7313 - val_loss: 0.7165
Epoch 75/280
15/15 [==============================] - 0s 12ms/step - loss: 0.7137 - val_loss: 0.6973
Epoch 76/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6910 - val_loss: 0.6775
Epoch 77/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6671 - val_loss: 0.6567
Epoch 78/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6503 - val_loss: 0.6431
Epoch 79/280
15/15 [==============================] - 0s 12ms/step - loss: 0.6419 - val_loss: 0.6281
Epoch 80/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6325 - val_loss: 0.6109
Epoch 81/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6073 - val_loss: 0.5969
Epoch 82/280
15/15 [==============================] - 0s 14ms/step - loss: 0.5921 - val_loss: 0.5814
Epoch 83/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5766 - val_loss: 0.5767
Epoch 84/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5650 - val_loss: 0.5570
Epoch 85/280
15/15 [==============================] - 0s 14ms/step - loss: 0.5517 - val_loss: 0.5424
Epoch 86/280
15/15 [==============================] - 0s 12ms/step - loss: 0.5356 - val_loss: 0.5201
Epoch 87/280
15/15 [==============================] - 0s 14ms/step - loss: 0.5284 - val_loss: 0.5093
Epoch 88/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4967 - val_loss: 0.4913
Epoch 89/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4909 - val_loss: 0.4805
Epoch 90/280
15/15 [==============================] - 0s 14ms/step - loss: 0.4778 - val_loss: 0.4694
Epoch 91/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4641 - val_loss: 0.4434
Epoch 92/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4429 - val_loss: 0.4431
Epoch 93/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4261 - val_loss: 0.4184
Epoch 94/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4118 - val_loss: 0.4070
Epoch 95/280
15/15 [==============================] - 0s 14ms/step - loss: 0.4017 - val_loss: 0.3975
Epoch 96/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3843 - val_loss: 0.3721
Epoch 97/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3733 - val_loss: 0.3661
Epoch 98/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3501 - val_loss: 0.3501
Epoch 99/280
15/15 [==============================] - 0s 12ms/step - loss: 0.3431 - val_loss: 0.3297
Epoch 100/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3337 - val_loss: 0.3141
Epoch 101/280
15/15 [==============================] - 0s 15ms/step - loss: 0.3057 - val_loss: 0.3023
Epoch 102/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2870 - val_loss: 0.3007
Epoch 103/280
15/15 [==============================] - 0s 14ms/step - loss: 0.2794 - val_loss: 0.2787
Epoch 104/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2690 - val_loss: 0.2698
Epoch 105/280
15/15 [==============================] - 0s 14ms/step - loss: 0.2539 - val_loss: 0.2383
Epoch 106/280
15/15 [==============================] - 0s 14ms/step - loss: 0.2290 - val_loss: 0.2458
Epoch 107/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2229 - val_loss: 0.2211
Epoch 108/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2076 - val_loss: 0.1950
Epoch 109/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1842 - val_loss: 0.1891
Epoch 110/280
15/15 [==============================] - 0s 12ms/step - loss: 0.1702 - val_loss: 0.1710
Epoch 111/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1541 - val_loss: 0.1655
Epoch 112/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1383 - val_loss: 0.1385
Epoch 113/280
15/15 [==============================] - 0s 12ms/step - loss: 0.1276 - val_loss: 0.1214
Epoch 114/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1092 - val_loss: 0.1268
Epoch 115/280
15/15 [==============================] - 0s 12ms/step - loss: 0.1004 - val_loss: 0.1230
Epoch 116/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0888 - val_loss: 0.0899
Epoch 117/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0756 - val_loss: 0.0718
Epoch 118/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0530 - val_loss: 0.0633
Epoch 119/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0413 - val_loss: 0.0487
Epoch 120/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0276 - val_loss: 0.0440
Epoch 121/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0337 - val_loss: 0.0697
Epoch 122/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0324 - val_loss: 0.0481
Epoch 123/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0335 - val_loss: 0.0503
Epoch 124/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0281 - val_loss: 0.0584
Epoch 125/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0400 - val_loss: 0.0570
Epoch 126/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0367 - val_loss: 0.0713
Epoch 127/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0343 - val_loss: 0.0378
Epoch 128/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0355 - val_loss: 0.0768
Epoch 129/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0288 - val_loss: 0.0532
Epoch 130/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0310 - val_loss: 0.0867
Epoch 131/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0276 - val_loss: 0.0567
Epoch 132/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0301 - val_loss: 0.0598
Epoch 133/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0291 - val_loss: 0.0711
Epoch 134/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0217 - val_loss: 0.0405
Epoch 135/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0316 - val_loss: 0.0599
Epoch 136/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0296 - val_loss: 0.0631
Epoch 137/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0251 - val_loss: 0.0415
Epoch 138/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0249 - val_loss: 0.0422
Epoch 139/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0274 - val_loss: 0.0531
Epoch 140/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0215 - val_loss: 0.0517
Epoch 141/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0230 - val_loss: 0.0481
Epoch 142/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0262 - val_loss: 0.0484
Epoch 143/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0277 - val_loss: 0.0496
Epoch 144/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0195 - val_loss: 0.0532
Epoch 145/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0250 - val_loss: 0.0496
Epoch 146/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0206 - val_loss: 0.0527
Epoch 147/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0175 - val_loss: 0.0543
Epoch 148/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0245 - val_loss: 0.0539
Epoch 149/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0225 - val_loss: 0.0538
Epoch 150/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0215 - val_loss: 0.0536
Epoch 151/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0228 - val_loss: 0.0535
Epoch 152/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0210 - val_loss: 0.0533
Epoch 153/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0230 - val_loss: 0.0530
Epoch 154/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0179 - val_loss: 0.0530
Epoch 155/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0271 - val_loss: 0.0529
Epoch 156/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0242 - val_loss: 0.0527
Epoch 157/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0174 - val_loss: 0.0526
Epoch 158/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0189 - val_loss: 0.0526
Epoch 159/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0282 - val_loss: 0.0526
Epoch 160/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0160 - val_loss: 0.0527
Epoch 161/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0174 - val_loss: 0.0526
Epoch 162/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0249 - val_loss: 0.0527
Epoch 163/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0194 - val_loss: 0.0527
Epoch 164/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0190 - val_loss: 0.0527
Epoch 165/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0290 - val_loss: 0.0527
Epoch 166/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0219 - val_loss: 0.0527
Epoch 167/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0239 - val_loss: 0.0527
Epoch 168/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0208 - val_loss: 0.0527
Epoch 169/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0233 - val_loss: 0.0527
Epoch 170/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0187 - val_loss: 0.0527
Epoch 171/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0243 - val_loss: 0.0527
Epoch 172/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0230 - val_loss: 0.0527
Epoch 173/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0231 - val_loss: 0.0527
Epoch 174/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0164 - val_loss: 0.0527
Epoch 175/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0234 - val_loss: 0.0527
Epoch 176/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0206 - val_loss: 0.0527
Epoch 177/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0236 - val_loss: 0.0527
Epoch 178/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0199 - val_loss: 0.0527
Epoch 179/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0307 - val_loss: 0.0527
Epoch 180/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0214 - val_loss: 0.0527
Epoch 181/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0221 - val_loss: 0.0527
Epoch 182/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0302 - val_loss: 0.0527
Epoch 183/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0244 - val_loss: 0.0527
Epoch 184/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0182 - val_loss: 0.0527
Epoch 185/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0239 - val_loss: 0.0527
Epoch 186/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0215 - val_loss: 0.0527
Epoch 187/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0344 - val_loss: 0.0527
Epoch 188/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0313 - val_loss: 0.0527
Epoch 189/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0242 - val_loss: 0.0527
Epoch 190/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0198 - val_loss: 0.0527
Epoch 191/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0251 - val_loss: 0.0527
Epoch 192/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0188 - val_loss: 0.0527
Epoch 193/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0176 - val_loss: 0.0527
Epoch 194/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0212 - val_loss: 0.0527
Epoch 195/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0180 - val_loss: 0.0527
Epoch 196/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0247 - val_loss: 0.0527
Epoch 197/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0220 - val_loss: 0.0527
Epoch 198/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0257 - val_loss: 0.0527
Epoch 199/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0189 - val_loss: 0.0527
Epoch 200/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0219 - val_loss: 0.0527
Epoch 201/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0240 - val_loss: 0.0527
Epoch 202/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0188 - val_loss: 0.0527
Epoch 203/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0247 - val_loss: 0.0527
Epoch 204/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0228 - val_loss: 0.0527
Epoch 205/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0233 - val_loss: 0.0527
Epoch 206/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0275 - val_loss: 0.0527
Epoch 207/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0224 - val_loss: 0.0527
Epoch 208/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0246 - val_loss: 0.0527
Epoch 209/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0242 - val_loss: 0.0527
Epoch 210/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0171 - val_loss: 0.0527
Epoch 211/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0203 - val_loss: 0.0527
Epoch 212/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0302 - val_loss: 0.0527
Epoch 213/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0243 - val_loss: 0.0527
Epoch 214/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0182 - val_loss: 0.0527
Epoch 215/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0202 - val_loss: 0.0527
Epoch 216/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0235 - val_loss: 0.0527
Epoch 217/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0177 - val_loss: 0.0527
Epoch 218/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0213 - val_loss: 0.0527
Epoch 219/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0215 - val_loss: 0.0527
Epoch 220/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0173 - val_loss: 0.0527
Epoch 221/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0229 - val_loss: 0.0527
Epoch 222/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0143 - val_loss: 0.0527
Epoch 223/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0248 - val_loss: 0.0527
Epoch 224/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0195 - val_loss: 0.0527
Epoch 225/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0227 - val_loss: 0.0527
Epoch 226/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0181 - val_loss: 0.0527
Epoch 227/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0242 - val_loss: 0.0527
Epoch 228/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0183 - val_loss: 0.0527
Epoch 229/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0168 - val_loss: 0.0527
Epoch 230/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0257 - val_loss: 0.0527
Epoch 231/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0166 - val_loss: 0.0527
Epoch 232/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0231 - val_loss: 0.0527
Epoch 233/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0264 - val_loss: 0.0527
Epoch 234/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0316 - val_loss: 0.0527
Epoch 235/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0211 - val_loss: 0.0527
Epoch 236/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0302 - val_loss: 0.0527
Epoch 237/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0181 - val_loss: 0.0527
Epoch 238/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0263 - val_loss: 0.0527
Epoch 239/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0234 - val_loss: 0.0527
Epoch 240/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0239 - val_loss: 0.0527
Epoch 241/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0228 - val_loss: 0.0527
Epoch 242/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0189 - val_loss: 0.0527
Epoch 243/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0187 - val_loss: 0.0527
Epoch 244/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0184 - val_loss: 0.0527
Epoch 245/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0213 - val_loss: 0.0527
Epoch 246/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0162 - val_loss: 0.0527
Epoch 247/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0191 - val_loss: 0.0527
Epoch 248/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0196 - val_loss: 0.0527
Epoch 249/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0137 - val_loss: 0.0527
Epoch 250/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0214 - val_loss: 0.0527
Epoch 251/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0212 - val_loss: 0.0527
Epoch 252/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0195 - val_loss: 0.0527
Epoch 253/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0158 - val_loss: 0.0527
Epoch 254/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0302 - val_loss: 0.0527
Epoch 255/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0206 - val_loss: 0.0527
Epoch 256/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0166 - val_loss: 0.0527
Epoch 257/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0194 - val_loss: 0.0527
Epoch 258/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0169 - val_loss: 0.0527
Epoch 259/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0214 - val_loss: 0.0527
Epoch 260/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0195 - val_loss: 0.0527
Epoch 261/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0198 - val_loss: 0.0527
Epoch 262/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0200 - val_loss: 0.0527
Epoch 263/280
15/15 [==============================] - 0s 17ms/step - loss: 0.0200 - val_loss: 0.0527
Epoch 264/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0203 - val_loss: 0.0527
Epoch 265/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0190 - val_loss: 0.0527
Epoch 266/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0217 - val_loss: 0.0527
Epoch 267/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0176 - val_loss: 0.0527
Epoch 268/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0247 - val_loss: 0.0527
Epoch 269/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0263 - val_loss: 0.0527
Epoch 270/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0187 - val_loss: 0.0527
Epoch 271/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0193 - val_loss: 0.0527
Epoch 272/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0306 - val_loss: 0.0527
Epoch 273/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0202 - val_loss: 0.0527
Epoch 274/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0210 - val_loss: 0.0527
Epoch 275/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0208 - val_loss: 0.0527
Epoch 276/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0225 - val_loss: 0.0527
Epoch 277/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0251 - val_loss: 0.0527
Epoch 278/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0198 - val_loss: 0.0527
Epoch 279/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0251 - val_loss: 0.0527
Epoch 280/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0180 - val_loss: 0.0527
COL: 比表面积, MSE: 1.91E-01,RMSE: 0.4372,MAPE: 4.16 %,MAE: 0.289,R_2: 0.5448
COL: 总孔体积, MSE: 8.81E-02,RMSE: 0.2969,MAPE: 25.869999999999997 %,MAE: 0.178,R_2: 0.5039
COL: 微孔体积, MSE: 2.92E-02,RMSE: 0.1709,MAPE: 31.97 %,MAE: 0.1435,R_2: 0.6463
Epoch 1/280
15/15 [==============================] - 6s 87ms/step - loss: 5.1081 - val_loss: 4.9102
Epoch 2/280
15/15 [==============================] - 0s 13ms/step - loss: 4.8975 - val_loss: 4.9026
Epoch 3/280
15/15 [==============================] - 0s 12ms/step - loss: 4.8714 - val_loss: 4.8965
Epoch 4/280
15/15 [==============================] - 0s 14ms/step - loss: 4.8855 - val_loss: 4.8015
Epoch 5/280
15/15 [==============================] - 0s 14ms/step - loss: 4.7490 - val_loss: 4.8035
Epoch 6/280
15/15 [==============================] - 0s 13ms/step - loss: 4.7785 - val_loss: 4.7613
Epoch 7/280
15/15 [==============================] - 0s 13ms/step - loss: 4.7197 - val_loss: 4.7055
Epoch 8/280
15/15 [==============================] - 0s 12ms/step - loss: 4.7034 - val_loss: 4.6356
Epoch 9/280
15/15 [==============================] - 0s 12ms/step - loss: 4.6134 - val_loss: 4.6040
Epoch 10/280
15/15 [==============================] - 0s 12ms/step - loss: 4.5380 - val_loss: 4.5892
Epoch 11/280
15/15 [==============================] - 0s 13ms/step - loss: 4.5485 - val_loss: 4.5479
Epoch 12/280
15/15 [==============================] - 0s 13ms/step - loss: 4.4834 - val_loss: 4.5093
Epoch 13/280
15/15 [==============================] - 0s 12ms/step - loss: 4.4568 - val_loss: 4.5328
Epoch 14/280
15/15 [==============================] - 0s 13ms/step - loss: 4.4267 - val_loss: 4.4700
Epoch 15/280
15/15 [==============================] - 0s 14ms/step - loss: 4.4915 - val_loss: 4.3953
Epoch 16/280
15/15 [==============================] - 0s 13ms/step - loss: 4.4139 - val_loss: 4.3778
Epoch 17/280
15/15 [==============================] - 0s 13ms/step - loss: 4.3356 - val_loss: 4.3524
Epoch 18/280
15/15 [==============================] - 0s 14ms/step - loss: 4.2885 - val_loss: 4.3275
Epoch 19/280
15/15 [==============================] - 0s 13ms/step - loss: 4.2311 - val_loss: 4.2670
Epoch 20/280
15/15 [==============================] - 0s 14ms/step - loss: 4.1935 - val_loss: 4.2596
Epoch 21/280
15/15 [==============================] - 0s 13ms/step - loss: 4.1738 - val_loss: 4.1836
Epoch 22/280
15/15 [==============================] - 0s 13ms/step - loss: 4.1310 - val_loss: 4.1656
Epoch 23/280
15/15 [==============================] - 0s 12ms/step - loss: 4.1215 - val_loss: 4.2036
Epoch 24/280
15/15 [==============================] - 0s 13ms/step - loss: 4.0710 - val_loss: 4.1054
Epoch 25/280
15/15 [==============================] - 0s 13ms/step - loss: 4.0426 - val_loss: 4.0336
Epoch 26/280
15/15 [==============================] - 0s 13ms/step - loss: 3.9955 - val_loss: 4.0605
Epoch 27/280
15/15 [==============================] - 0s 14ms/step - loss: 3.9581 - val_loss: 3.9995
Epoch 28/280
15/15 [==============================] - 0s 13ms/step - loss: 3.9062 - val_loss: 3.9595
Epoch 29/280
15/15 [==============================] - 0s 14ms/step - loss: 3.9252 - val_loss: 3.9659
Epoch 30/280
15/15 [==============================] - 0s 14ms/step - loss: 3.8707 - val_loss: 3.8585
Epoch 31/280
15/15 [==============================] - 0s 13ms/step - loss: 3.8102 - val_loss: 3.8593
Epoch 32/280
15/15 [==============================] - 0s 14ms/step - loss: 3.7872 - val_loss: 3.7926
Epoch 33/280
15/15 [==============================] - 0s 13ms/step - loss: 3.8039 - val_loss: 3.8059
Epoch 34/280
15/15 [==============================] - 0s 13ms/step - loss: 3.7222 - val_loss: 3.7581
Epoch 35/280
15/15 [==============================] - 0s 13ms/step - loss: 3.7013 - val_loss: 3.7203
Epoch 36/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6839 - val_loss: 3.6715
Epoch 37/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6334 - val_loss: 3.6679
Epoch 38/280
15/15 [==============================] - 0s 13ms/step - loss: 3.5974 - val_loss: 3.6234
Epoch 39/280
15/15 [==============================] - 0s 13ms/step - loss: 3.5549 - val_loss: 3.6106
Epoch 40/280
15/15 [==============================] - 0s 13ms/step - loss: 3.5219 - val_loss: 3.5373
Epoch 41/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4900 - val_loss: 3.5039
Epoch 42/280
15/15 [==============================] - 0s 12ms/step - loss: 3.4689 - val_loss: 3.4978
Epoch 43/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4203 - val_loss: 3.4309
Epoch 44/280
15/15 [==============================] - 0s 15ms/step - loss: 3.3841 - val_loss: 3.4069
Epoch 45/280
15/15 [==============================] - 0s 16ms/step - loss: 3.3521 - val_loss: 3.4026
Epoch 46/280
15/15 [==============================] - 0s 12ms/step - loss: 3.3213 - val_loss: 3.3949
Epoch 47/280
15/15 [==============================] - 0s 12ms/step - loss: 3.3278 - val_loss: 3.3207
Epoch 48/280
15/15 [==============================] - 0s 13ms/step - loss: 3.2762 - val_loss: 3.2875
Epoch 49/280
15/15 [==============================] - 0s 12ms/step - loss: 3.2363 - val_loss: 3.2245
Epoch 50/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1902 - val_loss: 3.2058
Epoch 51/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1809 - val_loss: 3.1922
Epoch 52/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1383 - val_loss: 3.1311
Epoch 53/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0813 - val_loss: 3.1212
Epoch 54/280
15/15 [==============================] - 0s 14ms/step - loss: 3.0824 - val_loss: 3.0604
Epoch 55/280
15/15 [==============================] - 0s 17ms/step - loss: 3.0412 - val_loss: 3.0347
Epoch 56/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0030 - val_loss: 3.0090
Epoch 57/280
15/15 [==============================] - 0s 13ms/step - loss: 2.9850 - val_loss: 2.9901
Epoch 58/280
15/15 [==============================] - 0s 13ms/step - loss: 2.9486 - val_loss: 2.9865
Epoch 59/280
15/15 [==============================] - 0s 14ms/step - loss: 2.9330 - val_loss: 2.9117
Epoch 60/280
15/15 [==============================] - 0s 13ms/step - loss: 2.8916 - val_loss: 2.8976
Epoch 61/280
15/15 [==============================] - 0s 13ms/step - loss: 2.8388 - val_loss: 2.8618
Epoch 62/280
15/15 [==============================] - 0s 13ms/step - loss: 2.8202 - val_loss: 2.8307
Epoch 63/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7957 - val_loss: 2.8076
Epoch 64/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7548 - val_loss: 2.7568
Epoch 65/280
15/15 [==============================] - 0s 11ms/step - loss: 2.7154 - val_loss: 2.7365
Epoch 66/280
15/15 [==============================] - 0s 12ms/step - loss: 2.6893 - val_loss: 2.6783
Epoch 67/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6608 - val_loss: 2.6590
Epoch 68/280
15/15 [==============================] - 0s 12ms/step - loss: 2.6173 - val_loss: 2.6270
Epoch 69/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6031 - val_loss: 2.5972
Epoch 70/280
15/15 [==============================] - 0s 12ms/step - loss: 2.5819 - val_loss: 2.5621
Epoch 71/280
15/15 [==============================] - 0s 13ms/step - loss: 2.5281 - val_loss: 2.5354
Epoch 72/280
15/15 [==============================] - 0s 12ms/step - loss: 2.4967 - val_loss: 2.4950
Epoch 73/280
15/15 [==============================] - 0s 13ms/step - loss: 2.4655 - val_loss: 2.4588
Epoch 74/280
15/15 [==============================] - 0s 13ms/step - loss: 2.4464 - val_loss: 2.4244
Epoch 75/280
15/15 [==============================] - 0s 14ms/step - loss: 2.4075 - val_loss: 2.3982
Epoch 76/280
15/15 [==============================] - 0s 12ms/step - loss: 2.3720 - val_loss: 2.3743
Epoch 77/280
15/15 [==============================] - 0s 12ms/step - loss: 2.3495 - val_loss: 2.3415
Epoch 78/280
15/15 [==============================] - 0s 13ms/step - loss: 2.2947 - val_loss: 2.2965
Epoch 79/280
15/15 [==============================] - 0s 13ms/step - loss: 2.2712 - val_loss: 2.2628
Epoch 80/280
15/15 [==============================] - 0s 13ms/step - loss: 2.2385 - val_loss: 2.2341
Epoch 81/280
15/15 [==============================] - 0s 13ms/step - loss: 2.2093 - val_loss: 2.2007
Epoch 82/280
15/15 [==============================] - 0s 13ms/step - loss: 2.1926 - val_loss: 2.1803
Epoch 83/280
15/15 [==============================] - 0s 13ms/step - loss: 2.1452 - val_loss: 2.1466
Epoch 84/280
15/15 [==============================] - 0s 13ms/step - loss: 2.1080 - val_loss: 2.1139
Epoch 85/280
15/15 [==============================] - 0s 14ms/step - loss: 2.0963 - val_loss: 2.0719
Epoch 86/280
15/15 [==============================] - 0s 14ms/step - loss: 2.0696 - val_loss: 2.0438
Epoch 87/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0350 - val_loss: 2.0082
Epoch 88/280
15/15 [==============================] - 0s 12ms/step - loss: 1.9857 - val_loss: 1.9835
Epoch 89/280
15/15 [==============================] - 0s 13ms/step - loss: 1.9671 - val_loss: 1.9488
Epoch 90/280
15/15 [==============================] - 0s 14ms/step - loss: 1.9304 - val_loss: 1.9033
Epoch 91/280
15/15 [==============================] - 0s 14ms/step - loss: 1.9129 - val_loss: 1.8740
Epoch 92/280
15/15 [==============================] - 0s 13ms/step - loss: 1.8763 - val_loss: 1.8452
Epoch 93/280
15/15 [==============================] - 0s 13ms/step - loss: 1.8298 - val_loss: 1.8235
Epoch 94/280
15/15 [==============================] - 0s 11ms/step - loss: 1.7952 - val_loss: 1.7809
Epoch 95/280
15/15 [==============================] - 0s 12ms/step - loss: 1.7741 - val_loss: 1.7611
Epoch 96/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7307 - val_loss: 1.7357
Epoch 97/280
15/15 [==============================] - 0s 12ms/step - loss: 1.7168 - val_loss: 1.7038
Epoch 98/280
15/15 [==============================] - 0s 15ms/step - loss: 1.6875 - val_loss: 1.6567
Epoch 99/280
15/15 [==============================] - 0s 14ms/step - loss: 1.6440 - val_loss: 1.6213
Epoch 100/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6178 - val_loss: 1.5933
Epoch 101/280
15/15 [==============================] - 0s 12ms/step - loss: 1.5765 - val_loss: 1.5616
Epoch 102/280
15/15 [==============================] - 0s 12ms/step - loss: 1.5462 - val_loss: 1.5271
Epoch 103/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5152 - val_loss: 1.4967
Epoch 104/280
15/15 [==============================] - 0s 11ms/step - loss: 1.4833 - val_loss: 1.4654
Epoch 105/280
15/15 [==============================] - 0s 12ms/step - loss: 1.4444 - val_loss: 1.4358
Epoch 106/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4152 - val_loss: 1.4042
Epoch 107/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3893 - val_loss: 1.3689
Epoch 108/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3534 - val_loss: 1.3381
Epoch 109/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3189 - val_loss: 1.3094
Epoch 110/280
15/15 [==============================] - 0s 14ms/step - loss: 1.2893 - val_loss: 1.2775
Epoch 111/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2663 - val_loss: 1.2617
Epoch 112/280
15/15 [==============================] - 0s 12ms/step - loss: 1.2497 - val_loss: 1.2412
Epoch 113/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2280 - val_loss: 1.2307
Epoch 114/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2131 - val_loss: 1.2178
Epoch 115/280
15/15 [==============================] - 0s 12ms/step - loss: 1.1963 - val_loss: 1.2042
Epoch 116/280
15/15 [==============================] - 0s 15ms/step - loss: 1.1870 - val_loss: 1.1858
Epoch 117/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1782 - val_loss: 1.1721
Epoch 118/280
15/15 [==============================] - 0s 11ms/step - loss: 1.1521 - val_loss: 1.1573
Epoch 119/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1387 - val_loss: 1.1391
Epoch 120/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1245 - val_loss: 1.1252
Epoch 121/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1089 - val_loss: 1.1109
Epoch 122/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0948 - val_loss: 1.0973
Epoch 123/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0807 - val_loss: 1.0832
Epoch 124/280
15/15 [==============================] - 0s 12ms/step - loss: 1.0651 - val_loss: 1.0653
Epoch 125/280
15/15 [==============================] - 0s 16ms/step - loss: 1.0550 - val_loss: 1.0520
Epoch 126/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0281 - val_loss: 1.0342
Epoch 127/280
15/15 [==============================] - 0s 11ms/step - loss: 1.0174 - val_loss: 1.0233
Epoch 128/280
15/15 [==============================] - 0s 14ms/step - loss: 1.0004 - val_loss: 1.0092
Epoch 129/280
15/15 [==============================] - 0s 15ms/step - loss: 0.9905 - val_loss: 0.9870
Epoch 130/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9755 - val_loss: 0.9740
Epoch 131/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9609 - val_loss: 0.9636
Epoch 132/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9390 - val_loss: 0.9474
Epoch 133/280
15/15 [==============================] - 0s 14ms/step - loss: 0.9285 - val_loss: 0.9306
Epoch 134/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9186 - val_loss: 0.9154
Epoch 135/280
15/15 [==============================] - 0s 12ms/step - loss: 0.8964 - val_loss: 0.9008
Epoch 136/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8825 - val_loss: 0.8857
Epoch 137/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8665 - val_loss: 0.8731
Epoch 138/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8525 - val_loss: 0.8578
Epoch 139/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8374 - val_loss: 0.8368
Epoch 140/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8190 - val_loss: 0.8262
Epoch 141/280
15/15 [==============================] - 0s 16ms/step - loss: 0.8082 - val_loss: 0.8144
Epoch 142/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7900 - val_loss: 0.7967
Epoch 143/280
15/15 [==============================] - 0s 11ms/step - loss: 0.7780 - val_loss: 0.7780
Epoch 144/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7609 - val_loss: 0.7624
Epoch 145/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7445 - val_loss: 0.7526
Epoch 146/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7292 - val_loss: 0.7464
Epoch 147/280
15/15 [==============================] - 0s 12ms/step - loss: 0.7150 - val_loss: 0.7205
Epoch 148/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7076 - val_loss: 0.7118
Epoch 149/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6928 - val_loss: 0.6972
Epoch 150/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6731 - val_loss: 0.6844
Epoch 151/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6611 - val_loss: 0.6654
Epoch 152/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6423 - val_loss: 0.6477
Epoch 153/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6313 - val_loss: 0.6356
Epoch 154/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6113 - val_loss: 0.6156
Epoch 155/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5967 - val_loss: 0.6031
Epoch 156/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5812 - val_loss: 0.5875
Epoch 157/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5702 - val_loss: 0.5728
Epoch 158/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5558 - val_loss: 0.5591
Epoch 159/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5361 - val_loss: 0.5422
Epoch 160/280
15/15 [==============================] - 0s 12ms/step - loss: 0.5235 - val_loss: 0.5270
Epoch 161/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5084 - val_loss: 0.5119
Epoch 162/280
15/15 [==============================] - 0s 14ms/step - loss: 0.4930 - val_loss: 0.4952
Epoch 163/280
15/15 [==============================] - 0s 14ms/step - loss: 0.4763 - val_loss: 0.4804
Epoch 164/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4594 - val_loss: 0.4669
Epoch 165/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4478 - val_loss: 0.4494
Epoch 166/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4318 - val_loss: 0.4370
Epoch 167/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4136 - val_loss: 0.4334
Epoch 168/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4057 - val_loss: 0.4085
Epoch 169/280
15/15 [==============================] - 0s 12ms/step - loss: 0.3844 - val_loss: 0.3921
Epoch 170/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3693 - val_loss: 0.3802
Epoch 171/280
15/15 [==============================] - 0s 14ms/step - loss: 0.3657 - val_loss: 0.3635
Epoch 172/280
15/15 [==============================] - 0s 12ms/step - loss: 0.3474 - val_loss: 0.3528
Epoch 173/280
15/15 [==============================] - 0s 12ms/step - loss: 0.3396 - val_loss: 0.3365
Epoch 174/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3189 - val_loss: 0.3179
Epoch 175/280
15/15 [==============================] - 0s 14ms/step - loss: 0.3041 - val_loss: 0.3039
Epoch 176/280
15/15 [==============================] - 0s 14ms/step - loss: 0.2797 - val_loss: 0.2888
Epoch 177/280
15/15 [==============================] - 0s 14ms/step - loss: 0.2678 - val_loss: 0.2714
Epoch 178/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2664 - val_loss: 0.2648
Epoch 179/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2430 - val_loss: 0.2442
Epoch 180/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2275 - val_loss: 0.2299
Epoch 181/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2174 - val_loss: 0.2133
Epoch 182/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1952 - val_loss: 0.2043
Epoch 183/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1787 - val_loss: 0.1842
Epoch 184/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1641 - val_loss: 0.1706
Epoch 185/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1502 - val_loss: 0.1541
Epoch 186/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1363 - val_loss: 0.1366
Epoch 187/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1143 - val_loss: 0.1261
Epoch 188/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1053 - val_loss: 0.1179
Epoch 189/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0897 - val_loss: 0.0969
Epoch 190/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0726 - val_loss: 0.0757
Epoch 191/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0586 - val_loss: 0.0688
Epoch 192/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0413 - val_loss: 0.0489
Epoch 193/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0226 - val_loss: 0.0385
Epoch 194/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0218 - val_loss: 0.0374
Epoch 195/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0215 - val_loss: 0.0381
Epoch 196/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0220 - val_loss: 0.0407
Epoch 197/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0204 - val_loss: 0.0405
Epoch 198/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0247 - val_loss: 0.0350
Epoch 199/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0282 - val_loss: 0.0399
Epoch 200/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0259 - val_loss: 0.0431
Epoch 201/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0234 - val_loss: 0.0397
Epoch 202/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0250 - val_loss: 0.0377
Epoch 203/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0201 - val_loss: 0.0354
Epoch 204/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0173 - val_loss: 0.0355
Epoch 205/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0168 - val_loss: 0.0316
Epoch 206/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0230 - val_loss: 0.0378
Epoch 207/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0201 - val_loss: 0.0337
Epoch 208/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0242 - val_loss: 0.0377
Epoch 209/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0264 - val_loss: 0.0426
Epoch 210/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0219 - val_loss: 0.0451
Epoch 211/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0159 - val_loss: 0.0412
Epoch 212/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0215 - val_loss: 0.0425
Epoch 213/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0189 - val_loss: 0.0359
Epoch 214/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0226 - val_loss: 0.0429
Epoch 215/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0180 - val_loss: 0.0378
Epoch 216/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0164 - val_loss: 0.0386
Epoch 217/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0158 - val_loss: 0.0387
Epoch 218/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0134 - val_loss: 0.0384
Epoch 219/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0206 - val_loss: 0.0378
Epoch 220/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0224 - val_loss: 0.0372
Epoch 221/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0166 - val_loss: 0.0369
Epoch 222/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0152 - val_loss: 0.0373
Epoch 223/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0160 - val_loss: 0.0372
Epoch 224/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0166 - val_loss: 0.0374
Epoch 225/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0148 - val_loss: 0.0366
Epoch 226/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0185 - val_loss: 0.0366
Epoch 227/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0185 - val_loss: 0.0367
Epoch 228/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0177 - val_loss: 0.0368
Epoch 229/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0134 - val_loss: 0.0368
Epoch 230/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0141 - val_loss: 0.0368
Epoch 231/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0135 - val_loss: 0.0366
Epoch 232/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0180 - val_loss: 0.0364
Epoch 233/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0112 - val_loss: 0.0363
Epoch 234/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0163 - val_loss: 0.0363
Epoch 235/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0252 - val_loss: 0.0364
Epoch 236/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0226 - val_loss: 0.0364
Epoch 237/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0172 - val_loss: 0.0364
Epoch 238/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0144 - val_loss: 0.0364
Epoch 239/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0177 - val_loss: 0.0364
Epoch 240/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0237 - val_loss: 0.0364
Epoch 241/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0171 - val_loss: 0.0365
Epoch 242/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0147 - val_loss: 0.0365
Epoch 243/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0167 - val_loss: 0.0365
Epoch 244/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0170 - val_loss: 0.0365
Epoch 245/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0189 - val_loss: 0.0365
Epoch 246/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0187 - val_loss: 0.0365
Epoch 247/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0184 - val_loss: 0.0365
Epoch 248/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0150 - val_loss: 0.0365
Epoch 249/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0166 - val_loss: 0.0365
Epoch 250/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0187 - val_loss: 0.0365
Epoch 251/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0175 - val_loss: 0.0365
Epoch 252/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0137 - val_loss: 0.0365
Epoch 253/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0140 - val_loss: 0.0365
Epoch 254/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0113 - val_loss: 0.0365
Epoch 255/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0109 - val_loss: 0.0365
Epoch 256/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0156 - val_loss: 0.0365
Epoch 257/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0124 - val_loss: 0.0365
Epoch 258/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0168 - val_loss: 0.0365
Epoch 259/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0123 - val_loss: 0.0365
Epoch 260/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0155 - val_loss: 0.0365
Epoch 261/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0173 - val_loss: 0.0365
Epoch 262/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0136 - val_loss: 0.0365
Epoch 263/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0206 - val_loss: 0.0365
Epoch 264/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0170 - val_loss: 0.0365
Epoch 265/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0136 - val_loss: 0.0365
Epoch 266/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0135 - val_loss: 0.0365
Epoch 267/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0171 - val_loss: 0.0365
Epoch 268/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0156 - val_loss: 0.0365
Epoch 269/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0186 - val_loss: 0.0365
Epoch 270/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0173 - val_loss: 0.0365
Epoch 271/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0169 - val_loss: 0.0365
Epoch 272/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0205 - val_loss: 0.0365
Epoch 273/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0149 - val_loss: 0.0365
Epoch 274/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0140 - val_loss: 0.0365
Epoch 275/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0142 - val_loss: 0.0365
Epoch 276/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0143 - val_loss: 0.0365
Epoch 277/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0138 - val_loss: 0.0365
Epoch 278/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0150 - val_loss: 0.0365
Epoch 279/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0192 - val_loss: 0.0365
Epoch 280/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0226 - val_loss: 0.0365
COL: 比表面积, MSE: 2.48E-01,RMSE: 0.4978,MAPE: 4.0 %,MAE: 0.302,R_2: 0.2379
COL: 总孔体积, MSE: 3.02E-01,RMSE: 0.5491,MAPE: 28.02 %,MAE: 0.3058,R_2: 0.1327
COL: 微孔体积, MSE: 2.86E-02,RMSE: 0.169,MAPE: 28.199999999999996 %,MAE: 0.119,R_2: 0.7352
Epoch 1/280
15/15 [==============================] - 6s 92ms/step - loss: 3.8534 - val_loss: 3.7567
Epoch 2/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6472 - val_loss: 3.6221
Epoch 3/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4827 - val_loss: 3.5718
Epoch 4/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4439 - val_loss: 3.7812
Epoch 5/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4902 - val_loss: 3.4990
Epoch 6/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4199 - val_loss: 3.5033
Epoch 7/280
15/15 [==============================] - 0s 14ms/step - loss: 3.3520 - val_loss: 3.4131
Epoch 8/280
15/15 [==============================] - 0s 13ms/step - loss: 3.2274 - val_loss: 3.4744
Epoch 9/280
15/15 [==============================] - 0s 13ms/step - loss: 3.3141 - val_loss: 3.3652
Epoch 10/280
15/15 [==============================] - 0s 14ms/step - loss: 3.2422 - val_loss: 3.3192
Epoch 11/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1901 - val_loss: 3.2861
Epoch 12/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1546 - val_loss: 3.2805
Epoch 13/280
15/15 [==============================] - 0s 8ms/step - loss: 3.1568 - val_loss: 3.1997
Epoch 14/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0975 - val_loss: 3.1395
Epoch 15/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0909 - val_loss: 3.1347
Epoch 16/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0395 - val_loss: 3.0548
Epoch 17/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0171 - val_loss: 3.0526
Epoch 18/280
15/15 [==============================] - 0s 13ms/step - loss: 2.8964 - val_loss: 3.0192
Epoch 19/280
15/15 [==============================] - 0s 13ms/step - loss: 2.9154 - val_loss: 3.0198
Epoch 20/280
15/15 [==============================] - 0s 13ms/step - loss: 2.8078 - val_loss: 2.9941
Epoch 21/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7513 - val_loss: 2.9358
Epoch 22/280
15/15 [==============================] - 0s 14ms/step - loss: 2.8136 - val_loss: 2.8785
Epoch 23/280
15/15 [==============================] - 0s 13ms/step - loss: 2.8047 - val_loss: 2.8693
Epoch 24/280
15/15 [==============================] - 0s 12ms/step - loss: 2.7416 - val_loss: 2.8484
Epoch 25/280
15/15 [==============================] - 0s 14ms/step - loss: 2.6788 - val_loss: 2.8676
Epoch 26/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6403 - val_loss: 2.7848
Epoch 27/280
15/15 [==============================] - 0s 16ms/step - loss: 2.5648 - val_loss: 2.6941
Epoch 28/280
15/15 [==============================] - 0s 12ms/step - loss: 2.5826 - val_loss: 2.6609
Epoch 29/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6405 - val_loss: 2.6603
Epoch 30/280
15/15 [==============================] - 0s 13ms/step - loss: 2.4518 - val_loss: 2.5825
Epoch 31/280
15/15 [==============================] - 0s 14ms/step - loss: 2.4556 - val_loss: 2.5640
Epoch 32/280
15/15 [==============================] - 0s 13ms/step - loss: 2.3909 - val_loss: 2.5145
Epoch 33/280
15/15 [==============================] - 0s 13ms/step - loss: 2.4314 - val_loss: 2.5188
Epoch 34/280
15/15 [==============================] - 0s 13ms/step - loss: 2.3933 - val_loss: 2.4724
Epoch 35/280
15/15 [==============================] - 0s 14ms/step - loss: 2.3968 - val_loss: 2.4456
Epoch 36/280
15/15 [==============================] - 0s 14ms/step - loss: 2.2659 - val_loss: 2.3750
Epoch 37/280
15/15 [==============================] - 0s 12ms/step - loss: 2.3021 - val_loss: 2.3642
Epoch 38/280
15/15 [==============================] - 0s 15ms/step - loss: 2.2431 - val_loss: 2.3579
Epoch 39/280
15/15 [==============================] - 0s 13ms/step - loss: 2.2053 - val_loss: 2.2751
Epoch 40/280
15/15 [==============================] - 0s 13ms/step - loss: 2.2433 - val_loss: 2.2323
Epoch 41/280
15/15 [==============================] - 0s 12ms/step - loss: 2.0799 - val_loss: 2.2380
Epoch 42/280
15/15 [==============================] - 0s 12ms/step - loss: 2.1074 - val_loss: 2.2114
Epoch 43/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0792 - val_loss: 2.1425
Epoch 44/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0379 - val_loss: 2.0959
Epoch 45/280
15/15 [==============================] - 0s 13ms/step - loss: 2.0600 - val_loss: 2.0612
Epoch 46/280
15/15 [==============================] - 0s 13ms/step - loss: 1.9412 - val_loss: 2.0333
Epoch 47/280
15/15 [==============================] - 0s 12ms/step - loss: 1.9411 - val_loss: 2.0240
Epoch 48/280
15/15 [==============================] - 0s 15ms/step - loss: 1.9220 - val_loss: 1.9449
Epoch 49/280
15/15 [==============================] - 0s 14ms/step - loss: 1.8270 - val_loss: 1.9371
Epoch 50/280
15/15 [==============================] - 0s 14ms/step - loss: 1.8160 - val_loss: 1.9008
Epoch 51/280
15/15 [==============================] - 0s 13ms/step - loss: 1.7859 - val_loss: 1.9029
Epoch 52/280
15/15 [==============================] - 0s 13ms/step - loss: 1.8180 - val_loss: 1.8543
Epoch 53/280
15/15 [==============================] - 0s 12ms/step - loss: 1.6860 - val_loss: 1.8061
Epoch 54/280
15/15 [==============================] - 0s 12ms/step - loss: 1.6871 - val_loss: 1.7867
Epoch 55/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6814 - val_loss: 1.7409
Epoch 56/280
15/15 [==============================] - 0s 13ms/step - loss: 1.6678 - val_loss: 1.7037
Epoch 57/280
15/15 [==============================] - 0s 14ms/step - loss: 1.5697 - val_loss: 1.6629
Epoch 58/280
15/15 [==============================] - 0s 14ms/step - loss: 1.5739 - val_loss: 1.6251
Epoch 59/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5689 - val_loss: 1.5888
Epoch 60/280
15/15 [==============================] - 0s 13ms/step - loss: 1.5003 - val_loss: 1.5611
Epoch 61/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4374 - val_loss: 1.5485
Epoch 62/280
15/15 [==============================] - 0s 13ms/step - loss: 1.4609 - val_loss: 1.5217
Epoch 63/280
15/15 [==============================] - 0s 14ms/step - loss: 1.3757 - val_loss: 1.4869
Epoch 64/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3607 - val_loss: 1.4766
Epoch 65/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3568 - val_loss: 1.4298
Epoch 66/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3402 - val_loss: 1.4201
Epoch 67/280
15/15 [==============================] - 0s 12ms/step - loss: 1.2598 - val_loss: 1.3883
Epoch 68/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2835 - val_loss: 1.4037
Epoch 69/280
15/15 [==============================] - 0s 13ms/step - loss: 1.3104 - val_loss: 1.3474
Epoch 70/280
15/15 [==============================] - 0s 11ms/step - loss: 1.2975 - val_loss: 1.3322
Epoch 71/280
15/15 [==============================] - 0s 13ms/step - loss: 1.2389 - val_loss: 1.3066
Epoch 72/280
15/15 [==============================] - 0s 12ms/step - loss: 1.2247 - val_loss: 1.2726
Epoch 73/280
15/15 [==============================] - 0s 14ms/step - loss: 1.2057 - val_loss: 1.2699
Epoch 74/280
15/15 [==============================] - 0s 16ms/step - loss: 1.1751 - val_loss: 1.2541
Epoch 75/280
15/15 [==============================] - 0s 14ms/step - loss: 1.1926 - val_loss: 1.2535
Epoch 76/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1240 - val_loss: 1.2125
Epoch 77/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1475 - val_loss: 1.1964
Epoch 78/280
15/15 [==============================] - 0s 13ms/step - loss: 1.1142 - val_loss: 1.1723
Epoch 79/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0919 - val_loss: 1.1463
Epoch 80/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0487 - val_loss: 1.1511
Epoch 81/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0812 - val_loss: 1.1103
Epoch 82/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0616 - val_loss: 1.1049
Epoch 83/280
15/15 [==============================] - 0s 12ms/step - loss: 1.0060 - val_loss: 1.0763
Epoch 84/280
15/15 [==============================] - 0s 14ms/step - loss: 0.9815 - val_loss: 1.0593
Epoch 85/280
15/15 [==============================] - 0s 13ms/step - loss: 0.9701 - val_loss: 1.0384
Epoch 86/280
15/15 [==============================] - 0s 13ms/step - loss: 1.0118 - val_loss: 1.0158
Epoch 87/280
15/15 [==============================] - 0s 14ms/step - loss: 0.9694 - val_loss: 0.9976
Epoch 88/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8923 - val_loss: 0.9689
Epoch 89/280
15/15 [==============================] - 0s 14ms/step - loss: 0.8620 - val_loss: 0.9573
Epoch 90/280
15/15 [==============================] - 0s 13ms/step - loss: 0.8262 - val_loss: 0.9274
Epoch 91/280
15/15 [==============================] - 0s 12ms/step - loss: 0.8643 - val_loss: 0.9043
Epoch 92/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7931 - val_loss: 0.8905
Epoch 93/280
15/15 [==============================] - 0s 12ms/step - loss: 0.7984 - val_loss: 0.8760
Epoch 94/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7855 - val_loss: 0.8485
Epoch 95/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7722 - val_loss: 0.8250
Epoch 96/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7325 - val_loss: 0.8051
Epoch 97/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7136 - val_loss: 0.7794
Epoch 98/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6683 - val_loss: 0.7647
Epoch 99/280
15/15 [==============================] - 0s 13ms/step - loss: 0.7094 - val_loss: 0.7334
Epoch 100/280
15/15 [==============================] - 0s 14ms/step - loss: 0.6586 - val_loss: 0.7116
Epoch 101/280
15/15 [==============================] - 0s 12ms/step - loss: 0.6167 - val_loss: 0.6856
Epoch 102/280
15/15 [==============================] - 0s 13ms/step - loss: 0.6134 - val_loss: 0.6801
Epoch 103/280
15/15 [==============================] - 0s 12ms/step - loss: 0.6155 - val_loss: 0.6491
Epoch 104/280
15/15 [==============================] - 0s 14ms/step - loss: 0.5715 - val_loss: 0.6357
Epoch 105/280
15/15 [==============================] - 0s 13ms/step - loss: 0.5260 - val_loss: 0.6052
Epoch 106/280
15/15 [==============================] - 0s 16ms/step - loss: 0.5269 - val_loss: 0.5999
Epoch 107/280
15/15 [==============================] - 0s 14ms/step - loss: 0.5412 - val_loss: 0.5573
Epoch 108/280
15/15 [==============================] - 0s 14ms/step - loss: 0.5057 - val_loss: 0.5422
Epoch 109/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4933 - val_loss: 0.5037
Epoch 110/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4462 - val_loss: 0.4962
Epoch 111/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4479 - val_loss: 0.4797
Epoch 112/280
15/15 [==============================] - 0s 12ms/step - loss: 0.4036 - val_loss: 0.4708
Epoch 113/280
15/15 [==============================] - 0s 13ms/step - loss: 0.4004 - val_loss: 0.4384
Epoch 114/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3423 - val_loss: 0.4223
Epoch 115/280
15/15 [==============================] - 0s 13ms/step - loss: 0.3605 - val_loss: 0.3956
Epoch 116/280
15/15 [==============================] - 0s 12ms/step - loss: 0.3069 - val_loss: 0.3667
Epoch 117/280
15/15 [==============================] - 0s 12ms/step - loss: 0.3148 - val_loss: 0.3675
Epoch 118/280
15/15 [==============================] - 0s 12ms/step - loss: 0.3581 - val_loss: 0.3360
Epoch 119/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2954 - val_loss: 0.2939
Epoch 120/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2562 - val_loss: 0.2863
Epoch 121/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2189 - val_loss: 0.2752
Epoch 122/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1909 - val_loss: 0.2655
Epoch 123/280
15/15 [==============================] - 0s 12ms/step - loss: 0.2091 - val_loss: 0.2517
Epoch 124/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1874 - val_loss: 0.2449
Epoch 125/280
15/15 [==============================] - 0s 13ms/step - loss: 0.2034 - val_loss: 0.2362
Epoch 126/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1790 - val_loss: 0.2391
Epoch 127/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1783 - val_loss: 0.2272
Epoch 128/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1812 - val_loss: 0.2234
Epoch 129/280
15/15 [==============================] - 0s 12ms/step - loss: 0.1731 - val_loss: 0.2219
Epoch 130/280
15/15 [==============================] - 0s 12ms/step - loss: 0.1789 - val_loss: 0.2142
Epoch 131/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1547 - val_loss: 0.2143
Epoch 132/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1717 - val_loss: 0.1890
Epoch 133/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1656 - val_loss: 0.1934
Epoch 134/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1378 - val_loss: 0.1874
Epoch 135/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1595 - val_loss: 0.1803
Epoch 136/280
15/15 [==============================] - 0s 11ms/step - loss: 0.1520 - val_loss: 0.1690
Epoch 137/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1372 - val_loss: 0.1707
Epoch 138/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1398 - val_loss: 0.1716
Epoch 139/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1318 - val_loss: 0.1650
Epoch 140/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1382 - val_loss: 0.1633
Epoch 141/280
15/15 [==============================] - 0s 15ms/step - loss: 0.1195 - val_loss: 0.1586
Epoch 142/280
15/15 [==============================] - 0s 12ms/step - loss: 0.1226 - val_loss: 0.1533
Epoch 143/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1163 - val_loss: 0.1529
Epoch 144/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1119 - val_loss: 0.1457
Epoch 145/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1016 - val_loss: 0.1407
Epoch 146/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1107 - val_loss: 0.1242
Epoch 147/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1032 - val_loss: 0.1262
Epoch 148/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0993 - val_loss: 0.1167
Epoch 149/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0960 - val_loss: 0.1096
Epoch 150/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0914 - val_loss: 0.1052
Epoch 151/280
15/15 [==============================] - 0s 14ms/step - loss: 0.1001 - val_loss: 0.1168
Epoch 152/280
15/15 [==============================] - 0s 15ms/step - loss: 0.1094 - val_loss: 0.1104
Epoch 153/280
15/15 [==============================] - 0s 13ms/step - loss: 0.1035 - val_loss: 0.0997
Epoch 154/280
15/15 [==============================] - 0s 11ms/step - loss: 0.1001 - val_loss: 0.0935
Epoch 155/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0838 - val_loss: 0.0931
Epoch 156/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0794 - val_loss: 0.0897
Epoch 157/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0782 - val_loss: 0.0855
Epoch 158/280
15/15 [==============================] - 0s 16ms/step - loss: 0.0685 - val_loss: 0.0867
Epoch 159/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0778 - val_loss: 0.0852
Epoch 160/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0702 - val_loss: 0.0724
Epoch 161/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0626 - val_loss: 0.0764
Epoch 162/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0671 - val_loss: 0.0755
Epoch 163/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0522 - val_loss: 0.0720
Epoch 164/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0624 - val_loss: 0.0724
Epoch 165/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0587 - val_loss: 0.0723
Epoch 166/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0588 - val_loss: 0.0745
Epoch 167/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0559 - val_loss: 0.0627
Epoch 168/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0501 - val_loss: 0.0605
Epoch 169/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0459 - val_loss: 0.0581
Epoch 170/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0480 - val_loss: 0.0530
Epoch 171/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0467 - val_loss: 0.0543
Epoch 172/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0437 - val_loss: 0.0489
Epoch 173/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0441 - val_loss: 0.0496
Epoch 174/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0452 - val_loss: 0.0614
Epoch 175/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0494 - val_loss: 0.0520
Epoch 176/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0361 - val_loss: 0.0529
Epoch 177/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0324 - val_loss: 0.0539
Epoch 178/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0284 - val_loss: 0.0513
Epoch 179/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0346 - val_loss: 0.0491
Epoch 180/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0309 - val_loss: 0.0530
Epoch 181/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0288 - val_loss: 0.0473
Epoch 182/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0304 - val_loss: 0.0479
Epoch 183/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0412 - val_loss: 0.0524
Epoch 184/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0367 - val_loss: 0.0464
Epoch 185/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0316 - val_loss: 0.0448
Epoch 186/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0311 - val_loss: 0.0472
Epoch 187/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0261 - val_loss: 0.0464
Epoch 188/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0293 - val_loss: 0.0466
Epoch 189/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0283 - val_loss: 0.0493
Epoch 190/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0291 - val_loss: 0.0475
Epoch 191/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0278 - val_loss: 0.0446
Epoch 192/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0341 - val_loss: 0.0459
Epoch 193/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0325 - val_loss: 0.0448
Epoch 194/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0351 - val_loss: 0.0464
Epoch 195/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0269 - val_loss: 0.0424
Epoch 196/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0315 - val_loss: 0.0465
Epoch 197/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0274 - val_loss: 0.0448
Epoch 198/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0304 - val_loss: 0.0428
Epoch 199/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0313 - val_loss: 0.0495
Epoch 200/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0304 - val_loss: 0.0429
Epoch 201/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0332 - val_loss: 0.0407
Epoch 202/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0270 - val_loss: 0.0431
Epoch 203/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0314 - val_loss: 0.0446
Epoch 204/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0255 - val_loss: 0.0421
Epoch 205/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0318 - val_loss: 0.0435
Epoch 206/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0239 - val_loss: 0.0471
Epoch 207/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0309 - val_loss: 0.0431
Epoch 208/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0248 - val_loss: 0.0367
Epoch 209/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0233 - val_loss: 0.0426
Epoch 210/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0265 - val_loss: 0.0549
Epoch 211/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0372 - val_loss: 0.0536
Epoch 212/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0376 - val_loss: 0.0454
Epoch 213/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0275 - val_loss: 0.0472
Epoch 214/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0253 - val_loss: 0.0424
Epoch 215/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0278 - val_loss: 0.0386
Epoch 216/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0353 - val_loss: 0.0409
Epoch 217/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0335 - val_loss: 0.0425
Epoch 218/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0253 - val_loss: 0.0384
Epoch 219/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0238 - val_loss: 0.0379
Epoch 220/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0278 - val_loss: 0.0385
Epoch 221/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0204 - val_loss: 0.0389
Epoch 222/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0229 - val_loss: 0.0386
Epoch 223/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0260 - val_loss: 0.0388
Epoch 224/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0219 - val_loss: 0.0376
Epoch 225/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0196 - val_loss: 0.0382
Epoch 226/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0313 - val_loss: 0.0377
Epoch 227/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0201 - val_loss: 0.0376
Epoch 228/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0221 - val_loss: 0.0369
Epoch 229/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0185 - val_loss: 0.0368
Epoch 230/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0201 - val_loss: 0.0368
Epoch 231/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0226 - val_loss: 0.0368
Epoch 232/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0247 - val_loss: 0.0368
Epoch 233/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0191 - val_loss: 0.0368
Epoch 234/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0227 - val_loss: 0.0368
Epoch 235/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0183 - val_loss: 0.0369
Epoch 236/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0235 - val_loss: 0.0369
Epoch 237/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0248 - val_loss: 0.0369
Epoch 238/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0240 - val_loss: 0.0369
Epoch 239/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0195 - val_loss: 0.0369
Epoch 240/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0215 - val_loss: 0.0369
Epoch 241/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0206 - val_loss: 0.0369
Epoch 242/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0274 - val_loss: 0.0368
Epoch 243/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0220 - val_loss: 0.0368
Epoch 244/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0242 - val_loss: 0.0368
Epoch 245/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0250 - val_loss: 0.0368
Epoch 246/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0191 - val_loss: 0.0368
Epoch 247/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0216 - val_loss: 0.0368
Epoch 248/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0205 - val_loss: 0.0368
Epoch 249/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0254 - val_loss: 0.0368
Epoch 250/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0183 - val_loss: 0.0368
Epoch 251/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0198 - val_loss: 0.0368
Epoch 252/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0203 - val_loss: 0.0368
Epoch 253/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0212 - val_loss: 0.0368
Epoch 254/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0188 - val_loss: 0.0368
Epoch 255/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0183 - val_loss: 0.0368
Epoch 256/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0197 - val_loss: 0.0368
Epoch 257/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0229 - val_loss: 0.0368
Epoch 258/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0215 - val_loss: 0.0368
Epoch 259/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0224 - val_loss: 0.0368
Epoch 260/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0196 - val_loss: 0.0368
Epoch 261/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0258 - val_loss: 0.0368
Epoch 262/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0253 - val_loss: 0.0368
Epoch 263/280
15/15 [==============================] - 0s 11ms/step - loss: 0.0189 - val_loss: 0.0368
Epoch 264/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0204 - val_loss: 0.0368
Epoch 265/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0193 - val_loss: 0.0368
Epoch 266/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0260 - val_loss: 0.0368
Epoch 267/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0236 - val_loss: 0.0368
Epoch 268/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0167 - val_loss: 0.0368
Epoch 269/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0253 - val_loss: 0.0368
Epoch 270/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0241 - val_loss: 0.0368
Epoch 271/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0175 - val_loss: 0.0368
Epoch 272/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0186 - val_loss: 0.0368
Epoch 273/280
15/15 [==============================] - 0s 15ms/step - loss: 0.0171 - val_loss: 0.0368
Epoch 274/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0283 - val_loss: 0.0368
Epoch 275/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0202 - val_loss: 0.0368
Epoch 276/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0186 - val_loss: 0.0368
Epoch 277/280
15/15 [==============================] - 0s 12ms/step - loss: 0.0236 - val_loss: 0.0368
Epoch 278/280
15/15 [==============================] - 0s 13ms/step - loss: 0.0258 - val_loss: 0.0368
Epoch 279/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0231 - val_loss: 0.0368
Epoch 280/280
15/15 [==============================] - 0s 14ms/step - loss: 0.0195 - val_loss: 0.0368
WARNING:tensorflow:5 out of the last 5 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7f925acbf710> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for  more details.
COL: 比表面积, MSE: 4.64E-02,RMSE: 0.2154,MAPE: 1.9900000000000002 %,MAE: 0.1412,R_2: 0.8076
COL: 总孔体积, MSE: 7.08E-02,RMSE: 0.2661,MAPE: 26.39 %,MAE: 0.2135,R_2: 0.7685
COL: 微孔体积, MSE: 6.68E-02,RMSE: 0.2585,MAPE: 32.42 %,MAE: 0.1907,R_2: 0.5484
Epoch 1/280
15/15 [==============================] - 6s 129ms/step - loss: 4.2350 - val_loss: 4.1776
Epoch 2/280
15/15 [==============================] - 0s 13ms/step - loss: 4.1771 - val_loss: 4.1449
Epoch 3/280
15/15 [==============================] - 0s 13ms/step - loss: 4.1223 - val_loss: 4.1071
Epoch 4/280
15/15 [==============================] - 0s 14ms/step - loss: 4.0915 - val_loss: 4.0765
Epoch 5/280
15/15 [==============================] - 0s 13ms/step - loss: 4.0640 - val_loss: 4.0501
Epoch 6/280
15/15 [==============================] - 0s 13ms/step - loss: 4.0344 - val_loss: 4.0214
Epoch 7/280
15/15 [==============================] - 0s 13ms/step - loss: 3.9994 - val_loss: 3.9829
Epoch 8/280
15/15 [==============================] - 0s 12ms/step - loss: 3.9724 - val_loss: 3.9461
Epoch 9/280
15/15 [==============================] - 0s 14ms/step - loss: 3.9340 - val_loss: 3.9392
Epoch 10/280
15/15 [==============================] - 0s 13ms/step - loss: 3.9182 - val_loss: 3.8950
Epoch 11/280
15/15 [==============================] - 0s 13ms/step - loss: 3.8824 - val_loss: 3.8600
Epoch 12/280
15/15 [==============================] - 0s 12ms/step - loss: 3.8552 - val_loss: 3.8238
Epoch 13/280
15/15 [==============================] - 0s 13ms/step - loss: 3.8206 - val_loss: 3.8020
Epoch 14/280
15/15 [==============================] - 0s 13ms/step - loss: 3.7942 - val_loss: 3.7723
Epoch 15/280
15/15 [==============================] - 0s 14ms/step - loss: 3.7578 - val_loss: 3.7352
Epoch 16/280
15/15 [==============================] - 0s 13ms/step - loss: 3.7251 - val_loss: 3.7036
Epoch 17/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6941 - val_loss: 3.6750
Epoch 18/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6685 - val_loss: 3.6430
Epoch 19/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6334 - val_loss: 3.6137
Epoch 20/280
15/15 [==============================] - 0s 13ms/step - loss: 3.6061 - val_loss: 3.5869
Epoch 21/280
15/15 [==============================] - 0s 14ms/step - loss: 3.5691 - val_loss: 3.5518
Epoch 22/280
15/15 [==============================] - 0s 12ms/step - loss: 3.5421 - val_loss: 3.5220
Epoch 23/280
15/15 [==============================] - 0s 13ms/step - loss: 3.5133 - val_loss: 3.4925
Epoch 24/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4835 - val_loss: 3.4649
Epoch 25/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4501 - val_loss: 3.4398
Epoch 26/280
15/15 [==============================] - 0s 13ms/step - loss: 3.4284 - val_loss: 3.4076
Epoch 27/280
15/15 [==============================] - 0s 15ms/step - loss: 3.3958 - val_loss: 3.3724
Epoch 28/280
15/15 [==============================] - 0s 14ms/step - loss: 3.3619 - val_loss: 3.3404
Epoch 29/280
15/15 [==============================] - 0s 13ms/step - loss: 3.3317 - val_loss: 3.3143
Epoch 30/280
15/15 [==============================] - 0s 14ms/step - loss: 3.3014 - val_loss: 3.2824
Epoch 31/280
15/15 [==============================] - 0s 13ms/step - loss: 3.2694 - val_loss: 3.2526
Epoch 32/280
15/15 [==============================] - 0s 13ms/step - loss: 3.2441 - val_loss: 3.2212
Epoch 33/280
15/15 [==============================] - 0s 13ms/step - loss: 3.2127 - val_loss: 3.1935
Epoch 34/280
15/15 [==============================] - 0s 14ms/step - loss: 3.1830 - val_loss: 3.1647
Epoch 35/280
15/15 [==============================] - 0s 13ms/step - loss: 3.1553 - val_loss: 3.1322
Epoch 36/280
15/15 [==============================] - 0s 14ms/step - loss: 3.1277 - val_loss: 3.1093
Epoch 37/280
15/15 [==============================] - 0s 12ms/step - loss: 3.1034 - val_loss: 3.0807
Epoch 38/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0715 - val_loss: 3.0497
Epoch 39/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0388 - val_loss: 3.0153
Epoch 40/280
15/15 [==============================] - 0s 13ms/step - loss: 3.0073 - val_loss: 2.9840
Epoch 41/280
15/15 [==============================] - 0s 14ms/step - loss: 2.9731 - val_loss: 2.9659
Epoch 42/280
15/15 [==============================] - 0s 14ms/step - loss: 2.9443 - val_loss: 2.9278
Epoch 43/280
15/15 [==============================] - 0s 13ms/step - loss: 2.9167 - val_loss: 2.8959
Epoch 44/280
15/15 [==============================] - 0s 14ms/step - loss: 2.8854 - val_loss: 2.8698
Epoch 45/280
15/15 [==============================] - 0s 14ms/step - loss: 2.8597 - val_loss: 2.8404
Epoch 46/280
15/15 [==============================] - 0s 14ms/step - loss: 2.8206 - val_loss: 2.8021
Epoch 47/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7924 - val_loss: 2.7780
Epoch 48/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7626 - val_loss: 2.7478
Epoch 49/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7273 - val_loss: 2.7211
Epoch 50/280
15/15 [==============================] - 0s 13ms/step - loss: 2.7038 - val_loss: 2.6861
Epoch 51/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6716 - val_loss: 2.6589
Epoch 52/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6406 - val_loss: 2.6293
Epoch 53/280
15/15 [==============================] - 0s 13ms/step - loss: 2.6130 - val_loss: 2.5971
Epoch 54/280
15/15 [==============================] - 0s 14ms/step - loss: 2.5839 - val_loss: 2.5632
Epoch 55/280
15/15 [==============================] - 0s 12ms/step - loss: 2.5519 - val_loss: 2.5352
Epoch 56/280
15/15 [==============================] - 0s 13ms/step - loss: 2.5227 - val_loss: 2.5058
Epoch 57/280
15/15 [==============================] - 0s 13ms/step - loss: 2.4997 - val_loss: 2.4834
Epoch 58/280
15/15 [==============================] - 0s 15ms/step - loss: 2.4671 - val_loss: 2.4525
Epoch 59/280
15/15 [==============================] - 0s 14ms/step - loss: 2.4349 - val_loss: 2.4193
In [ ]:
train, valid = train_test_split(use_data[use_cols], test_size=0.3, random_state=42, shuffle=True)
valid, test = train_test_split(valid, test_size=0.3, random_state=42, shuffle=True)
In [ ]:
prediction_model = get_prediction_model()
trainable_model = get_trainable_model(prediction_model)
In [ ]:
prediction_model.summary()
In [ ]:
X = np.expand_dims(train[feature_cols].values, axis=1)
Y = [x for x in train[out_cols].values.T]
Y_valid = [x for x in valid[out_cols].values.T]
In [ ]:
X_valid = np.expand_dims(valid[feature_cols].values, axis=1)
In [ ]:
trainable_model.compile(optimizer='adam', loss=None)
hist = trainable_model.fit([X, Y[0], Y[1], Y[2]], epochs=280, batch_size=8, verbose=1, 
                           validation_data=[X_valid, Y_valid[0], Y_valid[1], Y_valid[2]],
                           callbacks=[reduce_lr]
                           )
In [ ]:
rst = prediction_model.predict(np.expand_dims(test[feature_cols], axis=1))
In [ ]:
[np.exp(K.get_value(log_var[0]))**0.5 for log_var in trainable_model.layers[-1].log_vars]
In [ ]:
pred_rst = pd.DataFrame.from_records(np.squeeze(np.asarray(rst), axis=2).T, columns=out_cols)
In [ ]:
real_rst = test[out_cols].copy()
In [ ]:
for col in out_cols:
    pred_rst[col] = pred_rst[col] * (maxs[col] - mins[col]) + mins[col]
    real_rst[col] = real_rst[col] * (maxs[col] - mins[col]) + mins[col]
In [ ]:
pred_rst['比表面积'] = np.expm1(pred_rst['比表面积'])
real_rst['比表面积'] = np.expm1(real_rst['比表面积'])
In [ ]:
real_rst.columns
In [ ]:
y_pred_pm25 = pred_rst['比表面积'].values.reshape(-1,)
y_pred_pm10 = pred_rst['总孔体积'].values.reshape(-1,)
y_pred_so2 = pred_rst['微孔体积'].values.reshape(-1,)
y_true_pm25 = real_rst['比表面积'].values.reshape(-1,)
y_true_pm10 = real_rst['总孔体积'].values.reshape(-1,)
y_true_so2 = real_rst['微孔体积'].values.reshape(-1,)
In [ ]:
pm25_eva = print_eva(y_true_pm25, y_pred_pm25, tp='比表面积')
pm10_eva = print_eva(y_true_pm10, y_pred_pm10, tp='总孔体积')
so2_eva = print_eva(y_true_so2, y_pred_so2, tp='微孔体积')
In [ ]:
 
In [ ]: