23 KiB
23 KiB
In [1]:
import pandas as pd
In [2]:
old_data = pd.read_excel('./data/煤质碳材料数据.xlsx')
In [3]:
nature_data = pd.read_excel('./data/nature.xlsx')
In [4]:
old_data
Out[4]:
编号 | 煤种 | 分析水Mad | 灰分 | 挥发分 | 碳 | 氢 | 氮 | 硫 | 氧 | 碳化温度(℃) | 升温速率(℃/min) | 保温时间(h) | KOH | K2CO3 | BET比表面积(m2/g) | 孔体积(cm3/g) | 微孔体积(cm3/g) | 介孔体积(cm3/g) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 中级烟煤 | 2.12 | 8.49 | 37.14 | 86.20 | 5.42 | 1.60 | 0.00 | 6.78 | 1100.0 | 2.0 | 2.0 | 0 | 0 | 296.0 | 0.270 | NaN | NaN |
1 | 2 | 萃取中级烟煤 | NaN | NaN | NaN | 75.11 | 4.73 | 1.38 | 0.00 | 18.78 | 1100.0 | 2.0 | 2.0 | 0 | 0 | 316.0 | 0.481 | NaN | NaN |
2 | 3 | 褐煤 | 14.91 | 4.35 | 48.42 | 67.76 | 4.57 | 1.29 | 3.56 | 22.82 | 650.0 | 10.0 | 0.5 | 1 | 0 | 665.0 | 0.356 | 0.289 | 0.067 |
3 | 4 | 褐煤 | 14.91 | 4.35 | 48.42 | 67.76 | 4.57 | 1.29 | 3.56 | 22.82 | 650.0 | 10.0 | 0.5 | 1 | 0 | 1221.0 | 0.608 | 0.482 | 0.126 |
4 | 5 | 褐煤 | 14.91 | 4.35 | 48.42 | 67.76 | 4.57 | 1.29 | 3.56 | 22.82 | 650.0 | 10.0 | 0.5 | 1 | 0 | 2609.0 | 1.438 | 0.670 | 0.768 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
66 | 67 | 无烟煤 | 0.81 | 4.15 | 9.77 | 91.59 | 3.96 | 1.76 | 0.21 | 2.48 | 800.0 | 5.0 | 1.0 | 1 | 0 | 3142.0 | 1.608 | 1.204 | 0.404 |
67 | 68 | 无烟煤 | 0.81 | 4.15 | 9.77 | 91.59 | 3.96 | 1.76 | 0.21 | 2.48 | 800.0 | 5.0 | 1.0 | 1 | 0 | 3389.0 | 2.041 | 1.022 | 1.019 |
68 | 69 | 无烟煤 | 0.88 | 8.42 | 8.83 | 91.69 | 2.31 | 2.04 | 0.00 | 3.96 | 700.0 | 5.0 | 1.0 | 1 | 0 | 2542.0 | 1.135 | 0.916 | 0.219 |
69 | 70 | 无烟煤 | 0.88 | 8.42 | 8.83 | 91.69 | 2.31 | 2.04 | 0.00 | 3.96 | 800.0 | 5.0 | 1.0 | 1 | 0 | 2665.0 | 1.219 | 0.947 | 0.272 |
70 | 71 | 无烟煤 | 0.88 | 8.42 | 8.83 | 91.69 | 2.31 | 2.04 | 0.00 | 3.96 | 900.0 | 5.0 | 1.0 | 1 | 0 | 2947.0 | 1.473 | 0.718 | 0.755 |
71 rows × 19 columns
In [5]:
nature_data
Out[5]:
Csp(F/g) | electrolyte | υ(mV/s) | SAmicro(m2/g) | SAmeso(m2/g) | O | N | |
---|---|---|---|---|---|---|---|
0 | 0.00 | 6MKOH | 1 | 0 | 0 | 0.00 | 0.00 |
1 | 0.00 | 6MKOH | 300 | 0 | 0 | 0.00 | 0.00 |
2 | 0.00 | 6MKOH | 500 | 0 | 0 | 0.00 | 0.00 |
3 | 0.00 | 6MKOH | 1 | 0 | 0 | 17.00 | 15.60 |
4 | 0.00 | 6MKOH | 300 | 0 | 0 | 17.00 | 15.60 |
... | ... | ... | ... | ... | ... | ... | ... |
283 | 218.17 | 1MH2SO4 | 150 | 1691 | 258 | 16.45 | 3.31 |
284 | 198.38 | 1MH2SO4 | 200 | 1691 | 258 | 16.45 | 3.31 |
285 | 171.19 | 1MH2SO4 | 300 | 1691 | 258 | 16.45 | 3.31 |
286 | 152.27 | 1MH2SO4 | 400 | 1691 | 258 | 16.45 | 3.31 |
287 | 137.40 | 1MH2SO4 | 500 | 1691 | 258 | 16.45 | 3.31 |
288 rows × 7 columns
基于微孔介孔,推一下CHS?
In [6]:
fea_cols = ['微孔体积(cm3/g)', '介孔体积(cm3/g)', '氧', '氮']
In [7]:
out_cols = ['碳', '氢', '硫']
In [10]:
nature_data[nature_data.electrolyte=='6MKOH'][['O', 'N', 'SAmicro(m2/g)', 'SAmeso(m2/g)']].drop_duplicates()
Out[10]:
O | N | SAmicro(m2/g) | SAmeso(m2/g) | |
---|---|---|---|---|
0 | 0.00 | 0.00 | 0 | 0 |
3 | 17.00 | 15.60 | 0 | 0 |
6 | 8.50 | 7.80 | 0 | 0 |
9 | 0.00 | 0.00 | 120 | 216 |
13 | 0.00 | 0.00 | 107 | 315 |
... | ... | ... | ... | ... |
159 | 6.25 | 9.57 | 640 | 184 |
160 | 8.49 | 5.38 | 563 | 120 |
161 | 7.84 | 7.02 | 680 | 641 |
164 | 0.00 | 0.00 | 0 | 1082 |
165 | 14.97 | 0.00 | 1590 | 1030 |
63 rows × 4 columns
In [ ]: