456 KiB
456 KiB
In [1]:
import pandas as pd
In [2]:
data = pd.read_excel('./data/20240123/煤沥青数据.xlsx') data.head()
Out[2]:
碳源 | 共碳化物质 | 共碳化物/煤沥青 | 加热次数 | 是否有碳化过程 | 模板剂种类 | 模板剂比例 | KOH与煤沥青比例 | 活化温度 | 升温速率 | 活化时间 | 混合方式 | 比表面积 | 总孔体积 | 微孔体积 | 平均孔径 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 煤沥青 | 无 | 0.0 | 1 | 否 | 自制氧化钙 | 1.0 | 1.0 | 500 | 5 | 2.0 | 溶剂 | 908.07 | 0.40 | 0.34 | 1.75 |
1 | 煤沥青 | 无 | 0.0 | 1 | 否 | 自制氧化钙 | 1.0 | 0.5 | 600 | 5 | 2.0 | 溶剂 | 953.95 | 0.66 | 0.35 | 2.76 |
2 | 煤沥青 | 无 | 0.0 | 1 | 否 | 自制氧化钙 | 1.0 | 1.0 | 600 | 5 | 2.0 | 溶剂 | 1388.62 | 0.61 | 0.53 | 1.77 |
3 | 煤沥青 | 无 | 0.0 | 1 | 否 | 自制氧化钙 | 1.0 | 2.0 | 600 | 5 | 2.0 | 溶剂 | 1444.63 | 0.59 | 0.55 | 1.62 |
4 | 煤沥青 | 无 | 0.0 | 2 | 是 | 自制碱式碳酸镁 | 1.0 | 1.0 | 600 | 5 | 2.0 | 溶剂 | 1020.99 | 0.45 | 0.35 | 1.77 |
In [3]:
data.shape
Out[3]:
(149, 16)
In [4]:
data.columns
Out[4]:
Index(['碳源', '共碳化物质', '共碳化物/煤沥青', '加热次数', '是否有碳化过程', '模板剂种类', '模板剂比例', 'KOH与煤沥青比例', '活化温度', '升温速率', '活化时间', '混合方式', '比表面积', '总孔体积', '微孔体积', '平均孔径'], dtype='object')
In [5]:
data.drop(columns=['碳源'], inplace=True)
In [6]:
object_cols = ['共碳化物质', '是否有碳化过程', '模板剂种类', '混合方式']
In [7]:
data = pd.get_dummies(data, columns=object_cols)
In [8]:
out_cols = ['比表面积', '总孔体积', '微孔体积', '平均孔径'] feature_cols = [x for x in data.columns if x not in out_cols]
In [9]:
train_data = data.reset_index(drop=True)
In [10]:
train_data.shape
Out[10]:
(149, 40)
In [11]:
import xgboost as xgb from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error, r2_score
In [12]:
from sklearn.model_selection import KFold, train_test_split kf = KFold(n_splits=5, shuffle=True, random_state=666)
In [13]:
import numpy as np
In [14]:
params_xgb = {"objective": 'reg:squarederror', "subsample": 0.9, "max_depth": 20, "eta": 0.01, "colsample_bytree": 0.9,} num_boost_round = 1000
In [15]:
import matplotlib.pyplot as plt
In [16]:
plt.rcParams["font.sans-serif"] = ["SimHei"] # 设置字体 plt.rcParams["axes.unicode_minus"] = False # 正常显示负号
In [17]:
eva_total = list() index_list = list() eva_cols = ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2'] for col in out_cols: eva_list = list() train_data = train_data[~train_data[col].isna()].reset_index(drop=True) cur_test = list() cur_real = list() for (train_index, test_index) in kf.split(train_data): train = train_data.loc[train_index] valid = train_data.loc[test_index] X_train, Y_train = train[feature_cols], train[col] X_valid, Y_valid = valid[feature_cols], valid[col] dtrain = xgb.DMatrix(X_train, Y_train) dvalid = xgb.DMatrix(X_valid, Y_valid) watchlist = [(dvalid, 'eval')] gb_model = xgb.train(params_xgb, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=100, verbose_eval=False) y_pred = gb_model.predict(xgb.DMatrix(X_valid)) y_true = Y_valid.values MSE = mean_squared_error(y_true, y_pred) RMSE = np.sqrt(mean_squared_error(y_true, y_pred)) MAE = mean_absolute_error(y_true, y_pred) MAPE = mean_absolute_percentage_error(y_true, y_pred) R_2 = r2_score(y_true, y_pred) cur_test.extend(y_pred[:7]) cur_real.extend(y_true[:7]) print('MSE:', round(MSE, 4), end=', ') print('RMSE:', round(RMSE, 4), end=', ') print('MAE:', round(MAE, 4), end=', ') print('MAPE:', round(MAPE*100, 2), '%', end=', ') print('R_2:', round(R_2, 4)) #R方为负就说明拟合效果比平均值差 eva_list.append([MSE, RMSE, MAE, MAPE, R_2]) plt.figure(figsize=(12, 8)) plt.plot(range(len(cur_test)), cur_real, 'o-', label='real') plt.plot(range(len(cur_test)), cur_test, '*-', label='pred') plt.legend(loc='best') plt.title(f'{col}') plt.show() eva_total.append(np.mean(eva_list, axis=0)) index_list.append(f"{col}")
MSE: 267691.4403, RMSE: 517.3891, MAE: 395.2788, MAPE: 94.67 %, R_2: 0.4467 MSE: 242169.4062, RMSE: 492.1071, MAE: 353.5184, MAPE: 153.84 %, R_2: 0.7103 MSE: 337963.1058, RMSE: 581.3459, MAE: 453.5923, MAPE: 368.53 %, R_2: 0.5508 MSE: 241296.272, RMSE: 491.2192, MAE: 378.0324, MAPE: 36.02 %, R_2: 0.5678 MSE: 393198.8331, RMSE: 627.0557, MAE: 494.652, MAPE: 424.8 %, R_2: 0.309
MSE: 0.1984, RMSE: 0.4454, MAE: 0.3543, MAPE: 72.07 %, R_2: 0.616 MSE: 0.1439, RMSE: 0.3794, MAE: 0.3062, MAPE: 224.83 %, R_2: 0.4173 MSE: 0.1073, RMSE: 0.3275, MAE: 0.2583, MAPE: 30.27 %, R_2: 0.6678 MSE: 0.1076, RMSE: 0.3281, MAE: 0.2422, MAPE: 39.55 %, R_2: 0.5426 MSE: 0.187, RMSE: 0.4324, MAE: 0.3131, MAPE: 389.39 %, R_2: 0.0647
MSE: 0.0303, RMSE: 0.1739, MAE: 0.1339, MAPE: 144.75 %, R_2: 0.6541 MSE: 0.0652, RMSE: 0.2554, MAE: 0.1954, MAPE: 55.86 %, R_2: 0.1165 MSE: 0.0546, RMSE: 0.2337, MAE: 0.1888, MAPE: 1337.75 %, R_2: 0.6439 MSE: 0.0312, RMSE: 0.1765, MAE: 0.1505, MAPE: 43.36 %, R_2: 0.5198 MSE: 0.0565, RMSE: 0.2377, MAE: 0.1762, MAPE: 496.94 %, R_2: 0.5316
MSE: 0.606, RMSE: 0.7785, MAE: 0.5382, MAPE: 19.71 %, R_2: 0.6204 MSE: 0.4154, RMSE: 0.6445, MAE: 0.4482, MAPE: 18.23 %, R_2: 0.7462 MSE: 1.7064, RMSE: 1.3063, MAE: 0.766, MAPE: 20.09 %, R_2: 0.1468 MSE: 0.7332, RMSE: 0.8563, MAE: 0.5696, MAPE: 25.1 %, R_2: -0.1811 MSE: 0.4071, RMSE: 0.638, MAE: 0.4065, MAPE: 13.74 %, R_2: 0.7213
In [18]:
pd.DataFrame.from_records(eva_total, index=index_list, columns=eva_cols)
Out[18]:
MSE | RMSE | MAE | MAPE | R2 | |
---|---|---|---|---|---|
比表面积 | 296463.811484 | 541.823393 | 415.014783 | 2.155717 | 0.516912 |
总孔体积 | 0.148839 | 0.382557 | 0.294842 | 1.512200 | 0.461672 |
微孔体积 | 0.047554 | 0.215457 | 0.168962 | 4.157314 | 0.493163 |
平均孔径 | 0.773611 | 0.844710 | 0.545686 | 0.193752 | 0.410705 |
In [ ]: