coal_materials/multi-task-NN-0123.ipynb

48 KiB
Raw Permalink Blame History

In [1]:
import os
os.environ['CUDA_DEVICE_ORDER'] = 'PCB_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1'
In [2]:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
#新增加的两行
from pylab import mpl
# 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]

mpl.rcParams["axes.unicode_minus"] = False
In [3]:
data = pd.read_csv('./data/20240102/train_data.csv')
In [4]:
out_cols = [x for x in data.columns if '碳材料' in x]
In [5]:
out_cols
Out[5]:
['碳材料结构特征-比表面积', '碳材料结构特征-总孔体积', '碳材料结构特征-微孔体积', '碳材料结构特征-平均孔径']
In [6]:
train_data = data.dropna(subset=out_cols).fillna(0)
In [7]:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow.keras.backend as K
2024-01-04 16:22:35.199530: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
In [8]:
tf.test.is_gpu_available()
WARNING:tensorflow:From /tmp/ipykernel_44444/337460670.py:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2024-01-04 16:22:36.097926: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-01-04 16:22:36.142225: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
2024-01-04 16:22:36.232036: E tensorflow/stream_executor/cuda/cuda_driver.cc:328] failed call to cuInit: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal
2024-01-04 16:22:36.232061: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: zhaojh-yv621
2024-01-04 16:22:36.232065: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: zhaojh-yv621
2024-01-04 16:22:36.232185: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:200] libcuda reported version is: 520.61.5
2024-01-04 16:22:36.232204: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:204] kernel reported version is: 520.61.5
2024-01-04 16:22:36.232207: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:310] kernel version seems to match DSO: 520.61.5
Out[8]:
False
In [9]:
class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, name, rate=0.1):
        super().__init__()
        self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim, name=name)
        self.ffn = keras.Sequential(
            [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
        )
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(rate)
        self.dropout2 = layers.Dropout(rate)

    def call(self, inputs, training):
        attn_output = self.att(inputs, inputs)
        attn_output = self.dropout1(attn_output, training=training)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output, training=training)
        return self.layernorm2(out1 + ffn_output)
In [10]:
from tensorflow.keras import Model
In [11]:
from tensorflow.keras.initializers import Constant
In [12]:
# Custom loss layer
class CustomMultiLossLayer(layers.Layer):
    def __init__(self, nb_outputs=2, **kwargs):
        self.nb_outputs = nb_outputs
        self.is_placeholder = True
        super(CustomMultiLossLayer, self).__init__(**kwargs)
        
    def build(self, input_shape=None):
        # initialise log_vars
        self.log_vars = []
        for i in range(self.nb_outputs):
            self.log_vars += [self.add_weight(name='log_var' + str(i), shape=(1,),
                                              initializer=tf.initializers.he_normal(), trainable=True)]
        super(CustomMultiLossLayer, self).build(input_shape)

    def multi_loss(self, ys_true, ys_pred):
        assert len(ys_true) == self.nb_outputs and len(ys_pred) == self.nb_outputs
        loss = 0
        for y_true, y_pred, log_var in zip(ys_true, ys_pred, self.log_vars):
            mse = (y_true - y_pred) ** 2.
            pre = K.exp(-log_var[0])
            loss += tf.abs(tf.reduce_logsumexp(pre * mse + log_var[0], axis=-1))
        return K.mean(loss)

    def call(self, inputs):
        ys_true = inputs[:self.nb_outputs]
        ys_pred = inputs[self.nb_outputs:]
        loss = self.multi_loss(ys_true, ys_pred)
        self.add_loss(loss, inputs=inputs)
        # We won't actually use the output.
        return K.concatenate(inputs, -1)
In [13]:
num_heads, ff_dim = 1, 12
In [14]:
def get_prediction_model():
    def build_output(out, out_name):
        self_block = TransformerBlock(64, num_heads, ff_dim, name=f'{out_name}_attn')
        out = self_block(out)
        out = layers.GlobalAveragePooling1D()(out)
        out = layers.Dropout(0.1)(out)
        out = layers.Dense(32, activation="relu")(out)
        # out = layers.Dense(1, name=out_name, activation="sigmoid")(out)
        return out
    inputs = layers.Input(shape=(1,len(feature_cols)), name='input')
    x = layers.Conv1D(filters=64, kernel_size=1, activation='relu')(inputs)
    # x = layers.Dropout(rate=0.1)(x)
    lstm_out = layers.Bidirectional(layers.LSTM(units=64, return_sequences=True))(x)
    lstm_out = layers.Dense(128, activation='relu')(lstm_out)
    transformer_block = TransformerBlock(128, num_heads, ff_dim, name='first_attn')
    out = transformer_block(lstm_out)
    out = layers.GlobalAveragePooling1D()(out)
    out = layers.Dropout(0.1)(out)
    out = layers.Dense(64, activation='relu')(out)
    out = K.expand_dims(out, axis=1)

    bet = build_output(out, 'bet')
    mesco = build_output(out, 'mesco')
    micro = build_output(out, 'micro')
    avg = build_output(out, 'avg')

    bet = layers.Dense(1, activation='sigmoid', name='bet')(bet)
    mesco = layers.Dense(1, activation='sigmoid', name='mesco')(mesco)
    micro = layers.Dense(1, activation='sigmoid', name='micro')(micro)
    avg = layers.Dense(1, activation='sigmoid', name='avg')(avg)

    model = Model(inputs=[inputs], outputs=[bet, mesco, micro, avg])
    return model
In [15]:
def get_trainable_model(prediction_model):
    inputs = layers.Input(shape=(1,len(feature_cols)), name='input')
    bet, mesco, micro, avg = prediction_model(inputs)
    bet_real = layers.Input(shape=(1,), name='bet_real')
    mesco_real = layers.Input(shape=(1,), name='mesco_real')
    micro_real = layers.Input(shape=(1,), name='micro_real')
    avg_real = layers.Input(shape=(1,), name='avg_real')
    out = CustomMultiLossLayer(nb_outputs=4)([bet_real, mesco_real, micro_real, avg_real, bet, mesco, micro, avg])
    return Model([inputs, bet_real, mesco_real, micro_real, avg_real], out)
In [16]:
maxs = train_data.max()
mins = train_data.min()
for col in train_data.columns:
    if maxs[col] - mins[col] == 0:
        continue
    train_data[col] = (train_data[col] - mins[col]) / (maxs[col] - mins[col])
In [17]:
train_data
Out[17]:
热处理条件-热处理次数 热处理条件-是否是中温停留 第一次热处理-温度 第一次热处理-升温速率 第一次热处理-保留时间 第二次热处理-温度 第二次热处理-升温速率· 第二次热处理-保留时间 共碳化-是否是共碳化物质 共碳化-共碳化物质/沥青 ... 模板剂-种类_二氧化硅 模板剂-种类_氢氧化镁 模板剂-种类_氧化钙 模板剂-种类_氧化锌 模板剂-种类_氧化镁 模板剂-种类_氯化钠 模板剂-种类_氯化钾 模板剂-种类_碱式碳酸镁 模板剂-种类_碳酸钙 模板剂-种类_纤维素
0 0.0 0.0 0.166667 0.3 0.5 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 1.0 0 0.0 0.0 0 0.0 0.0 0.0
1 0.0 0.0 0.333333 0.3 0.5 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 1.0 0 0.0 0.0 0 0.0 0.0 0.0
2 0.0 0.0 0.333333 0.3 0.5 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 1.0 0 0.0 0.0 0 0.0 0.0 0.0
3 0.0 0.0 0.333333 0.3 0.5 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 1.0 0 0.0 0.0 0 0.0 0.0 0.0
4 1.0 0.0 0.166667 0.3 0.5 0.666667 0.5 0.666667 0.0 0.0 ... 0 0.0 0.0 0 0.0 0.0 0 1.0 0.0 0.0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
144 0.0 0.0 0.333333 0.3 0.0 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0
145 0.0 0.0 0.500000 0.3 0.0 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0
146 0.0 0.0 0.666667 0.3 0.0 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0
147 0.0 0.0 0.500000 0.3 0.0 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0
148 0.0 0.0 0.500000 0.3 0.0 0.000000 0.0 0.000000 0.0 0.0 ... 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0

123 rows × 42 columns

In [18]:
# feature_cols = [x for x in train_data.columns if x not in out_cols and '第二次' not in x]
feature_cols = [x for x in train_data.columns if x not in out_cols]
use_cols = feature_cols + out_cols
In [19]:
use_data = train_data.copy()
for col in use_cols:
    use_data[col] = use_data[col].astype('float32')
In [20]:
train, valid = train_test_split(use_data[use_cols], test_size=0.3, random_state=42, shuffle=True)
valid, test = train_test_split(valid, test_size=0.3, random_state=42, shuffle=True)
In [21]:
prediction_model = get_prediction_model()
trainable_model = get_trainable_model(prediction_model)
In [22]:
prediction_model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input (InputLayer)              [(None, 1, 38)]      0                                            
__________________________________________________________________________________________________
conv1d (Conv1D)                 (None, 1, 64)        2496        input[0][0]                      
__________________________________________________________________________________________________
bidirectional (Bidirectional)   (None, 1, 128)       66048       conv1d[0][0]                     
__________________________________________________________________________________________________
dense (Dense)                   (None, 1, 128)       16512       bidirectional[0][0]              
__________________________________________________________________________________________________
transformer_block (TransformerB (None, 1, 128)       69772       dense[0][0]                      
__________________________________________________________________________________________________
global_average_pooling1d (Globa (None, 128)          0           transformer_block[0][0]          
__________________________________________________________________________________________________
dropout_2 (Dropout)             (None, 128)          0           global_average_pooling1d[0][0]   
__________________________________________________________________________________________________
dense_3 (Dense)                 (None, 64)           8256        dropout_2[0][0]                  
__________________________________________________________________________________________________
tf.expand_dims (TFOpLambda)     (None, 1, 64)        0           dense_3[0][0]                    
__________________________________________________________________________________________________
transformer_block_1 (Transforme (None, 1, 64)        18508       tf.expand_dims[0][0]             
__________________________________________________________________________________________________
transformer_block_2 (Transforme (None, 1, 64)        18508       tf.expand_dims[0][0]             
__________________________________________________________________________________________________
transformer_block_3 (Transforme (None, 1, 64)        18508       tf.expand_dims[0][0]             
__________________________________________________________________________________________________
transformer_block_4 (Transforme (None, 1, 64)        18508       tf.expand_dims[0][0]             
__________________________________________________________________________________________________
global_average_pooling1d_1 (Glo (None, 64)           0           transformer_block_1[0][0]        
__________________________________________________________________________________________________
global_average_pooling1d_2 (Glo (None, 64)           0           transformer_block_2[0][0]        
__________________________________________________________________________________________________
global_average_pooling1d_3 (Glo (None, 64)           0           transformer_block_3[0][0]        
__________________________________________________________________________________________________
global_average_pooling1d_4 (Glo (None, 64)           0           transformer_block_4[0][0]        
__________________________________________________________________________________________________
dropout_5 (Dropout)             (None, 64)           0           global_average_pooling1d_1[0][0] 
__________________________________________________________________________________________________
dropout_8 (Dropout)             (None, 64)           0           global_average_pooling1d_2[0][0] 
__________________________________________________________________________________________________
dropout_11 (Dropout)            (None, 64)           0           global_average_pooling1d_3[0][0] 
__________________________________________________________________________________________________
dropout_14 (Dropout)            (None, 64)           0           global_average_pooling1d_4[0][0] 
__________________________________________________________________________________________________
dense_6 (Dense)                 (None, 32)           2080        dropout_5[0][0]                  
__________________________________________________________________________________________________
dense_9 (Dense)                 (None, 32)           2080        dropout_8[0][0]                  
__________________________________________________________________________________________________
dense_12 (Dense)                (None, 32)           2080        dropout_11[0][0]                 
__________________________________________________________________________________________________
dense_15 (Dense)                (None, 32)           2080        dropout_14[0][0]                 
__________________________________________________________________________________________________
bet (Dense)                     (None, 1)            33          dense_6[0][0]                    
__________________________________________________________________________________________________
mesco (Dense)                   (None, 1)            33          dense_9[0][0]                    
__________________________________________________________________________________________________
micro (Dense)                   (None, 1)            33          dense_12[0][0]                   
__________________________________________________________________________________________________
avg (Dense)                     (None, 1)            33          dense_15[0][0]                   
==================================================================================================
Total params: 245,568
Trainable params: 245,568
Non-trainable params: 0
__________________________________________________________________________________________________
In [23]:
from tensorflow.keras import optimizers
from tensorflow.python.keras.utils.vis_utils import plot_model
In [24]:
X = np.expand_dims(train[feature_cols].values, axis=1)
Y = [x for x in train[out_cols].values.T]
Y_valid = [x for x in valid[out_cols].values.T]
In [25]:
from keras.callbacks import ReduceLROnPlateau
reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
In [39]:
trainable_model.compile(optimizer='adam', loss=None)
hist = trainable_model.fit([X, Y[0], Y[1], Y[2], Y[3]], epochs=40, batch_size=8, verbose=1, 
                           validation_data=[np.expand_dims(valid[feature_cols].values, axis=1), Y_valid[0], Y_valid[1], Y_valid[2], Y_valid[3]],
                           callbacks=[reduce_lr]
                           )
Epoch 1/40
11/11 [==============================] - 6s 108ms/step - loss: 0.0316 - val_loss: 0.0835
Epoch 2/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0281 - val_loss: 0.0958
Epoch 3/40
11/11 [==============================] - 0s 27ms/step - loss: 0.0278 - val_loss: 0.0891
Epoch 4/40
11/11 [==============================] - 0s 21ms/step - loss: 0.0233 - val_loss: 0.0912
Epoch 5/40
11/11 [==============================] - 0s 27ms/step - loss: 0.0215 - val_loss: 0.1023
Epoch 6/40
11/11 [==============================] - 0s 33ms/step - loss: 0.0348 - val_loss: 0.0864
Epoch 7/40
11/11 [==============================] - 0s 16ms/step - loss: 0.0207 - val_loss: 0.0823
Epoch 8/40
11/11 [==============================] - 0s 25ms/step - loss: 0.0222 - val_loss: 0.0883
Epoch 9/40
11/11 [==============================] - 0s 22ms/step - loss: 0.0258 - val_loss: 0.1029
Epoch 10/40
11/11 [==============================] - 0s 26ms/step - loss: 0.0288 - val_loss: 0.0857
Epoch 11/40
11/11 [==============================] - 0s 22ms/step - loss: 0.0249 - val_loss: 0.0880
Epoch 12/40
11/11 [==============================] - 0s 21ms/step - loss: 0.0219 - val_loss: 0.0882
Epoch 13/40
11/11 [==============================] - 0s 24ms/step - loss: 0.0191 - val_loss: 0.0873
Epoch 14/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0187 - val_loss: 0.0929
Epoch 15/40
11/11 [==============================] - 0s 23ms/step - loss: 0.0183 - val_loss: 0.0988
Epoch 16/40
11/11 [==============================] - 0s 19ms/step - loss: 0.0189 - val_loss: 0.0905
Epoch 17/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0209 - val_loss: 0.0823
Epoch 18/40
11/11 [==============================] - 0s 27ms/step - loss: 0.0185 - val_loss: 0.0834
Epoch 19/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0177 - val_loss: 0.0916
Epoch 20/40
11/11 [==============================] - 0s 24ms/step - loss: 0.0163 - val_loss: 0.0919
Epoch 21/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0141 - val_loss: 0.0898
Epoch 22/40
11/11 [==============================] - 0s 27ms/step - loss: 0.0144 - val_loss: 0.0923
Epoch 23/40
11/11 [==============================] - 0s 19ms/step - loss: 0.0138 - val_loss: 0.0906
Epoch 24/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0140 - val_loss: 0.0897
Epoch 25/40
11/11 [==============================] - 0s 23ms/step - loss: 0.0126 - val_loss: 0.0892
Epoch 26/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0129 - val_loss: 0.0918
Epoch 27/40
11/11 [==============================] - 0s 25ms/step - loss: 0.0123 - val_loss: 0.0935
Epoch 28/40
11/11 [==============================] - 0s 25ms/step - loss: 0.0131 - val_loss: 0.0933
Epoch 29/40
11/11 [==============================] - 0s 17ms/step - loss: 0.0125 - val_loss: 0.0933
Epoch 30/40
11/11 [==============================] - 0s 23ms/step - loss: 0.0119 - val_loss: 0.0932
Epoch 31/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0129 - val_loss: 0.0936
Epoch 32/40
11/11 [==============================] - 0s 28ms/step - loss: 0.0114 - val_loss: 0.0933
Epoch 33/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0122 - val_loss: 0.0932
Epoch 34/40
11/11 [==============================] - 0s 21ms/step - loss: 0.0114 - val_loss: 0.0936
Epoch 35/40
11/11 [==============================] - 0s 23ms/step - loss: 0.0119 - val_loss: 0.0938
Epoch 36/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0118 - val_loss: 0.0937
Epoch 37/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0127 - val_loss: 0.0937
Epoch 38/40
11/11 [==============================] - 0s 27ms/step - loss: 0.0123 - val_loss: 0.0937
Epoch 39/40
11/11 [==============================] - 0s 19ms/step - loss: 0.0124 - val_loss: 0.0937
Epoch 40/40
11/11 [==============================] - 0s 20ms/step - loss: 0.0129 - val_loss: 0.0937
In [40]:
rst = prediction_model.predict(np.expand_dims(test[feature_cols], axis=1))
rst
Out[40]:
[array([[0.8401114 ],
        [0.4296295 ],
        [0.34763122],
        [0.33006623],
        [0.74300694],
        [0.48508543],
        [0.48184243],
        [0.7309267 ],
        [0.5264127 ],
        [0.7570494 ],
        [0.29492375],
        [0.34379733]], dtype=float32),
 array([[0.9495956 ],
        [0.19964108],
        [0.25691378],
        [0.15781167],
        [0.39773428],
        [0.257546  ],
        [0.2265681 ],
        [0.39088207],
        [0.30309337],
        [0.4006669 ],
        [0.16448957],
        [0.20928389]], dtype=float32),
 array([[0.93163174],
        [0.45915267],
        [0.24377662],
        [0.32275468],
        [0.84771645],
        [0.51101613],
        [0.52240014],
        [0.77952445],
        [0.6746559 ],
        [0.6747417 ],
        [0.3022651 ],
        [0.3458013 ]], dtype=float32),
 array([[0.4518058 ],
        [0.06488091],
        [0.2511762 ],
        [0.0624491 ],
        [0.09656441],
        [0.07555431],
        [0.06494072],
        [0.09723139],
        [0.10824579],
        [0.09783638],
        [0.07164052],
        [0.15804273]], dtype=float32)]
In [41]:
[np.exp(K.get_value(log_var[0]))**0.5 for log_var in trainable_model.layers[-1].log_vars]
Out[41]:
[0.998927703775019, 0.9994643982390371, 0.9991108696677027, 0.9996066810061789]
In [42]:
pred_rst = pd.DataFrame.from_records(np.squeeze(np.asarray(rst), axis=2).T, columns=out_cols)
In [43]:
real_rst = test[out_cols].copy()
In [44]:
for col in out_cols:
    pred_rst[col] = pred_rst[col] * (maxs[col] - mins[col]) + mins[col]
    real_rst[col] = real_rst[col] * (maxs[col] - mins[col]) + mins[col]
In [45]:
real_rst.columns
Out[45]:
Index(['碳材料结构特征-比表面积', '碳材料结构特征-总孔体积', '碳材料结构特征-微孔体积', '碳材料结构特征-平均孔径'], dtype='object')
In [46]:
y_pred_pm25 = pred_rst['碳材料结构特征-比表面积'].values.reshape(-1,)
y_pred_pm10 = pred_rst['碳材料结构特征-总孔体积'].values.reshape(-1,)
y_pred_so2 = pred_rst['碳材料结构特征-微孔体积'].values.reshape(-1,)
y_pred_no2 = pred_rst['碳材料结构特征-平均孔径'].values.reshape(-1,)
y_true_pm25 = real_rst['碳材料结构特征-比表面积'].values.reshape(-1,)
y_true_pm10 = real_rst['碳材料结构特征-总孔体积'].values.reshape(-1,)
y_true_so2 = real_rst['碳材料结构特征-微孔体积'].values.reshape(-1,)
y_true_no2 = real_rst['碳材料结构特征-平均孔径'].values.reshape(-1,)
In [47]:
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, mean_absolute_percentage_error
In [48]:
def print_eva(y_true, y_pred, tp):
    MSE = mean_squared_error(y_true, y_pred)
    RMSE = np.sqrt(MSE)
    MAE = mean_absolute_error(y_true, y_pred)
    MAPE = mean_absolute_percentage_error(y_true, y_pred)
    R_2 = r2_score(y_true, y_pred)
    print(f"COL: {tp}, MSE: {format(MSE, '.2E')}", end=',')
    print(f'RMSE: {round(RMSE, 4)}', end=',')
    print(f'MAPE: {round(MAPE, 4) * 100} %', end=',')
    print(f'MAE: {round(MAE, 4)}', end=',')
    print(f'R_2: {round(R_2, 4)}')
    return [MSE, RMSE, MAE, MAPE, R_2]
In [49]:
pm25_eva = print_eva(y_true_pm25, y_pred_pm25, tp='比表面积')
pm10_eva = print_eva(y_true_pm10, y_pred_pm10, tp='总孔体积')
so2_eva = print_eva(y_true_so2, y_pred_so2, tp='微孔体积')
nox_eva = print_eva(y_true_no2, y_pred_no2, tp='平均孔径')
COL: 比表面积, MSE: 2.36E+05,RMSE: 485.5891,MAPE: 25.86 %,MAE: 340.8309,R_2: -0.1091
COL: 总孔体积, MSE: 5.15E-02,RMSE: 0.2268,MAPE: 23.810000000000002 %,MAE: 0.1519,R_2: 0.7657
COL: 微孔体积, MSE: 4.53E-02,RMSE: 0.2128,MAPE: 34.75 %,MAE: 0.1536,R_2: -0.0412
COL: 平均孔径, MSE: 4.63E-01,RMSE: 0.6802,MAPE: 15.620000000000001 %,MAE: 0.415,R_2: 0.5929
In [ ]:
 
In [ ]: