emission_detect_ai/使用lightgbm对机组特征建模.ipynb

2340 lines
783 KiB
Plaintext
Raw Permalink Normal View History

2022-10-31 14:20:50 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import pandas as pd\n",
"import lightgbm as lgb\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_absolute_percentage_error, r2_score\n",
"import datetime as dt\n",
"import matplotlib.pyplot as plt\n",
"#新增加的两行\n",
"from pylab import mpl\n",
"# 设置显示中文字体\n",
"mpl.rcParams[\"font.sans-serif\"] = [\"SimHei\"]\n",
"\n",
"mpl.rcParams[\"axes.unicode_minus\"] = False"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [],
"source": [
"ori_data = pd.read_csv('data/unit_train_data.csv')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"ori_data['day_of_week'] = ori_data.days.apply(lambda x: dt.datetime.strptime(x, '%Y-%m-%d').weekday() + 1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
"outputs": [],
"source": [
"data = ori_data.drop(columns=['days', 'day_of_year', '企业名称'])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 5,
"outputs": [
{
"data": {
"text/plain": " r_O2 temperature 发电量(万千瓦时) 供热量(吉焦) c_smoke c_NO2 \\\n0 9.900000 51.250000 15.6796 6536.83 2.872405e+04 3.979907e+06 \n1 9.400000 50.679167 13.3984 2484.64 2.261807e+04 2.639425e+06 \n2 8.550000 52.808333 13.4023 3020.83 1.817677e+04 3.231672e+06 \n3 10.202083 48.854167 12.4765 5599.23 9.161746e+04 2.243444e+06 \n4 11.497917 45.783333 13.4414 4702.65 2.995257e+05 3.580802e+06 \n... ... ... ... ... ... ... \n1486 6.329167 44.741667 467.1060 0.00 1.020390e+06 1.173919e+07 \n1487 6.183333 45.587500 504.9000 0.00 1.169393e+06 1.393048e+07 \n1488 6.425000 45.545833 462.8220 0.00 1.124243e+06 1.267043e+07 \n1489 6.162500 45.175000 528.9600 0.00 1.296293e+06 1.442430e+07 \n1490 5.570833 46.100000 672.1800 0.00 1.554891e+06 1.758048e+07 \n\n c_SO2 flow 燃料消耗量(吨) 生产设备类型 燃料类型 \\\n0 7.665088e+05 162345.192917 323.0 高温高压循环流化床锅炉 中高挥发分烟煤 \n1 5.183845e+05 140175.330833 218.0 高温高压循环流化床锅炉 中高挥发分烟煤 \n2 9.870800e+05 154686.184167 212.0 高温高压循环流化床锅炉 中高挥发分烟煤 \n3 2.880779e+05 120345.545833 223.0 高温高压循环流化床锅炉 中高挥发分烟煤 \n4 5.500482e+04 162533.103542 243.0 高温高压循环流化床锅炉 中高挥发分烟煤 \n... ... ... ... ... ... \n1486 1.101318e+07 836100.000000 2401.0 煤粉锅炉 一般烟煤 \n1487 1.335698e+07 895515.000000 2611.0 煤粉锅炉 一般烟煤 \n1488 1.129934e+07 837945.000000 2846.0 煤粉锅炉 一般烟煤 \n1489 1.434195e+07 915030.000000 2981.0 煤粉锅炉 一般烟煤 \n1490 1.593381e+07 992220.000000 3560.0 煤粉锅炉 一般烟煤 \n\n 低位发热量GJ/t 汽轮机类型 冷却方式 额定蒸发量 压力参数 单机容量 week_of_year \\\n0 20.501 背压式 水冷-闭式循环 230.0 高压 30.0 39 \n1 20.501 背压式 水冷-闭式循环 230.0 高压 30.0 39 \n2 20.501 背压式 水冷-闭式循环 230.0 高压 30.0 39 \n3 20.501 背压式 水冷-闭式循环 230.0 高压 30.0 39 \n4 20.501 背压式 水冷-闭式循环 230.0 高压 30.0 39 \n... ... ... ... ... ... ... ... \n1486 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 20 \n1487 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 21 \n1488 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 21 \n1489 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 21 \n1490 14.682 抽凝式 水冷-闭式循环 1172.0 超临界 350.0 21 \n\n day_of_week \n0 1 \n1 2 \n2 3 \n3 4 \n4 5 \n... ... \n1486 5 \n1487 6 \n1488 7 \n1489 1 \n1490 2 \n\n[1254 rows x 19 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>r_O2</th>\n <th>temperature</th>\n <th>发电量(万千瓦时)</th>\n <th>供热量(吉焦)</th>\n <th>c_smoke</th>\n <th>c_NO2</th>\n <th>c_SO2</th>\n <th>flow</th>\n <th>燃料消耗量(吨)</th>\n <th>生产设备类型</th>\n <th>燃料类型</th>\n <th>低位发热量GJ/t</th>\n <th>汽轮机类型</th>\n <th>冷却方式</th>\n <th>额定蒸发量</th>\n <th>压力参数</th>\n <th>单机容量</th>\n <th>week_of_year</th>\n <th>day_of_week</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>9.900000</td>\n <td>51.250000</td>\n <td>15.6796</td>\n <td>6536.83</td>\n <td>2.872405e+04</td>\n <td>3.979907e+06</td>\n <td>7.665088e+05</td>\n <td>162345.192917</td>\n <td>323.0</td>\n <td>高温高压循环流化床锅炉</td>\n <td>中高挥发分烟煤</td>\n <td>20.501</td>\n <td>背压式</td>\n <td>水冷-闭式循环</td>\n <td>230.0</td>\n <td>高压</td>\n <td>30.0</td>\n <td>39</td>\n <td>1</td>\n </tr>\n <tr>\n <th>1</th>\n <td>9.400000</td>\n <td>50.679167</td>\n <td>13.3984</td>\n <td>2484.64</td>\n <td>2.261807e+04</td>\n <td>2.639425e+06</td>\n <td>5.183845e+05</td>\n <td>140175.330833</td>\n <td>218.0</td>\n <td>高温高压循环流化床锅炉</td>\n <td>中高挥发分烟煤</td>\n <td>20.501</td>\n <td>背压式</td>\n <td>水冷-闭式循环</td>\n <td>230.0</td>\n <td>高压</td>\n <td>30.0</td>\n <td>39</td>\n <td>2</td>\n </tr>\n <tr>\n <th>2</th>\n <td>8.550000</td>\n <td>52.808333</td>\n <td>13.4023</td>\n <td>3020.83</td>\n <td>1.817677e+04</td>\n <td>3.231672e+06</td>\n <td>9.870800e+05</td>\n <td>154686.184167</td>\n <td>212.0</td>\n <td>高温高压循环流化床锅炉</td>\n <td>中高挥发分烟煤</td>\n <td>20.501</td>\n <td>背压式</td>\n <td>水冷-闭式循环</td>\n <td>230.0</td>\n <td>高压</td>\n <td>30.0</td>\n <td>39</td>\n <td>3</td>\n </tr>\n <tr>\n <th>3</th>\n <td>10.202083</td>\n <td>48.854167</td>\n <td>12.4765</td>\n <td>5599.23</td>\n <td>9.161746e+04</td>\n <td>2.243444e+06</td>\n <td>2.880779e+05</td>\n <td>120345.545833</td>\n <td>223.0</td>\n <td>高温高压循环流化床锅炉</td>\n <td>中高挥发分烟煤</td>\n <td>20.501</td>\n <td>背压式</td>\n <td>水冷-闭式循环</td>\n <td>230.0</td>\n <td>高压</td>\n <td>30.0</td>\n <td>39</td>\n <td>4</td>\n </tr>\n <tr>\n <th>4</th>\n <td>11.497917</td>\n <td>45.783333</td>\n <td>13.4414</td>\n <td>4702.65</td>\n <td>2.995257e+05</td>\n <td>3.580802e+06</td>\n <td>5.500482e+04</td>\n <td>162533.103542</td>\n <td>243.0</td>\n <td>高温高压循环流化床锅炉</td>\n <td>中高挥发分烟煤</td>\n <td>20.501</td>\n <td>背压式</td>\n <td>水冷-闭式循环</td>\n <td>230.0</td>\n <td>高压</td>\n <td>30.0</td>\n <td>39</td>\n <td>5</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>.
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = data[data['燃料消耗量(吨)']>0].dropna()\n",
"data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 6,
"outputs": [
{
"data": {
"text/plain": "['r_O2',\n 'temperature',\n '发电量(万千瓦时)',\n '供热量(吉焦)',\n 'c_smoke',\n 'c_NO2',\n 'c_SO2',\n 'flow',\n '燃料消耗量(吨)',\n '低位发热量GJ/t',\n '额定蒸发量',\n '单机容量',\n 'week_of_year']"
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"object_cols = ['生产设备类型', '燃料类型', '汽轮机类型', '冷却方式', '压力参数', 'day_of_week']\n",
"num_cols = [x for x in data.columns if x not in object_cols]\n",
"num_cols"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [],
"source": [
"for col in num_cols:\n",
" minus_index = data[data[col]<0].index.values\n",
" data.loc[minus_index, col] = 0\n",
" data[col] = np.log1p(data[col])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 8,
"outputs": [
{
"data": {
"text/plain": "<Figure size 2000x2000 with 19 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAABmoAAAZECAYAAADi4l+oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdf3zN9f//8fvZOWcz1Fgyaehdek80P5ZR+iFMSsmvFP0UypSSIQ1RHz8yFFJiJEqImYlSkiLepZSYHxst8iu/mW22ne2c8/3Dd6+c9sPm1znbuV0vF5eL83q+znk9z855Pc7z9bq/fpicTqdTAAAAAAAAAAAAuOJ83N0BAAAAAAAAAAAAb0VQAwAAAAAAAAAA4CYENQAAAAAAAAAAAG5CUAMAAAAAAAAAAOAmBDUAAAAAAAAAAABuQlADAAAAAAAAAADgJgQ1AAAAAAAAAAAAbkJQAwAAAAAAAAAA4CYENSiT7Ha7u7sAAAAAAAAAAMB5EdTA7XJyclweL168WHfeeacyMzMv6PUmTJigli1bFmveX3/9VUlJSRe0nIJ89dVXGjVqlM6cOVPi59psNpfHv/32m3799Vfj8YkTJ5SSknLRfTx9+rQmTJig48ePX/RrAfAMR48edQmojx8/7lJTMjIyFBcXp9OnT1+2Pvy7hq1atUp79uwxHicnJystLe2il7Nt2zZNnTr1ol8HQOn02Wefadq0acWe/5tvvnGpRXl27dqljz76SOnp6UU+/9ChQ1q7dm2+8WpJnVsjjxw5oi+++EK5ubnGtI0bN17U6+dZuHCh1qxZc0leC0DptWfPnnxjs4IcOnRIsbGxOnDgwCVZ7qZNm7Rz586Lfp1ly5Zp1qxZxuPivBcAKIzT6VRWVlaR8/z+++96+umntW3btgtezuHDhy/oeTt27NCWLVvyTb8U+wBRuljc3QF4N6fTqYiICHXu3Fkvv/yyMe3YsWPy8/M77/NtNptMJpOsVqsxrXbt2jp06JBSUlJ00003uczrcDhUrlw5Y9rixYu1evVqzZs3TzfeeKMk6b333tOUKVNcluPn51dg0TxXVlaWxo8fr/vuu0/ly5c//5v/l969e+uWW27Rq6++KklatGiRbDabbrvtNknS//3f/2njxo366quvVLFiReN5mZmZio2NlZ+fn3x8XLPXnJwc1a5dWxEREcrIyNDVV1+trKwszZgxQ126dNE111xT4n4C8DxPPPGEHn30UfXq1UuSNH78eO3fv19z586VdLZODB06VLfddpsqVKggs9ns8vw33nhD2dnZeuuttwpdxtNPP60OHTqoU6dO+dpOnDihRx55RNHR0WrdurUkacyYMerdu7duuOEGnTlzRi+++KJuuukmTZ8+3eW5ycnJWrlypXx9fWUymVzabDabWrRooZtvvlk5OTmqUKGCdu/erQULFuiFF14o+R8KQKlht9sVGRmp2rVrKyoqyhjrzZ07V02bNs03v8PhUHZ2tvz9/V2mjx49Wk8++aRRH/MsXbpUM2bM0O23365bbrml0H6sW7dOQ4cO1fbt241pqamp+Q4oqlChgq666qoCX2Pp0qWaOXOmPvroI1WpUkV79uxRVFSUEhMTJUlr1qzR888/r8mTJ+v+++93eW5CQoIOHjwoi8V1sy3v/fbr10/p6eny9fWVr6+vvv76a916661q3rx5oe8JQNn3yiuvqFq1aucNtlNTU/X222/rnnvucZmekZFRYHjzn//8x2Xb+9+GDx+uq666SvPmzbuwjv9/69at0/fff68ePXpo6NChOnjwoGJjY4tcNgDv8sorr2jFihXFnr98+fLatGlToe25ubnasGGDy4E0JXH06FF16tRJHTp00KBBg2Sz2eTr61vo/GvWrNH8+fM1ZcoUzZ8/X2lpaZo4caK6dOmiwYMHKywsTJ06ddKgQYP05JNPXlCfUPoQ1MCt/vzzTx06dEi1a9c2puWFDf8OHQoyfPhwLVmypMC2tm3b5pvWpEkTffLJJ8bjN954Q3/99Zd69+6tuLg4BQQEKDc3V82aNdN7770n6ezRPO+88855+xITE6P9+/crPj5e8fHx+dqvvvpqxcfHF7oRHxkZqcjISOXm5mrIkCHy8fExBqIzZ87UmjVrNGfOHJeQRjq7I2PHjh3Kzs7Wjz/+qAceeECStGLFCoWHh6tChQravn27HnnkEW3ZssX4oSjqBwNA6WIymVSpUiXj8ZYtW1wClbxasmrVKm3cuFHTpk3Tnj17tHDhQr366quyWCzGkYqTJ09W165dlZycrKpVq6pOnTqSzh4dVNhRSIGBgXr88cf1yiuvaMKECXrggQdkNptltVplt9s1YMAA+fr6FhgEpaWlafv27Tp48KCOHTumJk2a6OTJk/rxxx/Vpk0bhYWF6ZNPPtHXX3+thQsXGjsjAZRtZrNZDz74oEaMGKEdO3bovffe0+7du7Vz507t3LnTZTx3ri1btigjI0M5OTk6cuSIDh8+rObNm+vEiRPKyclRxYoVZbFYtGTJEgUEBGjatGmaPHlyof3w8/OT1Wp1CbjHjRunuLg4l/l69OihwYMHF/gaLVu21Pz58/XUU09pzpw5xhjX19dXKSkpevXVV9WjR498IY0k7d+/X0lJSfrpp5900003qXr16kpMTJTD4TDqc9euXfXEE0+oW7duslqt1EjAC6xYsUKJiYnGQX7n2rFjh3bs2KFjx47pxIkTCgwMzDdPVlaWfH19jYMj88ZsNptN/v7+2rJli7p3727UmTNnzmjv3r1av369qlSpUmi/+vfvrz59+uibb74xDt65EBUrVjQO4OnUqZOeffZZjR49Wm+88cYFvyaAsqVixYoKDQ1VTEzMeed1OBznPTs676CYcw/uLq4TJ06oR48euuWWW9SnTx8dOHBAjz76qF544QU98cQTBT6nadOmeu+99zRr1iz5+vrKarVqzZo1OnLkiOrXr6+UlBRlZWWpRYsWJe4PSi+CGrjV6tWrVbVqVbVp06bI+fIGjb6+vi4bygMHDtTLL78ss9mshIQEtW3bNl9RnTZtmrp06aKrrroq31Hkvr6+euedd9S7d2+dOHFCAQEBOnr0qAICAlShQgVjnn8f5f1vCxYs0Lx583THHXdo+vTpLmcD7dmzR126dNHzzz9fYEizb98+mc1m3XjjjRo8eLB+/PFHHT16VFlZWbLb7Tpy5IjWrFmjwYMH67rrrtPff/8th8Oh66+/XtLZH6dp06Zpy5Yt2rRpkyZOnChJ+vrrr9W3b181bdpUycnJxnvJzs6WpPO+JwClh8lkko+Pj5xOp44cOaI///xT77zzjiZMmKDnn39ezz33nCSpdevWWrFihVavXq1GjRopLi5ON954o0wmk0wmk9asWaN58+bpySef1O+//65PPvlEM2bMUMOGDY15zmWz2XTo0CH5+vqqffv2+uOPP3T48GHjUmxpaWnatWuX/vrrL40ePVq5ubk6cOCA/Pz8jI38xo0bq3Hjxpo5c6Z+/vlnTZw4URs3btSPP/6od999V9LZU77zdjz6+PhQvwAv0aFDB1133XWaOnWqfH19NWvWLDVv3twY65wr7wwTPz8/vfbaa/r666/ldDolnd3J53A4lJubq7feekt79+6VzWbT4sWL9cwzz2jmzJn5zrjJyMiQyWSS3W6XyWRSdna2cnJy5OfnJz8/P91///1GwNO+ffsCw5ETJ07ozJkzslqtGjVqlAYNGqRjx44pNTVV0tkjL3/66SfVrVtXzz77rA4fPiybzaZrr73WGM/27dtXkvTggw+qe/fueuCBBzR06FDZ7XaNHTtWklwCbGok4B2cTqdmz56tihUr5jvLeMyYMUbwO3jwYE2bNi3fdnCDBg2M8aMkPfTQQ3I4HMYR53k1ZfHixbJYLNqwYYOefvppYzt37969Rn07V61atRQVFaUbbrgh3yV7HA6HJOnmm29Wdna2/v77b/n6+hZ6gKbdbtehQ4d0/fXXa/Dgwbr55puVkpKiG264Id/7AeB9KlSoIH9/f5cr6UjSl19+qc8//7zIMwqzs7NlMplksVjy1aB/n8V
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure(figsize=(20, 20))\n",
"for index, col in enumerate(object_cols+num_cols):\n",
" plt.subplot(4,5,index+1)\n",
" plt.title(col)\n",
" # if col in object_cols:\n",
" # plt.bar(data['燃料类型'].value_counts().index, data['燃料类型'].value_counts().values)\n",
" # else:\n",
" plt.hist(data[col])\n",
"plt.savefig('figure/特征分析.png')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 9,
"outputs": [],
"source": [
"use_data = pd.get_dummies(data.drop(columns=['r_O2', 'temperature']), columns=object_cols)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 10,
"outputs": [
{
"data": {
"text/plain": "['day_of_week_3',\n '汽轮机类型_背压式',\n 'day_of_week_6',\n 'day_of_week_5',\n '额定蒸发量',\n '低位发热量GJ/t',\n '生产设备类型_煤粉锅炉',\n 'day_of_week_7',\n 'day_of_week_1',\n 'day_of_week_2',\n 'c_SO2',\n '燃料类型_低挥发分烟煤',\n 'day_of_week_4',\n '生产设备类型_高温高压循环流化床锅炉',\n '燃料类型_中高挥发分烟煤',\n '单机容量',\n '压力参数_超临界',\n 'c_smoke',\n 'flow',\n 'week_of_year',\n '燃料类型_一般烟煤',\n '压力参数_超超临界',\n '汽轮机类型_抽凝式',\n '冷却方式_水冷-闭式循环',\n '压力参数_高压',\n 'c_NO2']"
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# feature_cols = [x for x in use_data.columns if x != '燃料消耗量(吨)']\n",
"feature_cols = [x for x in use_data.columns if x not in ['发电量(万千瓦时)', '供热量(吉焦)', '燃料消耗量(吨)']]\n",
"np.random.shuffle(feature_cols)\n",
"feature_cols"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [],
"source": [
"train_data, valid = train_test_split(use_data, test_size=0.2, shuffle=True, random_state=666)\n",
"valid_data, test_data = train_test_split(valid, test_size=0.5, shuffle=True, random_state=666)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [],
"source": [
"X_train, Y_train = train_data[feature_cols], train_data['燃料消耗量(吨)']\n",
"X_valid, Y_valid = valid_data[feature_cols], valid_data['燃料消耗量(吨)']\n",
"X_test, Y_test = test_data[feature_cols], test_data['燃料消耗量(吨)']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 13,
"outputs": [],
"source": [
"lgb_train = lgb.Dataset(X_train, Y_train)\n",
"lgb_eval = lgb.Dataset(X_valid, Y_valid)\n",
"lgb_test = lgb.Dataset(X_test, Y_test)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 14,
"outputs": [],
"source": [
"params = {\n",
" 'task': 'train',\n",
" 'boosting_type': 'gbdt', # 设置提升类型\n",
" 'objective': 'regression_l2', # 目标函数\n",
" 'metric': {'rmse'}, # 评估函数\n",
" 'max_depth': 10,\n",
" 'num_leaves': 31, # 叶子节点数\n",
" 'learning_rate': 0.005, # 学习速率\n",
" 'feature_fraction': 0.9, # 建树的特征选择比例\n",
" 'bagging_fraction': 0.8, # 建树的样本采样比例\n",
" 'bagging_freq': 5, # k 意味着每 k 次迭代执行bagging\n",
" 'verbose': -1 # <0 显示致命的, =0 显示错误 (警告), >0 显示信息\n",
"}"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 15,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1]\tvalid_0's rmse: 0.619783\n",
"Training until validation scores don't improve for 100 rounds\n",
"[2]\tvalid_0's rmse: 0.617031\n",
"[3]\tvalid_0's rmse: 0.614294\n",
"[4]\tvalid_0's rmse: 0.611572\n",
"[5]\tvalid_0's rmse: 0.608865\n",
"[6]\tvalid_0's rmse: 0.606158\n",
"[7]\tvalid_0's rmse: 0.603466\n",
"[8]\tvalid_0's rmse: 0.600814\n",
"[9]\tvalid_0's rmse: 0.598151\n",
"[10]\tvalid_0's rmse: 0.595503\n",
"[11]\tvalid_0's rmse: 0.592866\n",
"[12]\tvalid_0's rmse: 0.590287\n",
"[13]\tvalid_0's rmse: 0.587678\n",
"[14]\tvalid_0's rmse: 0.585082\n",
"[15]\tvalid_0's rmse: 0.582545\n",
"[16]\tvalid_0's rmse: 0.579979\n",
"[17]\tvalid_0's rmse: 0.577427\n",
"[18]\tvalid_0's rmse: 0.574889\n",
"[19]\tvalid_0's rmse: 0.572365\n",
"[20]\tvalid_0's rmse: 0.569854\n",
"[21]\tvalid_0's rmse: 0.567376\n",
"[22]\tvalid_0's rmse: 0.564911\n",
"[23]\tvalid_0's rmse: 0.562463\n",
"[24]\tvalid_0's rmse: 0.560027\n",
"[25]\tvalid_0's rmse: 0.557602\n",
"[26]\tvalid_0's rmse: 0.555143\n",
"[27]\tvalid_0's rmse: 0.552698\n",
"[28]\tvalid_0's rmse: 0.550265\n",
"[29]\tvalid_0's rmse: 0.547893\n",
"[30]\tvalid_0's rmse: 0.545487\n",
"[31]\tvalid_0's rmse: 0.543116\n",
"[32]\tvalid_0's rmse: 0.54079\n",
"[33]\tvalid_0's rmse: 0.538434\n",
"[34]\tvalid_0's rmse: 0.536101\n",
"[35]\tvalid_0's rmse: 0.533775\n",
"[36]\tvalid_0's rmse: 0.531488\n",
"[37]\tvalid_0's rmse: 0.529221\n",
"[38]\tvalid_0's rmse: 0.52696\n",
"[39]\tvalid_0's rmse: 0.524734\n",
"[40]\tvalid_0's rmse: 0.522497\n",
"[41]\tvalid_0's rmse: 0.52024\n",
"[42]\tvalid_0's rmse: 0.517995\n",
"[43]\tvalid_0's rmse: 0.515746\n",
"[44]\tvalid_0's rmse: 0.513525\n",
"[45]\tvalid_0's rmse: 0.511317\n",
"[46]\tvalid_0's rmse: 0.509117\n",
"[47]\tvalid_0's rmse: 0.50695\n",
"[48]\tvalid_0's rmse: 0.504751\n",
"[49]\tvalid_0's rmse: 0.502583\n",
"[50]\tvalid_0's rmse: 0.500458\n",
"[51]\tvalid_0's rmse: 0.498381\n",
"[52]\tvalid_0's rmse: 0.496333\n",
"[53]\tvalid_0's rmse: 0.494242\n",
"[54]\tvalid_0's rmse: 0.492194\n",
"[55]\tvalid_0's rmse: 0.49018\n",
"[56]\tvalid_0's rmse: 0.488205\n",
"[57]\tvalid_0's rmse: 0.486212\n",
"[58]\tvalid_0's rmse: 0.484243\n",
"[59]\tvalid_0's rmse: 0.48227\n",
"[60]\tvalid_0's rmse: 0.48031\n",
"[61]\tvalid_0's rmse: 0.478283\n",
"[62]\tvalid_0's rmse: 0.476267\n",
"[63]\tvalid_0's rmse: 0.474262\n",
"[64]\tvalid_0's rmse: 0.472269\n",
"[65]\tvalid_0's rmse: 0.470281\n",
"[66]\tvalid_0's rmse: 0.468313\n",
"[67]\tvalid_0's rmse: 0.466414\n",
"[68]\tvalid_0's rmse: 0.464465\n",
"[69]\tvalid_0's rmse: 0.462515\n",
"[70]\tvalid_0's rmse: 0.460588\n",
"[71]\tvalid_0's rmse: 0.458701\n",
"[72]\tvalid_0's rmse: 0.45682\n",
"[73]\tvalid_0's rmse: 0.454947\n",
"[74]\tvalid_0's rmse: 0.453091\n",
"[75]\tvalid_0's rmse: 0.451269\n",
"[76]\tvalid_0's rmse: 0.449393\n",
"[77]\tvalid_0's rmse: 0.447497\n",
"[78]\tvalid_0's rmse: 0.445613\n",
"[79]\tvalid_0's rmse: 0.443803\n",
"[80]\tvalid_0's rmse: 0.442004\n",
"[81]\tvalid_0's rmse: 0.440201\n",
"[82]\tvalid_0's rmse: 0.438408\n",
"[83]\tvalid_0's rmse: 0.436629\n",
"[84]\tvalid_0's rmse: 0.43486\n",
"[85]\tvalid_0's rmse: 0.433098\n",
"[86]\tvalid_0's rmse: 0.431378\n",
"[87]\tvalid_0's rmse: 0.429625\n",
"[88]\tvalid_0's rmse: 0.427891\n",
"[89]\tvalid_0's rmse: 0.426163\n",
"[90]\tvalid_0's rmse: 0.424432\n",
"[91]\tvalid_0's rmse: 0.422746\n",
"[92]\tvalid_0's rmse: 0.421041\n",
"[93]\tvalid_0's rmse: 0.419345\n",
"[94]\tvalid_0's rmse: 0.41765\n",
"[95]\tvalid_0's rmse: 0.415965\n",
"[96]\tvalid_0's rmse: 0.414284\n",
"[97]\tvalid_0's rmse: 0.412607\n",
"[98]\tvalid_0's rmse: 0.410945\n",
"[99]\tvalid_0's rmse: 0.409287\n",
"[100]\tvalid_0's rmse: 0.407644\n",
"[101]\tvalid_0's rmse: 0.405998\n",
"[102]\tvalid_0's rmse: 0.404362\n",
"[103]\tvalid_0's rmse: 0.402735\n",
"[104]\tvalid_0's rmse: 0.40113\n",
"[105]\tvalid_0's rmse: 0.399534\n",
"[106]\tvalid_0's rmse: 0.397949\n",
"[107]\tvalid_0's rmse: 0.396416\n",
"[108]\tvalid_0's rmse: 0.394846\n",
"[109]\tvalid_0's rmse: 0.393286\n",
"[110]\tvalid_0's rmse: 0.391743\n",
"[111]\tvalid_0's rmse: 0.390222\n",
"[112]\tvalid_0's rmse: 0.38871\n",
"[113]\tvalid_0's rmse: 0.387208\n",
"[114]\tvalid_0's rmse: 0.385714\n",
"[115]\tvalid_0's rmse: 0.384217\n",
"[116]\tvalid_0's rmse: 0.382661\n",
"[117]\tvalid_0's rmse: 0.381114\n",
"[118]\tvalid_0's rmse: 0.379577\n",
"[119]\tvalid_0's rmse: 0.378049\n",
"[120]\tvalid_0's rmse: 0.376538\n",
"[121]\tvalid_0's rmse: 0.375084\n",
"[122]\tvalid_0's rmse: 0.373638\n",
"[123]\tvalid_0's rmse: 0.372202\n",
"[124]\tvalid_0's rmse: 0.370773\n",
"[125]\tvalid_0's rmse: 0.369354\n",
"[126]\tvalid_0's rmse: 0.36794\n",
"[127]\tvalid_0's rmse: 0.366524\n",
"[128]\tvalid_0's rmse: 0.365117\n",
"[129]\tvalid_0's rmse: 0.363727\n",
"[130]\tvalid_0's rmse: 0.36234\n",
"[131]\tvalid_0's rmse: 0.36101\n",
"[132]\tvalid_0's rmse: 0.359689\n",
"[133]\tvalid_0's rmse: 0.358416\n",
"[134]\tvalid_0's rmse: 0.357111\n",
"[135]\tvalid_0's rmse: 0.355822\n",
"[136]\tvalid_0's rmse: 0.35454\n",
"[137]\tvalid_0's rmse: 0.353265\n",
"[138]\tvalid_0's rmse: 0.351998\n",
"[139]\tvalid_0's rmse: 0.350739\n",
"[140]\tvalid_0's rmse: 0.349487\n",
"[141]\tvalid_0's rmse: 0.348259\n",
"[142]\tvalid_0's rmse: 0.347038\n",
"[143]\tvalid_0's rmse: 0.345869\n",
"[144]\tvalid_0's rmse: 0.344681\n",
"[145]\tvalid_0's rmse: 0.343526\n",
"[146]\tvalid_0's rmse: 0.342256\n",
"[147]\tvalid_0's rmse: 0.341045\n",
"[148]\tvalid_0's rmse: 0.339791\n",
"[149]\tvalid_0's rmse: 0.338543\n",
"[150]\tvalid_0's rmse: 0.337329\n",
"[151]\tvalid_0's rmse: 0.336155\n",
"[152]\tvalid_0's rmse: 0.334988\n",
"[153]\tvalid_0's rmse: 0.333828\n",
"[154]\tvalid_0's rmse: 0.332673\n",
"[155]\tvalid_0's rmse: 0.331528\n",
"[156]\tvalid_0's rmse: 0.330367\n",
"[157]\tvalid_0's rmse: 0.329181\n",
"[158]\tvalid_0's rmse: 0.328009\n",
"[159]\tvalid_0's rmse: 0.326837\n",
"[160]\tvalid_0's rmse: 0.325674\n",
"[161]\tvalid_0's rmse: 0.324545\n",
"[162]\tvalid_0's rmse: 0.32341\n",
"[163]\tvalid_0's rmse: 0.322245\n",
"[164]\tvalid_0's rmse: 0.321128\n",
"[165]\tvalid_0's rmse: 0.320027\n",
"[166]\tvalid_0's rmse: 0.318917\n",
"[167]\tvalid_0's rmse: 0.31785\n",
"[168]\tvalid_0's rmse: 0.316779\n",
"[169]\tvalid_0's rmse: 0.315706\n",
"[170]\tvalid_0's rmse: 0.314629\n",
"[171]\tvalid_0's rmse: 0.313557\n",
"[172]\tvalid_0's rmse: 0.31248\n",
"[173]\tvalid_0's rmse: 0.311406\n",
"[174]\tvalid_0's rmse: 0.310324\n",
"[175]\tvalid_0's rmse: 0.30925\n",
"[176]\tvalid_0's rmse: 0.308202\n",
"[177]\tvalid_0's rmse: 0.30716\n",
"[178]\tvalid_0's rmse: 0.306122\n",
"[179]\tvalid_0's rmse: 0.305093\n",
"[180]\tvalid_0's rmse: 0.304074\n",
"[181]\tvalid_0's rmse: 0.303092\n",
"[182]\tvalid_0's rmse: 0.302127\n",
"[183]\tvalid_0's rmse: 0.301168\n",
"[184]\tvalid_0's rmse: 0.300216\n",
"[185]\tvalid_0's rmse: 0.29927\n",
"[186]\tvalid_0's rmse: 0.298222\n",
"[187]\tvalid_0's rmse: 0.29718\n",
"[188]\tvalid_0's rmse: 0.296147\n",
"[189]\tvalid_0's rmse: 0.295143\n",
"[190]\tvalid_0's rmse: 0.294134\n",
"[191]\tvalid_0's rmse: 0.293147\n",
"[192]\tvalid_0's rmse: 0.292167\n",
"[193]\tvalid_0's rmse: 0.291193\n",
"[194]\tvalid_0's rmse: 0.290286\n",
"[195]\tvalid_0's rmse: 0.28937\n",
"[196]\tvalid_0's rmse: 0.288437\n",
"[197]\tvalid_0's rmse: 0.287519\n",
"[198]\tvalid_0's rmse: 0.286579\n",
"[199]\tvalid_0's rmse: 0.285642\n",
"[200]\tvalid_0's rmse: 0.284734\n",
"[201]\tvalid_0's rmse: 0.283841\n",
"[202]\tvalid_0's rmse: 0.282962\n",
"[203]\tvalid_0's rmse: 0.28209\n",
"[204]\tvalid_0's rmse: 0.281222\n",
"[205]\tvalid_0's rmse: 0.280369\n",
"[206]\tvalid_0's rmse: 0.279506\n",
"[207]\tvalid_0's rmse: 0.278653\n",
"[208]\tvalid_0's rmse: 0.277802\n",
"[209]\tvalid_0's rmse: 0.276953\n",
"[210]\tvalid_0's rmse: 0.276114\n",
"[211]\tvalid_0's rmse: 0.275285\n",
"[212]\tvalid_0's rmse: 0.274473\n",
"[213]\tvalid_0's rmse: 0.273674\n",
"[214]\tvalid_0's rmse: 0.272856\n",
"[215]\tvalid_0's rmse: 0.272068\n",
"[216]\tvalid_0's rmse: 0.271275\n",
"[217]\tvalid_0's rmse: 0.27047\n",
"[218]\tvalid_0's rmse: 0.269669\n",
"[219]\tvalid_0's rmse: 0.268874\n",
"[220]\tvalid_0's rmse: 0.268084\n",
"[221]\tvalid_0's rmse: 0.267302\n",
"[222]\tvalid_0's rmse: 0.266539\n",
"[223]\tvalid_0's rmse: 0.265767\n",
"[224]\tvalid_0's rmse: 0.265001\n",
"[225]\tvalid_0's rmse: 0.264239\n",
"[226]\tvalid_0's rmse: 0.26344\n",
"[227]\tvalid_0's rmse: 0.262706\n",
"[228]\tvalid_0's rmse: 0.261917\n",
"[229]\tvalid_0's rmse: 0.261132\n",
"[230]\tvalid_0's rmse: 0.260357\n",
"[231]\tvalid_0's rmse: 0.259586\n",
"[232]\tvalid_0's rmse: 0.258825\n",
"[233]\tvalid_0's rmse: 0.258087\n",
"[234]\tvalid_0's rmse: 0.257355\n",
"[235]\tvalid_0's rmse: 0.256589\n",
"[236]\tvalid_0's rmse: 0.255878\n",
"[237]\tvalid_0's rmse: 0.25519\n",
"[238]\tvalid_0's rmse: 0.254488\n",
"[239]\tvalid_0's rmse: 0.25381\n",
"[240]\tvalid_0's rmse: 0.253118\n",
"[241]\tvalid_0's rmse: 0.252457\n",
"[242]\tvalid_0's rmse: 0.251815\n",
"[243]\tvalid_0's rmse: 0.251124\n",
"[244]\tvalid_0's rmse: 0.250478\n",
"[245]\tvalid_0's rmse: 0.249796\n",
"[246]\tvalid_0's rmse: 0.249153\n",
"[247]\tvalid_0's rmse: 0.248502\n",
"[248]\tvalid_0's rmse: 0.247847\n",
"[249]\tvalid_0's rmse: 0.247176\n",
"[250]\tvalid_0's rmse: 0.246527\n",
"[251]\tvalid_0's rmse: 0.245838\n",
"[252]\tvalid_0's rmse: 0.245198\n",
"[253]\tvalid_0's rmse: 0.24455\n",
"[254]\tvalid_0's rmse: 0.243906\n",
"[255]\tvalid_0's rmse: 0.243267\n",
"[256]\tvalid_0's rmse: 0.242641\n",
"[257]\tvalid_0's rmse: 0.24202\n",
"[258]\tvalid_0's rmse: 0.2414\n",
"[259]\tvalid_0's rmse: 0.240788\n",
"[260]\tvalid_0's rmse: 0.240177\n",
"[261]\tvalid_0's rmse: 0.239581\n",
"[262]\tvalid_0's rmse: 0.23892\n",
"[263]\tvalid_0's rmse: 0.238264\n",
"[264]\tvalid_0's rmse: 0.237611\n",
"[265]\tvalid_0's rmse: 0.236964\n",
"[266]\tvalid_0's rmse: 0.236425\n",
"[267]\tvalid_0's rmse: 0.235845\n",
"[268]\tvalid_0's rmse: 0.235212\n",
"[269]\tvalid_0's rmse: 0.234584\n",
"[270]\tvalid_0's rmse: 0.23396\n",
"[271]\tvalid_0's rmse: 0.233365\n",
"[272]\tvalid_0's rmse: 0.23277\n",
"[273]\tvalid_0's rmse: 0.232181\n",
"[274]\tvalid_0's rmse: 0.231669\n",
"[275]\tvalid_0's rmse: 0.231094\n",
"[276]\tvalid_0's rmse: 0.230545\n",
"[277]\tvalid_0's rmse: 0.229999\n",
"[278]\tvalid_0's rmse: 0.229457\n",
"[279]\tvalid_0's rmse: 0.228919\n",
"[280]\tvalid_0's rmse: 0.228369\n",
"[281]\tvalid_0's rmse: 0.227856\n",
"[282]\tvalid_0's rmse: 0.227374\n",
"[283]\tvalid_0's rmse: 0.226837\n",
"[284]\tvalid_0's rmse: 0.226334\n",
"[285]\tvalid_0's rmse: 0.225805\n",
"[286]\tvalid_0's rmse: 0.225299\n",
"[287]\tvalid_0's rmse: 0.224793\n",
"[288]\tvalid_0's rmse: 0.224287\n",
"[289]\tvalid_0's rmse: 0.223792\n",
"[290]\tvalid_0's rmse: 0.223301\n",
"[291]\tvalid_0's rmse: 0.222791\n",
"[292]\tvalid_0's rmse: 0.222286\n",
"[293]\tvalid_0's rmse: 0.221828\n",
"[294]\tvalid_0's rmse: 0.221345\n",
"[295]\tvalid_0's rmse: 0.220867\n",
"[296]\tvalid_0's rmse: 0.220366\n",
"[297]\tvalid_0's rmse: 0.219868\n",
"[298]\tvalid_0's rmse: 0.219369\n",
"[299]\tvalid_0's rmse: 0.21892\n",
"[300]\tvalid_0's rmse: 0.218451\n",
"[301]\tvalid_0's rmse: 0.217973\n",
"[302]\tvalid_0's rmse: 0.217498\n",
"[303]\tvalid_0's rmse: 0.217026\n",
"[304]\tvalid_0's rmse: 0.216558\n",
"[305]\tvalid_0's rmse: 0.216093\n",
"[306]\tvalid_0's rmse: 0.21558\n",
"[307]\tvalid_0's rmse: 0.215071\n",
"[308]\tvalid_0's rmse: 0.214565\n",
"[309]\tvalid_0's rmse: 0.214063\n",
"[310]\tvalid_0's rmse: 0.213564\n",
"[311]\tvalid_0's rmse: 0.213094\n",
"[312]\tvalid_0's rmse: 0.212612\n",
"[313]\tvalid_0's rmse: 0.212136\n",
"[314]\tvalid_0's rmse: 0.211661\n",
"[315]\tvalid_0's rmse: 0.211191\n",
"[316]\tvalid_0's rmse: 0.21075\n",
"[317]\tvalid_0's rmse: 0.2103\n",
"[318]\tvalid_0's rmse: 0.209865\n",
"[319]\tvalid_0's rmse: 0.209421\n",
"[320]\tvalid_0's rmse: 0.209008\n",
"[321]\tvalid_0's rmse: 0.208552\n",
"[322]\tvalid_0's rmse: 0.208116\n",
"[323]\tvalid_0's rmse: 0.207668\n",
"[324]\tvalid_0's rmse: 0.207213\n",
"[325]\tvalid_0's rmse: 0.206771\n",
"[326]\tvalid_0's rmse: 0.206379\n",
"[327]\tvalid_0's rmse: 0.205998\n",
"[328]\tvalid_0's rmse: 0.205628\n",
"[329]\tvalid_0's rmse: 0.205268\n",
"[330]\tvalid_0's rmse: 0.204885\n",
"[331]\tvalid_0's rmse: 0.204505\n",
"[332]\tvalid_0's rmse: 0.204119\n",
"[333]\tvalid_0's rmse: 0.20374\n",
"[334]\tvalid_0's rmse: 0.203344\n",
"[335]\tvalid_0's rmse: 0.202957\n",
"[336]\tvalid_0's rmse: 0.20259\n",
"[337]\tvalid_0's rmse: 0.202226\n",
"[338]\tvalid_0's rmse: 0.201864\n",
"[339]\tvalid_0's rmse: 0.201506\n",
"[340]\tvalid_0's rmse: 0.20115\n",
"[341]\tvalid_0's rmse: 0.200774\n",
"[342]\tvalid_0's rmse: 0.200405\n",
"[343]\tvalid_0's rmse: 0.200039\n",
"[344]\tvalid_0's rmse: 0.199675\n",
"[345]\tvalid_0's rmse: 0.199315\n",
"[346]\tvalid_0's rmse: 0.198938\n",
"[347]\tvalid_0's rmse: 0.198563\n",
"[348]\tvalid_0's rmse: 0.198191\n",
"[349]\tvalid_0's rmse: 0.197823\n",
"[350]\tvalid_0's rmse: 0.197457\n",
"[351]\tvalid_0's rmse: 0.197116\n",
"[352]\tvalid_0's rmse: 0.196775\n",
"[353]\tvalid_0's rmse: 0.196428\n",
"[354]\tvalid_0's rmse: 0.196089\n",
"[355]\tvalid_0's rmse: 0.195754\n",
"[356]\tvalid_0's rmse: 0.195476\n",
"[357]\tvalid_0's rmse: 0.195165\n",
"[358]\tvalid_0's rmse: 0.194848\n",
"[359]\tvalid_0's rmse: 0.194578\n",
"[360]\tvalid_0's rmse: 0.194265\n",
"[361]\tvalid_0's rmse: 0.193964\n",
"[362]\tvalid_0's rmse: 0.193665\n",
"[363]\tvalid_0's rmse: 0.193355\n",
"[364]\tvalid_0's rmse: 0.193027\n",
"[365]\tvalid_0's rmse: 0.192736\n",
"[366]\tvalid_0's rmse: 0.192424\n",
"[367]\tvalid_0's rmse: 0.192154\n",
"[368]\tvalid_0's rmse: 0.191886\n",
"[369]\tvalid_0's rmse: 0.191645\n",
"[370]\tvalid_0's rmse: 0.191379\n",
"[371]\tvalid_0's rmse: 0.191069\n",
"[372]\tvalid_0's rmse: 0.190752\n",
"[373]\tvalid_0's rmse: 0.190382\n",
"[374]\tvalid_0's rmse: 0.190016\n",
"[375]\tvalid_0's rmse: 0.189714\n",
"[376]\tvalid_0's rmse: 0.189433\n",
"[377]\tvalid_0's rmse: 0.189196\n",
"[378]\tvalid_0's rmse: 0.188975\n",
"[379]\tvalid_0's rmse: 0.188741\n",
"[380]\tvalid_0's rmse: 0.188509\n",
"[381]\tvalid_0's rmse: 0.188247\n",
"[382]\tvalid_0's rmse: 0.187967\n",
"[383]\tvalid_0's rmse: 0.187689\n",
"[384]\tvalid_0's rmse: 0.187433\n",
"[385]\tvalid_0's rmse: 0.187179\n",
"[386]\tvalid_0's rmse: 0.186922\n",
"[387]\tvalid_0's rmse: 0.186674\n",
"[388]\tvalid_0's rmse: 0.186428\n",
"[389]\tvalid_0's rmse: 0.186182\n",
"[390]\tvalid_0's rmse: 0.185937\n",
"[391]\tvalid_0's rmse: 0.185662\n",
"[392]\tvalid_0's rmse: 0.185401\n",
"[393]\tvalid_0's rmse: 0.185129\n",
"[394]\tvalid_0's rmse: 0.184858\n",
"[395]\tvalid_0's rmse: 0.184597\n",
"[396]\tvalid_0's rmse: 0.184356\n",
"[397]\tvalid_0's rmse: 0.184062\n",
"[398]\tvalid_0's rmse: 0.183829\n",
"[399]\tvalid_0's rmse: 0.18354\n",
"[400]\tvalid_0's rmse: 0.183307\n",
"[401]\tvalid_0's rmse: 0.183066\n",
"[402]\tvalid_0's rmse: 0.182836\n",
"[403]\tvalid_0's rmse: 0.18258\n",
"[404]\tvalid_0's rmse: 0.182325\n",
"[405]\tvalid_0's rmse: 0.1821\n",
"[406]\tvalid_0's rmse: 0.181845\n",
"[407]\tvalid_0's rmse: 0.18161\n",
"[408]\tvalid_0's rmse: 0.181358\n",
"[409]\tvalid_0's rmse: 0.181108\n",
"[410]\tvalid_0's rmse: 0.180853\n",
"[411]\tvalid_0's rmse: 0.180626\n",
"[412]\tvalid_0's rmse: 0.180408\n",
"[413]\tvalid_0's rmse: 0.180192\n",
"[414]\tvalid_0's rmse: 0.179978\n",
"[415]\tvalid_0's rmse: 0.179733\n",
"[416]\tvalid_0's rmse: 0.179496\n",
"[417]\tvalid_0's rmse: 0.179264\n",
"[418]\tvalid_0's rmse: 0.179013\n",
"[419]\tvalid_0's rmse: 0.178782\n",
"[420]\tvalid_0's rmse: 0.178538\n",
"[421]\tvalid_0's rmse: 0.178333\n",
"[422]\tvalid_0's rmse: 0.17813\n",
"[423]\tvalid_0's rmse: 0.177934\n",
"[424]\tvalid_0's rmse: 0.177734\n",
"[425]\tvalid_0's rmse: 0.177535\n",
"[426]\tvalid_0's rmse: 0.177367\n",
"[427]\tvalid_0's rmse: 0.177148\n",
"[428]\tvalid_0's rmse: 0.176931\n",
"[429]\tvalid_0's rmse: 0.176715\n",
"[430]\tvalid_0's rmse: 0.176499\n",
"[431]\tvalid_0's rmse: 0.176319\n",
"[432]\tvalid_0's rmse: 0.176141\n",
"[433]\tvalid_0's rmse: 0.175955\n",
"[434]\tvalid_0's rmse: 0.175762\n",
"[435]\tvalid_0's rmse: 0.175613\n",
"[436]\tvalid_0's rmse: 0.175437\n",
"[437]\tvalid_0's rmse: 0.175248\n",
"[438]\tvalid_0's rmse: 0.17505\n",
"[439]\tvalid_0's rmse: 0.174853\n",
"[440]\tvalid_0's rmse: 0.174673\n",
"[441]\tvalid_0's rmse: 0.174474\n",
"[442]\tvalid_0's rmse: 0.174273\n",
"[443]\tvalid_0's rmse: 0.174106\n",
"[444]\tvalid_0's rmse: 0.173908\n",
"[445]\tvalid_0's rmse: 0.173716\n",
"[446]\tvalid_0's rmse: 0.173561\n",
"[447]\tvalid_0's rmse: 0.173408\n",
"[448]\tvalid_0's rmse: 0.173249\n",
"[449]\tvalid_0's rmse: 0.173107\n",
"[450]\tvalid_0's rmse: 0.172955\n",
"[451]\tvalid_0's rmse: 0.172746\n",
"[452]\tvalid_0's rmse: 0.172535\n",
"[453]\tvalid_0's rmse: 0.17233\n",
"[454]\tvalid_0's rmse: 0.172121\n",
"[455]\tvalid_0's rmse: 0.171919\n",
"[456]\tvalid_0's rmse: 0.171761\n",
"[457]\tvalid_0's rmse: 0.171602\n",
"[458]\tvalid_0's rmse: 0.171454\n",
"[459]\tvalid_0's rmse: 0.171307\n",
"[460]\tvalid_0's rmse: 0.171153\n",
"[461]\tvalid_0's rmse: 0.170961\n",
"[462]\tvalid_0's rmse: 0.170759\n",
"[463]\tvalid_0's rmse: 0.170558\n",
"[464]\tvalid_0's rmse: 0.17036\n",
"[465]\tvalid_0's rmse: 0.170163\n",
"[466]\tvalid_0's rmse: 0.169965\n",
"[467]\tvalid_0's rmse: 0.169769\n",
"[468]\tvalid_0's rmse: 0.169574\n",
"[469]\tvalid_0's rmse: 0.169381\n",
"[470]\tvalid_0's rmse: 0.169172\n",
"[471]\tvalid_0's rmse: 0.169051\n",
"[472]\tvalid_0's rmse: 0.168918\n",
"[473]\tvalid_0's rmse: 0.168822\n",
"[474]\tvalid_0's rmse: 0.168698\n",
"[475]\tvalid_0's rmse: 0.168575\n",
"[476]\tvalid_0's rmse: 0.168457\n",
"[477]\tvalid_0's rmse: 0.168306\n",
"[478]\tvalid_0's rmse: 0.16819\n",
"[479]\tvalid_0's rmse: 0.168027\n",
"[480]\tvalid_0's rmse: 0.167848\n",
"[481]\tvalid_0's rmse: 0.167696\n",
"[482]\tvalid_0's rmse: 0.167583\n",
"[483]\tvalid_0's rmse: 0.167468\n",
"[484]\tvalid_0's rmse: 0.167319\n",
"[485]\tvalid_0's rmse: 0.167172\n",
"[486]\tvalid_0's rmse: 0.167056\n",
"[487]\tvalid_0's rmse: 0.166944\n",
"[488]\tvalid_0's rmse: 0.166833\n",
"[489]\tvalid_0's rmse: 0.166736\n",
"[490]\tvalid_0's rmse: 0.166625\n",
"[491]\tvalid_0's rmse: 0.16646\n",
"[492]\tvalid_0's rmse: 0.166296\n",
"[493]\tvalid_0's rmse: 0.166178\n",
"[494]\tvalid_0's rmse: 0.166029\n",
"[495]\tvalid_0's rmse: 0.165943\n",
"[496]\tvalid_0's rmse: 0.165823\n",
"[497]\tvalid_0's rmse: 0.165704\n",
"[498]\tvalid_0's rmse: 0.165587\n",
"[499]\tvalid_0's rmse: 0.165474\n",
"[500]\tvalid_0's rmse: 0.16536\n",
"[501]\tvalid_0's rmse: 0.165277\n",
"[502]\tvalid_0's rmse: 0.165201\n",
"[503]\tvalid_0's rmse: 0.165125\n",
"[504]\tvalid_0's rmse: 0.165051\n",
"[505]\tvalid_0's rmse: 0.164976\n",
"[506]\tvalid_0's rmse: 0.164822\n",
"[507]\tvalid_0's rmse: 0.164701\n",
"[508]\tvalid_0's rmse: 0.164615\n",
"[509]\tvalid_0's rmse: 0.164525\n",
"[510]\tvalid_0's rmse: 0.164436\n",
"[511]\tvalid_0's rmse: 0.164322\n",
"[512]\tvalid_0's rmse: 0.16421\n",
"[513]\tvalid_0's rmse: 0.164099\n",
"[514]\tvalid_0's rmse: 0.163985\n",
"[515]\tvalid_0's rmse: 0.163903\n",
"[516]\tvalid_0's rmse: 0.163774\n",
"[517]\tvalid_0's rmse: 0.163648\n",
"[518]\tvalid_0's rmse: 0.163522\n",
"[519]\tvalid_0's rmse: 0.163399\n",
"[520]\tvalid_0's rmse: 0.163288\n",
"[521]\tvalid_0's rmse: 0.16316\n",
"[522]\tvalid_0's rmse: 0.163048\n",
"[523]\tvalid_0's rmse: 0.162938\n",
"[524]\tvalid_0's rmse: 0.162834\n",
"[525]\tvalid_0's rmse: 0.162771\n",
"[526]\tvalid_0's rmse: 0.162658\n",
"[527]\tvalid_0's rmse: 0.162548\n",
"[528]\tvalid_0's rmse: 0.162427\n",
"[529]\tvalid_0's rmse: 0.162331\n",
"[530]\tvalid_0's rmse: 0.162224\n",
"[531]\tvalid_0's rmse: 0.162099\n",
"[532]\tvalid_0's rmse: 0.162019\n",
"[533]\tvalid_0's rmse: 0.161896\n",
"[534]\tvalid_0's rmse: 0.161772\n",
"[535]\tvalid_0's rmse: 0.16165\n",
"[536]\tvalid_0's rmse: 0.161567\n",
"[537]\tvalid_0's rmse: 0.161483\n",
"[538]\tvalid_0's rmse: 0.161378\n",
"[539]\tvalid_0's rmse: 0.161269\n",
"[540]\tvalid_0's rmse: 0.16119\n",
"[541]\tvalid_0's rmse: 0.161061\n",
"[542]\tvalid_0's rmse: 0.160941\n",
"[543]\tvalid_0's rmse: 0.160814\n",
"[544]\tvalid_0's rmse: 0.160693\n",
"[545]\tvalid_0's rmse: 0.160582\n",
"[546]\tvalid_0's rmse: 0.160462\n",
"[547]\tvalid_0's rmse: 0.160407\n",
"[548]\tvalid_0's rmse: 0.160333\n",
"[549]\tvalid_0's rmse: 0.16026\n",
"[550]\tvalid_0's rmse: 0.160179\n",
"[551]\tvalid_0's rmse: 0.160086\n",
"[552]\tvalid_0's rmse: 0.159994\n",
"[553]\tvalid_0's rmse: 0.159903\n",
"[554]\tvalid_0's rmse: 0.159816\n",
"[555]\tvalid_0's rmse: 0.159729\n",
"[556]\tvalid_0's rmse: 0.159657\n",
"[557]\tvalid_0's rmse: 0.159583\n",
"[558]\tvalid_0's rmse: 0.159512\n",
"[559]\tvalid_0's rmse: 0.159431\n",
"[560]\tvalid_0's rmse: 0.159363\n",
"[561]\tvalid_0's rmse: 0.15929\n",
"[562]\tvalid_0's rmse: 0.159201\n",
"[563]\tvalid_0's rmse: 0.15913\n",
"[564]\tvalid_0's rmse: 0.159059\n",
"[565]\tvalid_0's rmse: 0.158994\n",
"[566]\tvalid_0's rmse: 0.158926\n",
"[567]\tvalid_0's rmse: 0.158859\n",
"[568]\tvalid_0's rmse: 0.158784\n",
"[569]\tvalid_0's rmse: 0.158718\n",
"[570]\tvalid_0's rmse: 0.15864\n",
"[571]\tvalid_0's rmse: 0.15854\n",
"[572]\tvalid_0's rmse: 0.158466\n",
"[573]\tvalid_0's rmse: 0.158377\n",
"[574]\tvalid_0's rmse: 0.158279\n",
"[575]\tvalid_0's rmse: 0.158175\n",
"[576]\tvalid_0's rmse: 0.158108\n",
"[577]\tvalid_0's rmse: 0.158043\n",
"[578]\tvalid_0's rmse: 0.157987\n",
"[579]\tvalid_0's rmse: 0.157923\n",
"[580]\tvalid_0's rmse: 0.157859\n",
"[581]\tvalid_0's rmse: 0.157801\n",
"[582]\tvalid_0's rmse: 0.157766\n",
"[583]\tvalid_0's rmse: 0.157713\n",
"[584]\tvalid_0's rmse: 0.157656\n",
"[585]\tvalid_0's rmse: 0.157601\n",
"[586]\tvalid_0's rmse: 0.157536\n",
"[587]\tvalid_0's rmse: 0.157471\n",
"[588]\tvalid_0's rmse: 0.157411\n",
"[589]\tvalid_0's rmse: 0.157344\n",
"[590]\tvalid_0's rmse: 0.157278\n",
"[591]\tvalid_0's rmse: 0.157254\n",
"[592]\tvalid_0's rmse: 0.157224\n",
"[593]\tvalid_0's rmse: 0.157201\n",
"[594]\tvalid_0's rmse: 0.157166\n",
"[595]\tvalid_0's rmse: 0.157144\n",
"[596]\tvalid_0's rmse: 0.157069\n",
"[597]\tvalid_0's rmse: 0.156995\n",
"[598]\tvalid_0's rmse: 0.156921\n",
"[599]\tvalid_0's rmse: 0.156846\n",
"[600]\tvalid_0's rmse: 0.156775\n",
"[601]\tvalid_0's rmse: 0.156688\n",
"[602]\tvalid_0's rmse: 0.156607\n",
"[603]\tvalid_0's rmse: 0.156525\n",
"[604]\tvalid_0's rmse: 0.156432\n",
"[605]\tvalid_0's rmse: 0.156355\n",
"[606]\tvalid_0's rmse: 0.156329\n",
"[607]\tvalid_0's rmse: 0.156249\n",
"[608]\tvalid_0's rmse: 0.156157\n",
"[609]\tvalid_0's rmse: 0.156061\n",
"[610]\tvalid_0's rmse: 0.155983\n",
"[611]\tvalid_0's rmse: 0.155912\n",
"[612]\tvalid_0's rmse: 0.155841\n",
"[613]\tvalid_0's rmse: 0.155761\n",
"[614]\tvalid_0's rmse: 0.155703\n",
"[615]\tvalid_0's rmse: 0.155649\n",
"[616]\tvalid_0's rmse: 0.155608\n",
"[617]\tvalid_0's rmse: 0.155591\n",
"[618]\tvalid_0's rmse: 0.155552\n",
"[619]\tvalid_0's rmse: 0.155526\n",
"[620]\tvalid_0's rmse: 0.155487\n",
"[621]\tvalid_0's rmse: 0.155432\n",
"[622]\tvalid_0's rmse: 0.155367\n",
"[623]\tvalid_0's rmse: 0.15532\n",
"[624]\tvalid_0's rmse: 0.155265\n",
"[625]\tvalid_0's rmse: 0.155232\n",
"[626]\tvalid_0's rmse: 0.155182\n",
"[627]\tvalid_0's rmse: 0.155132\n",
"[628]\tvalid_0's rmse: 0.155115\n",
"[629]\tvalid_0's rmse: 0.155051\n",
"[630]\tvalid_0's rmse: 0.155003\n",
"[631]\tvalid_0's rmse: 0.154952\n",
"[632]\tvalid_0's rmse: 0.154903\n",
"[633]\tvalid_0's rmse: 0.154854\n",
"[634]\tvalid_0's rmse: 0.154807\n",
"[635]\tvalid_0's rmse: 0.154764\n",
"[636]\tvalid_0's rmse: 0.154671\n",
"[637]\tvalid_0's rmse: 0.154588\n",
"[638]\tvalid_0's rmse: 0.154506\n",
"[639]\tvalid_0's rmse: 0.154425\n",
"[640]\tvalid_0's rmse: 0.154347\n",
"[641]\tvalid_0's rmse: 0.154288\n",
"[642]\tvalid_0's rmse: 0.154227\n",
"[643]\tvalid_0's rmse: 0.154169\n",
"[644]\tvalid_0's rmse: 0.154108\n",
"[645]\tvalid_0's rmse: 0.154048\n",
"[646]\tvalid_0's rmse: 0.154007\n",
"[647]\tvalid_0's rmse: 0.153966\n",
"[648]\tvalid_0's rmse: 0.153926\n",
"[649]\tvalid_0's rmse: 0.153923\n",
"[650]\tvalid_0's rmse: 0.153883\n",
"[651]\tvalid_0's rmse: 0.153857\n",
"[652]\tvalid_0's rmse: 0.153794\n",
"[653]\tvalid_0's rmse: 0.153768\n",
"[654]\tvalid_0's rmse: 0.153743\n",
"[655]\tvalid_0's rmse: 0.153685\n",
"[656]\tvalid_0's rmse: 0.153635\n",
"[657]\tvalid_0's rmse: 0.153615\n",
"[658]\tvalid_0's rmse: 0.153595\n",
"[659]\tvalid_0's rmse: 0.153569\n",
"[660]\tvalid_0's rmse: 0.153539\n",
"[661]\tvalid_0's rmse: 0.153494\n",
"[662]\tvalid_0's rmse: 0.153472\n",
"[663]\tvalid_0's rmse: 0.153427\n",
"[664]\tvalid_0's rmse: 0.15341\n",
"[665]\tvalid_0's rmse: 0.153373\n",
"[666]\tvalid_0's rmse: 0.153329\n",
"[667]\tvalid_0's rmse: 0.153287\n",
"[668]\tvalid_0's rmse: 0.153239\n",
"[669]\tvalid_0's rmse: 0.153198\n",
"[670]\tvalid_0's rmse: 0.153157\n",
"[671]\tvalid_0's rmse: 0.153097\n",
"[672]\tvalid_0's rmse: 0.153048\n",
"[673]\tvalid_0's rmse: 0.152994\n",
"[674]\tvalid_0's rmse: 0.152932\n",
"[675]\tvalid_0's rmse: 0.152884\n",
"[676]\tvalid_0's rmse: 0.152847\n",
"[677]\tvalid_0's rmse: 0.152817\n",
"[678]\tvalid_0's rmse: 0.152766\n",
"[679]\tvalid_0's rmse: 0.152716\n",
"[680]\tvalid_0's rmse: 0.152667\n",
"[681]\tvalid_0's rmse: 0.152594\n",
"[682]\tvalid_0's rmse: 0.152523\n",
"[683]\tvalid_0's rmse: 0.152434\n",
"[684]\tvalid_0's rmse: 0.15238\n",
"[685]\tvalid_0's rmse: 0.152307\n",
"[686]\tvalid_0's rmse: 0.152271\n",
"[687]\tvalid_0's rmse: 0.152279\n",
"[688]\tvalid_0's rmse: 0.152222\n",
"[689]\tvalid_0's rmse: 0.1522\n",
"[690]\tvalid_0's rmse: 0.152185\n",
"[691]\tvalid_0's rmse: 0.152157\n",
"[692]\tvalid_0's rmse: 0.152129\n",
"[693]\tvalid_0's rmse: 0.152099\n",
"[694]\tvalid_0's rmse: 0.152073\n",
"[695]\tvalid_0's rmse: 0.152044\n",
"[696]\tvalid_0's rmse: 0.151981\n",
"[697]\tvalid_0's rmse: 0.151922\n",
"[698]\tvalid_0's rmse: 0.151867\n",
"[699]\tvalid_0's rmse: 0.151799\n",
"[700]\tvalid_0's rmse: 0.151729\n",
"[701]\tvalid_0's rmse: 0.151686\n",
"[702]\tvalid_0's rmse: 0.15171\n",
"[703]\tvalid_0's rmse: 0.151691\n",
"[704]\tvalid_0's rmse: 0.151706\n",
"[705]\tvalid_0's rmse: 0.151722\n",
"[706]\tvalid_0's rmse: 0.151679\n",
"[707]\tvalid_0's rmse: 0.15163\n",
"[708]\tvalid_0's rmse: 0.151596\n",
"[709]\tvalid_0's rmse: 0.151555\n",
"[710]\tvalid_0's rmse: 0.15151\n",
"[711]\tvalid_0's rmse: 0.151444\n",
"[712]\tvalid_0's rmse: 0.151413\n",
"[713]\tvalid_0's rmse: 0.151383\n",
"[714]\tvalid_0's rmse: 0.151317\n",
"[715]\tvalid_0's rmse: 0.151253\n",
"[716]\tvalid_0's rmse: 0.151228\n",
"[717]\tvalid_0's rmse: 0.15119\n",
"[718]\tvalid_0's rmse: 0.151166\n",
"[719]\tvalid_0's rmse: 0.151113\n",
"[720]\tvalid_0's rmse: 0.151077\n",
"[721]\tvalid_0's rmse: 0.151058\n",
"[722]\tvalid_0's rmse: 0.15104\n",
"[723]\tvalid_0's rmse: 0.150994\n",
"[724]\tvalid_0's rmse: 0.150972\n",
"[725]\tvalid_0's rmse: 0.150956\n",
"[726]\tvalid_0's rmse: 0.150933\n",
"[727]\tvalid_0's rmse: 0.1509\n",
"[728]\tvalid_0's rmse: 0.150878\n",
"[729]\tvalid_0's rmse: 0.150858\n",
"[730]\tvalid_0's rmse: 0.150836\n",
"[731]\tvalid_0's rmse: 0.150799\n",
"[732]\tvalid_0's rmse: 0.150742\n",
"[733]\tvalid_0's rmse: 0.150679\n",
"[734]\tvalid_0's rmse: 0.150623\n",
"[735]\tvalid_0's rmse: 0.150563\n",
"[736]\tvalid_0's rmse: 0.150528\n",
"[737]\tvalid_0's rmse: 0.150481\n",
"[738]\tvalid_0's rmse: 0.150439\n",
"[739]\tvalid_0's rmse: 0.150397\n",
"[740]\tvalid_0's rmse: 0.150356\n",
"[741]\tvalid_0's rmse: 0.15036\n",
"[742]\tvalid_0's rmse: 0.150374\n",
"[743]\tvalid_0's rmse: 0.150396\n",
"[744]\tvalid_0's rmse: 0.150401\n",
"[745]\tvalid_0's rmse: 0.150429\n",
"[746]\tvalid_0's rmse: 0.150402\n",
"[747]\tvalid_0's rmse: 0.150365\n",
"[748]\tvalid_0's rmse: 0.150307\n",
"[749]\tvalid_0's rmse: 0.150285\n",
"[750]\tvalid_0's rmse: 0.150228\n",
"[751]\tvalid_0's rmse: 0.150187\n",
"[752]\tvalid_0's rmse: 0.150151\n",
"[753]\tvalid_0's rmse: 0.150093\n",
"[754]\tvalid_0's rmse: 0.150037\n",
"[755]\tvalid_0's rmse: 0.149979\n",
"[756]\tvalid_0's rmse: 0.149932\n",
"[757]\tvalid_0's rmse: 0.149904\n",
"[758]\tvalid_0's rmse: 0.149876\n",
"[759]\tvalid_0's rmse: 0.149846\n",
"[760]\tvalid_0's rmse: 0.149817\n",
"[761]\tvalid_0's rmse: 0.149764\n",
"[762]\tvalid_0's rmse: 0.149712\n",
"[763]\tvalid_0's rmse: 0.149656\n",
"[764]\tvalid_0's rmse: 0.149671\n",
"[765]\tvalid_0's rmse: 0.149688\n",
"[766]\tvalid_0's rmse: 0.149645\n",
"[767]\tvalid_0's rmse: 0.149606\n",
"[768]\tvalid_0's rmse: 0.14957\n",
"[769]\tvalid_0's rmse: 0.149524\n",
"[770]\tvalid_0's rmse: 0.149478\n",
"[771]\tvalid_0's rmse: 0.149489\n",
"[772]\tvalid_0's rmse: 0.149491\n",
"[773]\tvalid_0's rmse: 0.149503\n",
"[774]\tvalid_0's rmse: 0.149514\n",
"[775]\tvalid_0's rmse: 0.149529\n",
"[776]\tvalid_0's rmse: 0.149512\n",
"[777]\tvalid_0's rmse: 0.149499\n",
"[778]\tvalid_0's rmse: 0.149513\n",
"[779]\tvalid_0's rmse: 0.149507\n",
"[780]\tvalid_0's rmse: 0.149502\n",
"[781]\tvalid_0's rmse: 0.149483\n",
"[782]\tvalid_0's rmse: 0.149466\n",
"[783]\tvalid_0's rmse: 0.149445\n",
"[784]\tvalid_0's rmse: 0.149428\n",
"[785]\tvalid_0's rmse: 0.149411\n",
"[786]\tvalid_0's rmse: 0.149423\n",
"[787]\tvalid_0's rmse: 0.149401\n",
"[788]\tvalid_0's rmse: 0.149415\n",
"[789]\tvalid_0's rmse: 0.149426\n",
"[790]\tvalid_0's rmse: 0.149446\n",
"[791]\tvalid_0's rmse: 0.149456\n",
"[792]\tvalid_0's rmse: 0.149466\n",
"[793]\tvalid_0's rmse: 0.149472\n",
"[794]\tvalid_0's rmse: 0.149478\n",
"[795]\tvalid_0's rmse: 0.149483\n",
"[796]\tvalid_0's rmse: 0.149452\n",
"[797]\tvalid_0's rmse: 0.149422\n",
"[798]\tvalid_0's rmse: 0.149392\n",
"[799]\tvalid_0's rmse: 0.149367\n",
"[800]\tvalid_0's rmse: 0.149338\n",
"[801]\tvalid_0's rmse: 0.149311\n",
"[802]\tvalid_0's rmse: 0.149289\n",
"[803]\tvalid_0's rmse: 0.149268\n",
"[804]\tvalid_0's rmse: 0.149246\n",
"[805]\tvalid_0's rmse: 0.149224\n",
"[806]\tvalid_0's rmse: 0.149191\n",
"[807]\tvalid_0's rmse: 0.14917\n",
"[808]\tvalid_0's rmse: 0.149138\n",
"[809]\tvalid_0's rmse: 0.14913\n",
"[810]\tvalid_0's rmse: 0.149099\n",
"[811]\tvalid_0's rmse: 0.149082\n",
"[812]\tvalid_0's rmse: 0.149065\n",
"[813]\tvalid_0's rmse: 0.149055\n",
"[814]\tvalid_0's rmse: 0.149038\n",
"[815]\tvalid_0's rmse: 0.149023\n",
"[816]\tvalid_0's rmse: 0.149\n",
"[817]\tvalid_0's rmse: 0.148979\n",
"[818]\tvalid_0's rmse: 0.148949\n",
"[819]\tvalid_0's rmse: 0.148928\n",
"[820]\tvalid_0's rmse: 0.148906\n",
"[821]\tvalid_0's rmse: 0.14892\n",
"[822]\tvalid_0's rmse: 0.148933\n",
"[823]\tvalid_0's rmse: 0.14894\n",
"[824]\tvalid_0's rmse: 0.148946\n",
"[825]\tvalid_0's rmse: 0.148956\n",
"[826]\tvalid_0's rmse: 0.148908\n",
"[827]\tvalid_0's rmse: 0.148863\n",
"[828]\tvalid_0's rmse: 0.148817\n",
"[829]\tvalid_0's rmse: 0.148771\n",
"[830]\tvalid_0's rmse: 0.148692\n",
"[831]\tvalid_0's rmse: 0.148667\n",
"[832]\tvalid_0's rmse: 0.148652\n",
"[833]\tvalid_0's rmse: 0.148627\n",
"[834]\tvalid_0's rmse: 0.148592\n",
"[835]\tvalid_0's rmse: 0.14859\n",
"[836]\tvalid_0's rmse: 0.148583\n",
"[837]\tvalid_0's rmse: 0.148577\n",
"[838]\tvalid_0's rmse: 0.148574\n",
"[839]\tvalid_0's rmse: 0.148575\n",
"[840]\tvalid_0's rmse: 0.14857\n",
"[841]\tvalid_0's rmse: 0.148544\n",
"[842]\tvalid_0's rmse: 0.148519\n",
"[843]\tvalid_0's rmse: 0.148509\n",
"[844]\tvalid_0's rmse: 0.148501\n",
"[845]\tvalid_0's rmse: 0.148474\n",
"[846]\tvalid_0's rmse: 0.148464\n",
"[847]\tvalid_0's rmse: 0.148453\n",
"[848]\tvalid_0's rmse: 0.148443\n",
"[849]\tvalid_0's rmse: 0.148433\n",
"[850]\tvalid_0's rmse: 0.148424\n",
"[851]\tvalid_0's rmse: 0.148388\n",
"[852]\tvalid_0's rmse: 0.148354\n",
"[853]\tvalid_0's rmse: 0.148321\n",
"[854]\tvalid_0's rmse: 0.148289\n",
"[855]\tvalid_0's rmse: 0.148257\n",
"[856]\tvalid_0's rmse: 0.148274\n",
"[857]\tvalid_0's rmse: 0.148271\n",
"[858]\tvalid_0's rmse: 0.148268\n",
"[859]\tvalid_0's rmse: 0.148266\n",
"[860]\tvalid_0's rmse: 0.148264\n",
"[861]\tvalid_0's rmse: 0.148254\n",
"[862]\tvalid_0's rmse: 0.148246\n",
"[863]\tvalid_0's rmse: 0.148237\n",
"[864]\tvalid_0's rmse: 0.148221\n",
"[865]\tvalid_0's rmse: 0.148207\n",
"[866]\tvalid_0's rmse: 0.148203\n",
"[867]\tvalid_0's rmse: 0.148203\n",
"[868]\tvalid_0's rmse: 0.148201\n",
"[869]\tvalid_0's rmse: 0.148176\n",
"[870]\tvalid_0's rmse: 0.148165\n",
"[871]\tvalid_0's rmse: 0.148155\n",
"[872]\tvalid_0's rmse: 0.148146\n",
"[873]\tvalid_0's rmse: 0.148122\n",
"[874]\tvalid_0's rmse: 0.148113\n",
"[875]\tvalid_0's rmse: 0.148095\n",
"[876]\tvalid_0's rmse: 0.148086\n",
"[877]\tvalid_0's rmse: 0.14807\n",
"[878]\tvalid_0's rmse: 0.148057\n",
"[879]\tvalid_0's rmse: 0.148048\n",
"[880]\tvalid_0's rmse: 0.148025\n",
"[881]\tvalid_0's rmse: 0.14802\n",
"[882]\tvalid_0's rmse: 0.148022\n",
"[883]\tvalid_0's rmse: 0.14804\n",
"[884]\tvalid_0's rmse: 0.148051\n",
"[885]\tvalid_0's rmse: 0.14807\n",
"[886]\tvalid_0's rmse: 0.148063\n",
"[887]\tvalid_0's rmse: 0.148049\n",
"[888]\tvalid_0's rmse: 0.148035\n",
"[889]\tvalid_0's rmse: 0.148021\n",
"[890]\tvalid_0's rmse: 0.148008\n",
"[891]\tvalid_0's rmse: 0.14801\n",
"[892]\tvalid_0's rmse: 0.14801\n",
"[893]\tvalid_0's rmse: 0.148005\n",
"[894]\tvalid_0's rmse: 0.147981\n",
"[895]\tvalid_0's rmse: 0.147984\n",
"[896]\tvalid_0's rmse: 0.147978\n",
"[897]\tvalid_0's rmse: 0.147973\n",
"[898]\tvalid_0's rmse: 0.147958\n",
"[899]\tvalid_0's rmse: 0.147943\n",
"[900]\tvalid_0's rmse: 0.147929\n",
"[901]\tvalid_0's rmse: 0.147911\n",
"[902]\tvalid_0's rmse: 0.147888\n",
"[903]\tvalid_0's rmse: 0.147867\n",
"[904]\tvalid_0's rmse: 0.147821\n",
"[905]\tvalid_0's rmse: 0.147813\n",
"[906]\tvalid_0's rmse: 0.147808\n",
"[907]\tvalid_0's rmse: 0.147787\n",
"[908]\tvalid_0's rmse: 0.147781\n",
"[909]\tvalid_0's rmse: 0.147805\n",
"[910]\tvalid_0's rmse: 0.147801\n",
"[911]\tvalid_0's rmse: 0.147776\n",
"[912]\tvalid_0's rmse: 0.14778\n",
"[913]\tvalid_0's rmse: 0.147763\n",
"[914]\tvalid_0's rmse: 0.147766\n",
"[915]\tvalid_0's rmse: 0.14775\n",
"[916]\tvalid_0's rmse: 0.147762\n",
"[917]\tvalid_0's rmse: 0.147776\n",
"[918]\tvalid_0's rmse: 0.147789\n",
"[919]\tvalid_0's rmse: 0.147782\n",
"[920]\tvalid_0's rmse: 0.147784\n",
"[921]\tvalid_0's rmse: 0.147774\n",
"[922]\tvalid_0's rmse: 0.14777\n",
"[923]\tvalid_0's rmse: 0.14776\n",
"[924]\tvalid_0's rmse: 0.147757\n",
"[925]\tvalid_0's rmse: 0.147754\n",
"[926]\tvalid_0's rmse: 0.147698\n",
"[927]\tvalid_0's rmse: 0.147643\n",
"[928]\tvalid_0's rmse: 0.147595\n",
"[929]\tvalid_0's rmse: 0.147578\n",
"[930]\tvalid_0's rmse: 0.147524\n",
"[931]\tvalid_0's rmse: 0.14752\n",
"[932]\tvalid_0's rmse: 0.147516\n",
"[933]\tvalid_0's rmse: 0.147515\n",
"[934]\tvalid_0's rmse: 0.147512\n",
"[935]\tvalid_0's rmse: 0.147509\n",
"[936]\tvalid_0's rmse: 0.1475\n",
"[937]\tvalid_0's rmse: 0.147489\n",
"[938]\tvalid_0's rmse: 0.147463\n",
"[939]\tvalid_0's rmse: 0.147455\n",
"[940]\tvalid_0's rmse: 0.147445\n",
"[941]\tvalid_0's rmse: 0.147443\n",
"[942]\tvalid_0's rmse: 0.147442\n",
"[943]\tvalid_0's rmse: 0.147437\n",
"[944]\tvalid_0's rmse: 0.147436\n",
"[945]\tvalid_0's rmse: 0.147429\n",
"[946]\tvalid_0's rmse: 0.147407\n",
"[947]\tvalid_0's rmse: 0.147385\n",
"[948]\tvalid_0's rmse: 0.147361\n",
"[949]\tvalid_0's rmse: 0.14734\n",
"[950]\tvalid_0's rmse: 0.147312\n",
"[951]\tvalid_0's rmse: 0.147274\n",
"[952]\tvalid_0's rmse: 0.147266\n",
"[953]\tvalid_0's rmse: 0.147228\n",
"[954]\tvalid_0's rmse: 0.147191\n",
"[955]\tvalid_0's rmse: 0.147153\n",
"[956]\tvalid_0's rmse: 0.14713\n",
"[957]\tvalid_0's rmse: 0.147107\n",
"[958]\tvalid_0's rmse: 0.147054\n",
"[959]\tvalid_0's rmse: 0.147032\n",
"[960]\tvalid_0's rmse: 0.146991\n",
"[961]\tvalid_0's rmse: 0.146988\n",
"[962]\tvalid_0's rmse: 0.146978\n",
"[963]\tvalid_0's rmse: 0.146976\n",
"[964]\tvalid_0's rmse: 0.146966\n",
"[965]\tvalid_0's rmse: 0.146956\n",
"[966]\tvalid_0's rmse: 0.146962\n",
"[967]\tvalid_0's rmse: 0.146959\n",
"[968]\tvalid_0's rmse: 0.146945\n",
"[969]\tvalid_0's rmse: 0.146948\n",
"[970]\tvalid_0's rmse: 0.146947\n",
"[971]\tvalid_0's rmse: 0.14694\n",
"[972]\tvalid_0's rmse: 0.146949\n",
"[973]\tvalid_0's rmse: 0.14694\n",
"[974]\tvalid_0's rmse: 0.146936\n",
"[975]\tvalid_0's rmse: 0.146931\n",
"[976]\tvalid_0's rmse: 0.146911\n",
"[977]\tvalid_0's rmse: 0.146895\n",
"[978]\tvalid_0's rmse: 0.146861\n",
"[979]\tvalid_0's rmse: 0.146845\n",
"[980]\tvalid_0's rmse: 0.14683\n",
"[981]\tvalid_0's rmse: 0.146822\n",
"[982]\tvalid_0's rmse: 0.146801\n",
"[983]\tvalid_0's rmse: 0.146795\n",
"[984]\tvalid_0's rmse: 0.146788\n",
"[985]\tvalid_0's rmse: 0.146776\n",
"[986]\tvalid_0's rmse: 0.146783\n",
"[987]\tvalid_0's rmse: 0.146789\n",
"[988]\tvalid_0's rmse: 0.146796\n",
"[989]\tvalid_0's rmse: 0.146797\n",
"[990]\tvalid_0's rmse: 0.146804\n",
"[991]\tvalid_0's rmse: 0.14678\n",
"[992]\tvalid_0's rmse: 0.146741\n",
"[993]\tvalid_0's rmse: 0.146719\n",
"[994]\tvalid_0's rmse: 0.14668\n",
"[995]\tvalid_0's rmse: 0.146653\n",
"[996]\tvalid_0's rmse: 0.146669\n",
"[997]\tvalid_0's rmse: 0.146679\n",
"[998]\tvalid_0's rmse: 0.146678\n",
"[999]\tvalid_0's rmse: 0.146662\n",
"[1000]\tvalid_0's rmse: 0.146662\n",
"[1001]\tvalid_0's rmse: 0.146678\n",
"[1002]\tvalid_0's rmse: 0.146694\n",
"[1003]\tvalid_0's rmse: 0.146694\n",
"[1004]\tvalid_0's rmse: 0.14671\n",
"[1005]\tvalid_0's rmse: 0.146715\n",
"[1006]\tvalid_0's rmse: 0.146716\n",
"[1007]\tvalid_0's rmse: 0.146703\n",
"[1008]\tvalid_0's rmse: 0.14668\n",
"[1009]\tvalid_0's rmse: 0.146655\n",
"[1010]\tvalid_0's rmse: 0.146641\n",
"[1011]\tvalid_0's rmse: 0.146648\n",
"[1012]\tvalid_0's rmse: 0.146627\n",
"[1013]\tvalid_0's rmse: 0.146618\n",
"[1014]\tvalid_0's rmse: 0.146598\n",
"[1015]\tvalid_0's rmse: 0.146577\n",
"[1016]\tvalid_0's rmse: 0.146538\n",
"[1017]\tvalid_0's rmse: 0.146499\n",
"[1018]\tvalid_0's rmse: 0.146461\n",
"[1019]\tvalid_0's rmse: 0.146429\n",
"[1020]\tvalid_0's rmse: 0.146409\n",
"[1021]\tvalid_0's rmse: 0.146412\n",
"[1022]\tvalid_0's rmse: 0.146427\n",
"[1023]\tvalid_0's rmse: 0.146425\n",
"[1024]\tvalid_0's rmse: 0.146441\n",
"[1025]\tvalid_0's rmse: 0.146457\n",
"[1026]\tvalid_0's rmse: 0.146421\n",
"[1027]\tvalid_0's rmse: 0.146425\n",
"[1028]\tvalid_0's rmse: 0.146412\n",
"[1029]\tvalid_0's rmse: 0.14641\n",
"[1030]\tvalid_0's rmse: 0.146412\n",
"[1031]\tvalid_0's rmse: 0.146394\n",
"[1032]\tvalid_0's rmse: 0.146406\n",
"[1033]\tvalid_0's rmse: 0.146391\n",
"[1034]\tvalid_0's rmse: 0.146375\n",
"[1035]\tvalid_0's rmse: 0.146362\n",
"[1036]\tvalid_0's rmse: 0.146356\n",
"[1037]\tvalid_0's rmse: 0.146357\n",
"[1038]\tvalid_0's rmse: 0.146358\n",
"[1039]\tvalid_0's rmse: 0.146359\n",
"[1040]\tvalid_0's rmse: 0.146361\n",
"[1041]\tvalid_0's rmse: 0.146354\n",
"[1042]\tvalid_0's rmse: 0.146347\n",
"[1043]\tvalid_0's rmse: 0.14634\n",
"[1044]\tvalid_0's rmse: 0.146324\n",
"[1045]\tvalid_0's rmse: 0.146302\n",
"[1046]\tvalid_0's rmse: 0.146291\n",
"[1047]\tvalid_0's rmse: 0.146277\n",
"[1048]\tvalid_0's rmse: 0.14626\n",
"[1049]\tvalid_0's rmse: 0.146244\n",
"[1050]\tvalid_0's rmse: 0.146231\n",
"[1051]\tvalid_0's rmse: 0.146227\n",
"[1052]\tvalid_0's rmse: 0.146208\n",
"[1053]\tvalid_0's rmse: 0.146189\n",
"[1054]\tvalid_0's rmse: 0.146173\n",
"[1055]\tvalid_0's rmse: 0.146152\n",
"[1056]\tvalid_0's rmse: 0.146152\n",
"[1057]\tvalid_0's rmse: 0.146167\n",
"[1058]\tvalid_0's rmse: 0.146168\n",
"[1059]\tvalid_0's rmse: 0.146163\n",
"[1060]\tvalid_0's rmse: 0.146159\n",
"[1061]\tvalid_0's rmse: 0.146169\n",
"[1062]\tvalid_0's rmse: 0.146179\n",
"[1063]\tvalid_0's rmse: 0.146189\n",
"[1064]\tvalid_0's rmse: 0.146196\n",
"[1065]\tvalid_0's rmse: 0.146207\n",
"[1066]\tvalid_0's rmse: 0.146199\n",
"[1067]\tvalid_0's rmse: 0.146204\n",
"[1068]\tvalid_0's rmse: 0.146209\n",
"[1069]\tvalid_0's rmse: 0.146212\n",
"[1070]\tvalid_0's rmse: 0.146216\n",
"[1071]\tvalid_0's rmse: 0.146191\n",
"[1072]\tvalid_0's rmse: 0.146175\n",
"[1073]\tvalid_0's rmse: 0.146162\n",
"[1074]\tvalid_0's rmse: 0.146146\n",
"[1075]\tvalid_0's rmse: 0.146136\n",
"[1076]\tvalid_0's rmse: 0.146116\n",
"[1077]\tvalid_0's rmse: 0.146097\n",
"[1078]\tvalid_0's rmse: 0.146073\n",
"[1079]\tvalid_0's rmse: 0.146055\n",
"[1080]\tvalid_0's rmse: 0.146036\n",
"[1081]\tvalid_0's rmse: 0.146056\n",
"[1082]\tvalid_0's rmse: 0.146086\n",
"[1083]\tvalid_0's rmse: 0.146115\n",
"[1084]\tvalid_0's rmse: 0.146145\n",
"[1085]\tvalid_0's rmse: 0.146165\n",
"[1086]\tvalid_0's rmse: 0.146145\n",
"[1087]\tvalid_0's rmse: 0.14614\n",
"[1088]\tvalid_0's rmse: 0.146117\n",
"[1089]\tvalid_0's rmse: 0.146137\n",
"[1090]\tvalid_0's rmse: 0.146113\n",
"[1091]\tvalid_0's rmse: 0.146099\n",
"[1092]\tvalid_0's rmse: 0.146091\n",
"[1093]\tvalid_0's rmse: 0.146081\n",
"[1094]\tvalid_0's rmse: 0.146057\n",
"[1095]\tvalid_0's rmse: 0.146033\n",
"[1096]\tvalid_0's rmse: 0.146009\n",
"[1097]\tvalid_0's rmse: 0.145993\n",
"[1098]\tvalid_0's rmse: 0.145964\n",
"[1099]\tvalid_0's rmse: 0.145941\n",
"[1100]\tvalid_0's rmse: 0.145926\n",
"[1101]\tvalid_0's rmse: 0.145928\n",
"[1102]\tvalid_0's rmse: 0.145882\n",
"[1103]\tvalid_0's rmse: 0.145863\n",
"[1104]\tvalid_0's rmse: 0.145824\n",
"[1105]\tvalid_0's rmse: 0.14581\n",
"[1106]\tvalid_0's rmse: 0.145787\n",
"[1107]\tvalid_0's rmse: 0.145791\n",
"[1108]\tvalid_0's rmse: 0.145811\n",
"[1109]\tvalid_0's rmse: 0.145814\n",
"[1110]\tvalid_0's rmse: 0.145793\n",
"[1111]\tvalid_0's rmse: 0.145801\n",
"[1112]\tvalid_0's rmse: 0.145802\n",
"[1113]\tvalid_0's rmse: 0.145811\n",
"[1114]\tvalid_0's rmse: 0.145811\n",
"[1115]\tvalid_0's rmse: 0.145822\n",
"[1116]\tvalid_0's rmse: 0.145806\n",
"[1117]\tvalid_0's rmse: 0.145791\n",
"[1118]\tvalid_0's rmse: 0.145777\n",
"[1119]\tvalid_0's rmse: 0.145792\n",
"[1120]\tvalid_0's rmse: 0.145778\n",
"[1121]\tvalid_0's rmse: 0.145792\n",
"[1122]\tvalid_0's rmse: 0.14577\n",
"[1123]\tvalid_0's rmse: 0.145749\n",
"[1124]\tvalid_0's rmse: 0.145727\n",
"[1125]\tvalid_0's rmse: 0.145706\n",
"[1126]\tvalid_0's rmse: 0.145681\n",
"[1127]\tvalid_0's rmse: 0.145657\n",
"[1128]\tvalid_0's rmse: 0.145649\n",
"[1129]\tvalid_0's rmse: 0.145625\n",
"[1130]\tvalid_0's rmse: 0.145602\n",
"[1131]\tvalid_0's rmse: 0.14559\n",
"[1132]\tvalid_0's rmse: 0.145585\n",
"[1133]\tvalid_0's rmse: 0.14558\n",
"[1134]\tvalid_0's rmse: 0.145575\n",
"[1135]\tvalid_0's rmse: 0.14557\n",
"[1136]\tvalid_0's rmse: 0.145549\n",
"[1137]\tvalid_0's rmse: 0.145536\n",
"[1138]\tvalid_0's rmse: 0.145521\n",
"[1139]\tvalid_0's rmse: 0.145519\n",
"[1140]\tvalid_0's rmse: 0.1455\n",
"[1141]\tvalid_0's rmse: 0.145503\n",
"[1142]\tvalid_0's rmse: 0.145501\n",
"[1143]\tvalid_0's rmse: 0.145463\n",
"[1144]\tvalid_0's rmse: 0.145473\n",
"[1145]\tvalid_0's rmse: 0.145472\n",
"[1146]\tvalid_0's rmse: 0.145466\n",
"[1147]\tvalid_0's rmse: 0.14546\n",
"[1148]\tvalid_0's rmse: 0.145455\n",
"[1149]\tvalid_0's rmse: 0.145449\n",
"[1150]\tvalid_0's rmse: 0.145437\n",
"[1151]\tvalid_0's rmse: 0.145413\n",
"[1152]\tvalid_0's rmse: 0.145386\n",
"[1153]\tvalid_0's rmse: 0.145361\n",
"[1154]\tvalid_0's rmse: 0.145366\n",
"[1155]\tvalid_0's rmse: 0.145343\n",
"[1156]\tvalid_0's rmse: 0.145344\n",
"[1157]\tvalid_0's rmse: 0.145346\n",
"[1158]\tvalid_0's rmse: 0.145348\n",
"[1159]\tvalid_0's rmse: 0.145351\n",
"[1160]\tvalid_0's rmse: 0.145354\n",
"[1161]\tvalid_0's rmse: 0.145326\n",
"[1162]\tvalid_0's rmse: 0.1453\n",
"[1163]\tvalid_0's rmse: 0.145295\n",
"[1164]\tvalid_0's rmse: 0.145304\n",
"[1165]\tvalid_0's rmse: 0.145279\n",
"[1166]\tvalid_0's rmse: 0.145267\n",
"[1167]\tvalid_0's rmse: 0.145225\n",
"[1168]\tvalid_0's rmse: 0.145217\n",
"[1169]\tvalid_0's rmse: 0.145233\n",
"[1170]\tvalid_0's rmse: 0.14525\n",
"[1171]\tvalid_0's rmse: 0.14524\n",
"[1172]\tvalid_0's rmse: 0.145241\n",
"[1173]\tvalid_0's rmse: 0.14523\n",
"[1174]\tvalid_0's rmse: 0.14522\n",
"[1175]\tvalid_0's rmse: 0.145201\n",
"[1176]\tvalid_0's rmse: 0.145181\n",
"[1177]\tvalid_0's rmse: 0.145188\n",
"[1178]\tvalid_0's rmse: 0.145194\n",
"[1179]\tvalid_0's rmse: 0.145201\n",
"[1180]\tvalid_0's rmse: 0.145201\n",
"[1181]\tvalid_0's rmse: 0.145194\n",
"[1182]\tvalid_0's rmse: 0.145175\n",
"[1183]\tvalid_0's rmse: 0.145161\n",
"[1184]\tvalid_0's rmse: 0.145145\n",
"[1185]\tvalid_0's rmse: 0.145119\n",
"[1186]\tvalid_0's rmse: 0.145115\n",
"[1187]\tvalid_0's rmse: 0.145112\n",
"[1188]\tvalid_0's rmse: 0.145139\n",
"[1189]\tvalid_0's rmse: 0.145167\n",
"[1190]\tvalid_0's rmse: 0.145195\n",
"[1191]\tvalid_0's rmse: 0.145197\n",
"[1192]\tvalid_0's rmse: 0.145199\n",
"[1193]\tvalid_0's rmse: 0.145202\n",
"[1194]\tvalid_0's rmse: 0.145205\n",
"[1195]\tvalid_0's rmse: 0.145215\n",
"[1196]\tvalid_0's rmse: 0.145211\n",
"[1197]\tvalid_0's rmse: 0.145198\n",
"[1198]\tvalid_0's rmse: 0.145174\n",
"[1199]\tvalid_0's rmse: 0.145155\n",
"[1200]\tvalid_0's rmse: 0.145154\n",
"[1201]\tvalid_0's rmse: 0.145154\n",
"[1202]\tvalid_0's rmse: 0.145148\n",
"[1203]\tvalid_0's rmse: 0.145146\n",
"[1204]\tvalid_0's rmse: 0.145139\n",
"[1205]\tvalid_0's rmse: 0.145133\n",
"[1206]\tvalid_0's rmse: 0.14512\n",
"[1207]\tvalid_0's rmse: 0.145098\n",
"[1208]\tvalid_0's rmse: 0.145101\n",
"[1209]\tvalid_0's rmse: 0.145078\n",
"[1210]\tvalid_0's rmse: 0.145083\n",
"[1211]\tvalid_0's rmse: 0.145073\n",
"[1212]\tvalid_0's rmse: 0.145056\n",
"[1213]\tvalid_0's rmse: 0.145033\n",
"[1214]\tvalid_0's rmse: 0.145016\n",
"[1215]\tvalid_0's rmse: 0.144999\n",
"[1216]\tvalid_0's rmse: 0.145006\n",
"[1217]\tvalid_0's rmse: 0.144994\n",
"[1218]\tvalid_0's rmse: 0.144999\n",
"[1219]\tvalid_0's rmse: 0.145004\n",
"[1220]\tvalid_0's rmse: 0.145005\n",
"[1221]\tvalid_0's rmse: 0.144999\n",
"[1222]\tvalid_0's rmse: 0.144964\n",
"[1223]\tvalid_0's rmse: 0.144958\n",
"[1224]\tvalid_0's rmse: 0.144952\n",
"[1225]\tvalid_0's rmse: 0.144926\n",
"[1226]\tvalid_0's rmse: 0.144926\n",
"[1227]\tvalid_0's rmse: 0.144924\n",
"[1228]\tvalid_0's rmse: 0.14494\n",
"[1229]\tvalid_0's rmse: 0.144968\n",
"[1230]\tvalid_0's rmse: 0.144992\n",
"[1231]\tvalid_0's rmse: 0.144984\n",
"[1232]\tvalid_0's rmse: 0.144979\n",
"[1233]\tvalid_0's rmse: 0.144995\n",
"[1234]\tvalid_0's rmse: 0.144976\n",
"[1235]\tvalid_0's rmse: 0.144958\n",
"[1236]\tvalid_0's rmse: 0.144964\n",
"[1237]\tvalid_0's rmse: 0.144964\n",
"[1238]\tvalid_0's rmse: 0.14496\n",
"[1239]\tvalid_0's rmse: 0.144966\n",
"[1240]\tvalid_0's rmse: 0.144962\n",
"[1241]\tvalid_0's rmse: 0.144973\n",
"[1242]\tvalid_0's rmse: 0.14495\n",
"[1243]\tvalid_0's rmse: 0.144955\n",
"[1244]\tvalid_0's rmse: 0.144955\n",
"[1245]\tvalid_0's rmse: 0.144955\n",
"[1246]\tvalid_0's rmse: 0.144929\n",
"[1247]\tvalid_0's rmse: 0.144896\n",
"[1248]\tvalid_0's rmse: 0.144874\n",
"[1249]\tvalid_0's rmse: 0.144852\n",
"[1250]\tvalid_0's rmse: 0.144869\n",
"[1251]\tvalid_0's rmse: 0.144882\n",
"[1252]\tvalid_0's rmse: 0.144905\n",
"[1253]\tvalid_0's rmse: 0.144917\n",
"[1254]\tvalid_0's rmse: 0.144935\n",
"[1255]\tvalid_0's rmse: 0.144945\n",
"[1256]\tvalid_0's rmse: 0.144947\n",
"[1257]\tvalid_0's rmse: 0.144944\n",
"[1258]\tvalid_0's rmse: 0.144951\n",
"[1259]\tvalid_0's rmse: 0.144954\n",
"[1260]\tvalid_0's rmse: 0.144945\n",
"[1261]\tvalid_0's rmse: 0.14496\n",
"[1262]\tvalid_0's rmse: 0.144975\n",
"[1263]\tvalid_0's rmse: 0.14499\n",
"[1264]\tvalid_0's rmse: 0.144997\n",
"[1265]\tvalid_0's rmse: 0.145012\n",
"[1266]\tvalid_0's rmse: 0.145021\n",
"[1267]\tvalid_0's rmse: 0.145031\n",
"[1268]\tvalid_0's rmse: 0.145052\n",
"[1269]\tvalid_0's rmse: 0.145071\n",
"[1270]\tvalid_0's rmse: 0.145079\n",
"[1271]\tvalid_0's rmse: 0.145054\n",
"[1272]\tvalid_0's rmse: 0.145067\n",
"[1273]\tvalid_0's rmse: 0.145042\n",
"[1274]\tvalid_0's rmse: 0.14502\n",
"[1275]\tvalid_0's rmse: 0.145004\n",
"[1276]\tvalid_0's rmse: 0.145021\n",
"[1277]\tvalid_0's rmse: 0.145038\n",
"[1278]\tvalid_0's rmse: 0.145055\n",
"[1279]\tvalid_0's rmse: 0.145072\n",
"[1280]\tvalid_0's rmse: 0.145072\n",
"[1281]\tvalid_0's rmse: 0.145041\n",
"[1282]\tvalid_0's rmse: 0.145004\n",
"[1283]\tvalid_0's rmse: 0.144975\n",
"[1284]\tvalid_0's rmse: 0.144938\n",
"[1285]\tvalid_0's rmse: 0.144955\n",
"[1286]\tvalid_0's rmse: 0.144984\n",
"[1287]\tvalid_0's rmse: 0.145009\n",
"[1288]\tvalid_0's rmse: 0.145037\n",
"[1289]\tvalid_0's rmse: 0.145046\n",
"[1290]\tvalid_0's rmse: 0.145071\n",
"[1291]\tvalid_0's rmse: 0.145041\n",
"[1292]\tvalid_0's rmse: 0.145012\n",
"[1293]\tvalid_0's rmse: 0.144983\n",
"[1294]\tvalid_0's rmse: 0.14497\n",
"[1295]\tvalid_0's rmse: 0.144942\n",
"[1296]\tvalid_0's rmse: 0.144919\n",
"[1297]\tvalid_0's rmse: 0.144891\n",
"[1298]\tvalid_0's rmse: 0.144877\n",
"[1299]\tvalid_0's rmse: 0.144864\n",
"[1300]\tvalid_0's rmse: 0.14485\n",
"[1301]\tvalid_0's rmse: 0.144828\n",
"[1302]\tvalid_0's rmse: 0.144782\n",
"[1303]\tvalid_0's rmse: 0.144736\n",
"[1304]\tvalid_0's rmse: 0.144727\n",
"[1305]\tvalid_0's rmse: 0.144682\n",
"[1306]\tvalid_0's rmse: 0.144676\n",
"[1307]\tvalid_0's rmse: 0.14467\n",
"[1308]\tvalid_0's rmse: 0.144665\n",
"[1309]\tvalid_0's rmse: 0.14465\n",
"[1310]\tvalid_0's rmse: 0.144624\n",
"[1311]\tvalid_0's rmse: 0.144618\n",
"[1312]\tvalid_0's rmse: 0.144613\n",
"[1313]\tvalid_0's rmse: 0.144611\n",
"[1314]\tvalid_0's rmse: 0.144602\n",
"[1315]\tvalid_0's rmse: 0.144597\n",
"[1316]\tvalid_0's rmse: 0.14457\n",
"[1317]\tvalid_0's rmse: 0.14454\n",
"[1318]\tvalid_0's rmse: 0.14451\n",
"[1319]\tvalid_0's rmse: 0.144493\n",
"[1320]\tvalid_0's rmse: 0.144463\n",
"[1321]\tvalid_0's rmse: 0.144465\n",
"[1322]\tvalid_0's rmse: 0.144465\n",
"[1323]\tvalid_0's rmse: 0.144466\n",
"[1324]\tvalid_0's rmse: 0.144475\n",
"[1325]\tvalid_0's rmse: 0.144474\n",
"[1326]\tvalid_0's rmse: 0.144456\n",
"[1327]\tvalid_0's rmse: 0.144439\n",
"[1328]\tvalid_0's rmse: 0.144422\n",
"[1329]\tvalid_0's rmse: 0.144406\n",
"[1330]\tvalid_0's rmse: 0.144403\n",
"[1331]\tvalid_0's rmse: 0.144416\n",
"[1332]\tvalid_0's rmse: 0.14443\n",
"[1333]\tvalid_0's rmse: 0.144438\n",
"[1334]\tvalid_0's rmse: 0.144451\n",
"[1335]\tvalid_0's rmse: 0.144464\n",
"[1336]\tvalid_0's rmse: 0.144441\n",
"[1337]\tvalid_0's rmse: 0.144462\n",
"[1338]\tvalid_0's rmse: 0.144437\n",
"[1339]\tvalid_0's rmse: 0.144414\n",
"[1340]\tvalid_0's rmse: 0.14439\n",
"[1341]\tvalid_0's rmse: 0.144388\n",
"[1342]\tvalid_0's rmse: 0.144385\n",
"[1343]\tvalid_0's rmse: 0.144382\n",
"[1344]\tvalid_0's rmse: 0.144379\n",
"[1345]\tvalid_0's rmse: 0.144364\n",
"[1346]\tvalid_0's rmse: 0.144367\n",
"[1347]\tvalid_0's rmse: 0.144367\n",
"[1348]\tvalid_0's rmse: 0.144351\n",
"[1349]\tvalid_0's rmse: 0.144344\n",
"[1350]\tvalid_0's rmse: 0.14434\n",
"[1351]\tvalid_0's rmse: 0.144308\n",
"[1352]\tvalid_0's rmse: 0.144282\n",
"[1353]\tvalid_0's rmse: 0.144283\n",
"[1354]\tvalid_0's rmse: 0.144251\n",
"[1355]\tvalid_0's rmse: 0.144227\n",
"[1356]\tvalid_0's rmse: 0.14421\n",
"[1357]\tvalid_0's rmse: 0.144195\n",
"[1358]\tvalid_0's rmse: 0.144169\n",
"[1359]\tvalid_0's rmse: 0.144149\n",
"[1360]\tvalid_0's rmse: 0.144124\n",
"[1361]\tvalid_0's rmse: 0.144112\n",
"[1362]\tvalid_0's rmse: 0.144073\n",
"[1363]\tvalid_0's rmse: 0.144061\n",
"[1364]\tvalid_0's rmse: 0.144049\n",
"[1365]\tvalid_0's rmse: 0.144037\n",
"[1366]\tvalid_0's rmse: 0.144027\n",
"[1367]\tvalid_0's rmse: 0.144036\n",
"[1368]\tvalid_0's rmse: 0.144028\n",
"[1369]\tvalid_0's rmse: 0.14403\n",
"[1370]\tvalid_0's rmse: 0.144018\n",
"[1371]\tvalid_0's rmse: 0.14401\n",
"[1372]\tvalid_0's rmse: 0.144003\n",
"[1373]\tvalid_0's rmse: 0.143978\n",
"[1374]\tvalid_0's rmse: 0.143972\n",
"[1375]\tvalid_0's rmse: 0.143966\n",
"[1376]\tvalid_0's rmse: 0.143954\n",
"[1377]\tvalid_0's rmse: 0.143926\n",
"[1378]\tvalid_0's rmse: 0.143911\n",
"[1379]\tvalid_0's rmse: 0.143903\n",
"[1380]\tvalid_0's rmse: 0.143895\n",
"[1381]\tvalid_0's rmse: 0.143884\n",
"[1382]\tvalid_0's rmse: 0.143874\n",
"[1383]\tvalid_0's rmse: 0.143863\n",
"[1384]\tvalid_0's rmse: 0.143849\n",
"[1385]\tvalid_0's rmse: 0.143835\n",
"[1386]\tvalid_0's rmse: 0.143832\n",
"[1387]\tvalid_0's rmse: 0.143855\n",
"[1388]\tvalid_0's rmse: 0.143857\n",
"[1389]\tvalid_0's rmse: 0.143855\n",
"[1390]\tvalid_0's rmse: 0.143855\n",
"[1391]\tvalid_0's rmse: 0.143854\n",
"[1392]\tvalid_0's rmse: 0.143854\n",
"[1393]\tvalid_0's rmse: 0.143854\n",
"[1394]\tvalid_0's rmse: 0.143884\n",
"[1395]\tvalid_0's rmse: 0.1439\n",
"[1396]\tvalid_0's rmse: 0.143914\n",
"[1397]\tvalid_0's rmse: 0.143926\n",
"[1398]\tvalid_0's rmse: 0.143939\n",
"[1399]\tvalid_0's rmse: 0.143945\n",
"[1400]\tvalid_0's rmse: 0.143966\n",
"[1401]\tvalid_0's rmse: 0.143975\n",
"[1402]\tvalid_0's rmse: 0.14398\n",
"[1403]\tvalid_0's rmse: 0.143975\n",
"[1404]\tvalid_0's rmse: 0.143984\n",
"[1405]\tvalid_0's rmse: 0.143988\n",
"[1406]\tvalid_0's rmse: 0.14399\n",
"[1407]\tvalid_0's rmse: 0.143987\n",
"[1408]\tvalid_0's rmse: 0.14399\n",
"[1409]\tvalid_0's rmse: 0.14399\n",
"[1410]\tvalid_0's rmse: 0.143983\n",
"[1411]\tvalid_0's rmse: 0.143977\n",
"[1412]\tvalid_0's rmse: 0.14397\n",
"[1413]\tvalid_0's rmse: 0.143969\n",
"[1414]\tvalid_0's rmse: 0.143964\n",
"[1415]\tvalid_0's rmse: 0.143957\n",
"[1416]\tvalid_0's rmse: 0.143946\n",
"[1417]\tvalid_0's rmse: 0.143936\n",
"[1418]\tvalid_0's rmse: 0.143918\n",
"[1419]\tvalid_0's rmse: 0.143909\n",
"[1420]\tvalid_0's rmse: 0.143883\n",
"[1421]\tvalid_0's rmse: 0.143869\n",
"[1422]\tvalid_0's rmse: 0.143865\n",
"[1423]\tvalid_0's rmse: 0.143851\n",
"[1424]\tvalid_0's rmse: 0.143837\n",
"[1425]\tvalid_0's rmse: 0.143833\n",
"[1426]\tvalid_0's rmse: 0.143827\n",
"[1427]\tvalid_0's rmse: 0.14382\n",
"[1428]\tvalid_0's rmse: 0.143814\n",
"[1429]\tvalid_0's rmse: 0.143808\n",
"[1430]\tvalid_0's rmse: 0.143787\n",
"[1431]\tvalid_0's rmse: 0.143764\n",
"[1432]\tvalid_0's rmse: 0.143742\n",
"[1433]\tvalid_0's rmse: 0.14372\n",
"[1434]\tvalid_0's rmse: 0.143698\n",
"[1435]\tvalid_0's rmse: 0.143675\n",
"[1436]\tvalid_0's rmse: 0.14369\n",
"[1437]\tvalid_0's rmse: 0.143684\n",
"[1438]\tvalid_0's rmse: 0.143688\n",
"[1439]\tvalid_0's rmse: 0.143699\n",
"[1440]\tvalid_0's rmse: 0.143698\n",
"[1441]\tvalid_0's rmse: 0.143682\n",
"[1442]\tvalid_0's rmse: 0.143672\n",
"[1443]\tvalid_0's rmse: 0.143662\n",
"[1444]\tvalid_0's rmse: 0.143653\n",
"[1445]\tvalid_0's rmse: 0.143643\n",
"[1446]\tvalid_0's rmse: 0.143603\n",
"[1447]\tvalid_0's rmse: 0.143563\n",
"[1448]\tvalid_0's rmse: 0.143524\n",
"[1449]\tvalid_0's rmse: 0.143488\n",
"[1450]\tvalid_0's rmse: 0.14345\n",
"[1451]\tvalid_0's rmse: 0.14346\n",
"[1452]\tvalid_0's rmse: 0.143435\n",
"[1453]\tvalid_0's rmse: 0.143424\n",
"[1454]\tvalid_0's rmse: 0.143401\n",
"[1455]\tvalid_0's rmse: 0.143375\n",
"[1456]\tvalid_0's rmse: 0.143373\n",
"[1457]\tvalid_0's rmse: 0.143388\n",
"[1458]\tvalid_0's rmse: 0.143397\n",
"[1459]\tvalid_0's rmse: 0.143412\n",
"[1460]\tvalid_0's rmse: 0.143426\n",
"[1461]\tvalid_0's rmse: 0.143424\n",
"[1462]\tvalid_0's rmse: 0.14342\n",
"[1463]\tvalid_0's rmse: 0.143417\n",
"[1464]\tvalid_0's rmse: 0.143407\n",
"[1465]\tvalid_0's rmse: 0.143398\n",
"[1466]\tvalid_0's rmse: 0.143389\n",
"[1467]\tvalid_0's rmse: 0.143381\n",
"[1468]\tvalid_0's rmse: 0.143368\n",
"[1469]\tvalid_0's rmse: 0.143358\n",
"[1470]\tvalid_0's rmse: 0.14336\n",
"[1471]\tvalid_0's rmse: 0.143373\n",
"[1472]\tvalid_0's rmse: 0.143387\n",
"[1473]\tvalid_0's rmse: 0.143402\n",
"[1474]\tvalid_0's rmse: 0.143421\n",
"[1475]\tvalid_0's rmse: 0.143434\n",
"[1476]\tvalid_0's rmse: 0.143435\n",
"[1477]\tvalid_0's rmse: 0.143446\n",
"[1478]\tvalid_0's rmse: 0.143447\n",
"[1479]\tvalid_0's rmse: 0.143444\n",
"[1480]\tvalid_0's rmse: 0.143439\n",
"[1481]\tvalid_0's rmse: 0.143435\n",
"[1482]\tvalid_0's rmse: 0.143432\n",
"[1483]\tvalid_0's rmse: 0.143428\n",
"[1484]\tvalid_0's rmse: 0.143426\n",
"[1485]\tvalid_0's rmse: 0.143424\n",
"[1486]\tvalid_0's rmse: 0.143405\n",
"[1487]\tvalid_0's rmse: 0.143387\n",
"[1488]\tvalid_0's rmse: 0.143369\n",
"[1489]\tvalid_0's rmse: 0.143347\n",
"[1490]\tvalid_0's rmse: 0.14333\n",
"[1491]\tvalid_0's rmse: 0.143322\n",
"[1492]\tvalid_0's rmse: 0.143314\n",
"[1493]\tvalid_0's rmse: 0.14331\n",
"[1494]\tvalid_0's rmse: 0.143323\n",
"[1495]\tvalid_0's rmse: 0.143324\n",
"[1496]\tvalid_0's rmse: 0.143314\n",
"[1497]\tvalid_0's rmse: 0.143303\n",
"[1498]\tvalid_0's rmse: 0.143288\n",
"[1499]\tvalid_0's rmse: 0.143278\n",
"[1500]\tvalid_0's rmse: 0.143254\n",
"[1501]\tvalid_0's rmse: 0.143224\n",
"[1502]\tvalid_0's rmse: 0.143206\n",
"[1503]\tvalid_0's rmse: 0.143176\n",
"[1504]\tvalid_0's rmse: 0.143183\n",
"[1505]\tvalid_0's rmse: 0.14317\n",
"[1506]\tvalid_0's rmse: 0.143176\n",
"[1507]\tvalid_0's rmse: 0.143197\n",
"[1508]\tvalid_0's rmse: 0.143203\n",
"[1509]\tvalid_0's rmse: 0.14321\n",
"[1510]\tvalid_0's rmse: 0.143217\n",
"[1511]\tvalid_0's rmse: 0.143191\n",
"[1512]\tvalid_0's rmse: 0.143163\n",
"[1513]\tvalid_0's rmse: 0.143153\n",
"[1514]\tvalid_0's rmse: 0.143125\n",
"[1515]\tvalid_0's rmse: 0.143095\n",
"[1516]\tvalid_0's rmse: 0.143071\n",
"[1517]\tvalid_0's rmse: 0.143047\n",
"[1518]\tvalid_0's rmse: 0.143024\n",
"[1519]\tvalid_0's rmse: 0.143011\n",
"[1520]\tvalid_0's rmse: 0.142988\n",
"[1521]\tvalid_0's rmse: 0.142963\n",
"[1522]\tvalid_0's rmse: 0.142942\n",
"[1523]\tvalid_0's rmse: 0.142917\n",
"[1524]\tvalid_0's rmse: 0.142896\n",
"[1525]\tvalid_0's rmse: 0.14287\n",
"[1526]\tvalid_0's rmse: 0.142861\n",
"[1527]\tvalid_0's rmse: 0.142852\n",
"[1528]\tvalid_0's rmse: 0.142843\n",
"[1529]\tvalid_0's rmse: 0.142827\n",
"[1530]\tvalid_0's rmse: 0.14281\n",
"[1531]\tvalid_0's rmse: 0.142826\n",
"[1532]\tvalid_0's rmse: 0.142834\n",
"[1533]\tvalid_0's rmse: 0.142855\n",
"[1534]\tvalid_0's rmse: 0.142881\n",
"[1535]\tvalid_0's rmse: 0.142908\n",
"[1536]\tvalid_0's rmse: 0.142897\n",
"[1537]\tvalid_0's rmse: 0.142886\n",
"[1538]\tvalid_0's rmse: 0.142878\n",
"[1539]\tvalid_0's rmse: 0.142869\n",
"[1540]\tvalid_0's rmse: 0.142865\n",
"[1541]\tvalid_0's rmse: 0.142872\n",
"[1542]\tvalid_0's rmse: 0.142902\n",
"[1543]\tvalid_0's rmse: 0.14291\n",
"[1544]\tvalid_0's rmse: 0.142918\n",
"[1545]\tvalid_0's rmse: 0.142926\n",
"[1546]\tvalid_0's rmse: 0.142934\n",
"[1547]\tvalid_0's rmse: 0.142935\n",
"[1548]\tvalid_0's rmse: 0.142935\n",
"[1549]\tvalid_0's rmse: 0.142936\n",
"[1550]\tvalid_0's rmse: 0.142936\n",
"[1551]\tvalid_0's rmse: 0.142937\n",
"[1552]\tvalid_0's rmse: 0.142947\n",
"[1553]\tvalid_0's rmse: 0.142947\n",
"[1554]\tvalid_0's rmse: 0.14295\n",
"[1555]\tvalid_0's rmse: 0.142947\n",
"[1556]\tvalid_0's rmse: 0.142939\n",
"[1557]\tvalid_0's rmse: 0.142931\n",
"[1558]\tvalid_0's rmse: 0.142916\n",
"[1559]\tvalid_0's rmse: 0.142886\n",
"[1560]\tvalid_0's rmse: 0.142868\n",
"[1561]\tvalid_0's rmse: 0.142862\n",
"[1562]\tvalid_0's rmse: 0.142856\n",
"[1563]\tvalid_0's rmse: 0.142849\n",
"[1564]\tvalid_0's rmse: 0.142843\n",
"[1565]\tvalid_0's rmse: 0.142837\n",
"[1566]\tvalid_0's rmse: 0.142816\n",
"[1567]\tvalid_0's rmse: 0.142795\n",
"[1568]\tvalid_0's rmse: 0.14281\n",
"[1569]\tvalid_0's rmse: 0.142791\n",
"[1570]\tvalid_0's rmse: 0.14281\n",
"[1571]\tvalid_0's rmse: 0.142804\n",
"[1572]\tvalid_0's rmse: 0.142798\n",
"[1573]\tvalid_0's rmse: 0.142792\n",
"[1574]\tvalid_0's rmse: 0.142774\n",
"[1575]\tvalid_0's rmse: 0.142772\n",
"[1576]\tvalid_0's rmse: 0.142774\n",
"[1577]\tvalid_0's rmse: 0.142776\n",
"[1578]\tvalid_0's rmse: 0.142778\n",
"[1579]\tvalid_0's rmse: 0.14278\n",
"[1580]\tvalid_0's rmse: 0.142765\n",
"[1581]\tvalid_0's rmse: 0.142791\n",
"[1582]\tvalid_0's rmse: 0.142806\n",
"[1583]\tvalid_0's rmse: 0.142832\n",
"[1584]\tvalid_0's rmse: 0.142849\n",
"[1585]\tvalid_0's rmse: 0.142869\n",
"[1586]\tvalid_0's rmse: 0.142892\n",
"[1587]\tvalid_0's rmse: 0.142914\n",
"[1588]\tvalid_0's rmse: 0.142937\n",
"[1589]\tvalid_0's rmse: 0.142959\n",
"[1590]\tvalid_0's rmse: 0.142981\n",
"[1591]\tvalid_0's rmse: 0.142986\n",
"[1592]\tvalid_0's rmse: 0.142997\n",
"[1593]\tvalid_0's rmse: 0.143007\n",
"[1594]\tvalid_0's rmse: 0.143017\n",
"[1595]\tvalid_0's rmse: 0.143023\n",
"[1596]\tvalid_0's rmse: 0.143018\n",
"[1597]\tvalid_0's rmse: 0.143012\n",
"[1598]\tvalid_0's rmse: 0.143\n",
"[1599]\tvalid_0's rmse: 0.142994\n",
"[1600]\tvalid_0's rmse: 0.14298\n",
"[1601]\tvalid_0's rmse: 0.142961\n",
"[1602]\tvalid_0's rmse: 0.142939\n",
"[1603]\tvalid_0's rmse: 0.14293\n",
"[1604]\tvalid_0's rmse: 0.142914\n",
"[1605]\tvalid_0's rmse: 0.142897\n",
"[1606]\tvalid_0's rmse: 0.142893\n",
"[1607]\tvalid_0's rmse: 0.14289\n",
"[1608]\tvalid_0's rmse: 0.142875\n",
"[1609]\tvalid_0's rmse: 0.142876\n",
"[1610]\tvalid_0's rmse: 0.142872\n",
"[1611]\tvalid_0's rmse: 0.142878\n",
"[1612]\tvalid_0's rmse: 0.142884\n",
"[1613]\tvalid_0's rmse: 0.142897\n",
"[1614]\tvalid_0's rmse: 0.142905\n",
"[1615]\tvalid_0's rmse: 0.142885\n",
"[1616]\tvalid_0's rmse: 0.142905\n",
"[1617]\tvalid_0's rmse: 0.142924\n",
"[1618]\tvalid_0's rmse: 0.142943\n",
"[1619]\tvalid_0's rmse: 0.142963\n",
"[1620]\tvalid_0's rmse: 0.142982\n",
"[1621]\tvalid_0's rmse: 0.143007\n",
"[1622]\tvalid_0's rmse: 0.143031\n",
"[1623]\tvalid_0's rmse: 0.143056\n",
"[1624]\tvalid_0's rmse: 0.143078\n",
"[1625]\tvalid_0's rmse: 0.143087\n",
"[1626]\tvalid_0's rmse: 0.143085\n",
"[1627]\tvalid_0's rmse: 0.143084\n",
"[1628]\tvalid_0's rmse: 0.143081\n",
"[1629]\tvalid_0's rmse: 0.14308\n",
"[1630]\tvalid_0's rmse: 0.143077\n",
"[1631]\tvalid_0's rmse: 0.143082\n",
"[1632]\tvalid_0's rmse: 0.143088\n",
"[1633]\tvalid_0's rmse: 0.143081\n",
"[1634]\tvalid_0's rmse: 0.143087\n",
"[1635]\tvalid_0's rmse: 0.143089\n",
"[1636]\tvalid_0's rmse: 0.143091\n",
"[1637]\tvalid_0's rmse: 0.143099\n",
"[1638]\tvalid_0's rmse: 0.143104\n",
"[1639]\tvalid_0's rmse: 0.143108\n",
"[1640]\tvalid_0's rmse: 0.143101\n",
"[1641]\tvalid_0's rmse: 0.143104\n",
"[1642]\tvalid_0's rmse: 0.143099\n",
"[1643]\tvalid_0's rmse: 0.143092\n",
"[1644]\tvalid_0's rmse: 0.143089\n",
"[1645]\tvalid_0's rmse: 0.143084\n",
"[1646]\tvalid_0's rmse: 0.143065\n",
"[1647]\tvalid_0's rmse: 0.143047\n",
"[1648]\tvalid_0's rmse: 0.14305\n",
"[1649]\tvalid_0's rmse: 0.143024\n",
"[1650]\tvalid_0's rmse: 0.143006\n",
"[1651]\tvalid_0's rmse: 0.142999\n",
"[1652]\tvalid_0's rmse: 0.142992\n",
"[1653]\tvalid_0's rmse: 0.142985\n",
"[1654]\tvalid_0's rmse: 0.142973\n",
"[1655]\tvalid_0's rmse: 0.142962\n",
"[1656]\tvalid_0's rmse: 0.142952\n",
"[1657]\tvalid_0's rmse: 0.14294\n",
"[1658]\tvalid_0's rmse: 0.142906\n",
"[1659]\tvalid_0's rmse: 0.142891\n",
"[1660]\tvalid_0's rmse: 0.142902\n",
"[1661]\tvalid_0's rmse: 0.142894\n",
"[1662]\tvalid_0's rmse: 0.142888\n",
"[1663]\tvalid_0's rmse: 0.142893\n",
"[1664]\tvalid_0's rmse: 0.142886\n",
"[1665]\tvalid_0's rmse: 0.142882\n",
"[1666]\tvalid_0's rmse: 0.1429\n",
"[1667]\tvalid_0's rmse: 0.142903\n",
"[1668]\tvalid_0's rmse: 0.142921\n",
"[1669]\tvalid_0's rmse: 0.142943\n",
"[1670]\tvalid_0's rmse: 0.142964\n",
"[1671]\tvalid_0's rmse: 0.142938\n",
"[1672]\tvalid_0's rmse: 0.142937\n",
"[1673]\tvalid_0's rmse: 0.142911\n",
"[1674]\tvalid_0's rmse: 0.142916\n",
"[1675]\tvalid_0's rmse: 0.14292\n",
"[1676]\tvalid_0's rmse: 0.142922\n",
"[1677]\tvalid_0's rmse: 0.142918\n",
"[1678]\tvalid_0's rmse: 0.142914\n",
"[1679]\tvalid_0's rmse: 0.14291\n",
"[1680]\tvalid_0's rmse: 0.142914\n",
"Early stopping, best iteration is:\n",
"[1580]\tvalid_0's rmse: 0.142765\n"
]
}
],
"source": [
"gbm = lgb.train(params, lgb_train, num_boost_round=2000, valid_sets=lgb_eval, early_stopping_rounds=100)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 16,
"outputs": [],
"source": [
"y_pred = np.expm1(gbm.predict(X_test))\n",
"y_true = np.expm1(Y_test)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 17,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MSE: 1.96E+04\n",
"RMSE: 140.1415\n",
"MAE: 77.1526\n",
"MAPE: 10.08%\n",
"R_2: 0.9768\n",
"NMB: -0.0215\n",
"NME: 0.0784\n",
"MFB: 0.0051\n",
"MFE: 0.0953\n"
]
}
],
"source": [
"MSE = mean_squared_error(y_true, y_pred)\n",
"RMSE = np.sqrt(mean_squared_error(y_true, y_pred))\n",
"MAE = mean_absolute_error(y_true, y_pred)\n",
"MAPE = mean_absolute_percentage_error(y_true, y_pred)\n",
"R_2 = r2_score(y_true, y_pred)\n",
"NMB = sum(y_pred - y_true) / sum(y_true)\n",
"NME = sum(abs(y_true-y_pred)) / sum(y_true)\n",
"MFB = sum((y_pred - y_true)/((y_pred+y_true)/2))/len(y_true)\n",
"MFE = sum(abs((y_pred - y_true))/((y_pred+y_true)/2))/len(y_true)\n",
"print(f\"MSE: {format(MSE, '.2E')}\")\n",
"print(f'RMSE: {round(RMSE, 4)}')\n",
"print(f'MAE: {round(MAE, 4)}')\n",
"print(f'MAPE: {round(MAPE*100, 2)}%')\n",
"print(f'R_2: {round(R_2, 4)}')\n",
"print(f'NMB: {round(NMB, 4)}')\n",
"print(f'NME: {round(NME, 4)}')\n",
"print(f'MFB: {round(MFB, 4)}')\n",
"print(f'MFE: {round(MFE, 4)}')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 18,
"outputs": [],
"source": [
"test_rst = pd.DataFrame(np.array([y_pred, y_true]).T, columns=['y_pred', 'y_true'])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 19,
"outputs": [
{
"data": {
"text/plain": "<Figure size 2200x900 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAABtsAAAL0CAYAAABtU4jJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb9b3G8Y+m94xjZzgDKIRRRklo2SNsKCuEVVaAQikFAoTRsLlQKHuWnVsgQAKEEEpLe1mBBCgpCU0bWmbI3omXhi3J0rl/HOlI8pQdW7Ls5/165WUtO8eOIh+d5zzfn80wDAMRERERERERERERERER6TJ7pjdAREREREREREREREREJFspbBMRERERERERERERERHpJoVtIiIiIiIiIiIiIiIiIt2ksE1ERERERERERERERESkmxS2iYiIiIiIiIiIiIiIiHSTwjYRERERERERERERERGRblLYJiIiIiIiIiIiIiIiItJNCttEREREREREREREREREuklhm4iIiIiIiIiIiIiIiEg3KWwTEREREekGj8fD0qVLu/357733Hps2bbKuP/nkk3z77bdJj3n99deZN29eu1/D6/USDAa7vQ3/+te/+M9//tPtz29oaOj252ZCKBSipqYGwzCSbl+1alW7/5ahUIgbbriBr7/+Oh2bmJLa2tqk66FQiKamJsLhcMpfIxwO09TU1O79gUCA5cuXs27dOtavX9/qz6pVq/B6vW1+7tq1a1m1alXK29KZUCiUdL3lv19nvv32WyZNmsSaNWt6bJvSxefzdfn7TbRlyxYmTJhAXV1d0u0ffvghc+fO3cqt65xhGNTX1/f63yMiIiIikmnOTG+AiIiIiEg2+vDDD/ntb3/Le++9x9ChQ1vd7/f7+eKLL/jkk0+48sorcbvdSfdfdtll3Hvvvey77774fD6eeOIJysvLKS4uth7zyiuvsNtuu7HNNttQVVXV6mtMnDiRiRMn8stf/rLNbTQMg08++QS73c6+++7b6v577rmHYcOGce+991q3rV+/vtXjBg0ahMvlanX7pEmTGDNmDHfddVfS991WOOBwOMjNzW1zOxMFAgGamppwu93Y7cnnBsZCl8LCQgCmTp3K0KFD+c1vfkNTU1ObYcqIESPIy8sD4PPPP+e8885jyZIlST/L6dOn88orr/DOO+9QVVXVartnzZrFMccc0+F277zzzhiGgc1ms24Lh8M4HA7rumEYDBo0iI8//rjTn0N7vvrqKy644AKeeeYZdtllFwDeeustpk6d2uWvteOOO/Lmm28C8O9//5tp06Zx0003UVFRwXfffcfpp59OXl4eNpuN+vp6SkpKrO+vsbGRBx54gMMOO6zV133mmWd45513+OSTT7r1PX755ZcYhsGuu+4KwIwZM5g9ezYvv/wyXq+Xiy++mAceeIDRo0en9PUCgQB///vfuxRGPvfcczz//PNJ/x9bCgaDOJ1O3nrrrZS/blc99thjfPTRR7z00kuUlZUxc+ZMfD4fF1xwAYFAgFtuuYUTTzyRvffeu83Pt9ls/Oc//0l6HgIsX76cV199lUMOOaTTbTjwwAMpKirC6Wz/8EFdXR1XXnklJ554YtLtf/3rX3n44Yd57rnn2nydFBERERHpLxS2iYiIiIh0w7x58zjooIMYOnQo9913H4FAgLq6OjZt2sTq1atZs2YNubm5jBw5kv3335/99tsv6fMdDgdFRUX87W9/409/+hOhUIjp06cnHbhfuXIlmzdv5ssvv+Suu+5im222oa6uDo/Hg8vlwmaz0dTUxKpVq2hubqakpIQffviBb7/9ln/961/8/e9/Z+PGjeyzzz5thm05OTlWEBUzfvz4VqHEn//8Z7bffvuk25YuXcp//vMfrr/++qTbDznkkFYtGoA99tiDV155xbp+3XXX8cEHH1jfB8CQIUM466yzuOmmm3C5XEQiEQKBgBWuBYNB9t13X5588kkADjjgAG644QYWL17MpEmTuPjiixkyZIj1d6xZs4bZs2dboVQsYEsM2vx+P3/605/49a9/bQVtwWAQh8OBw+HAbrdjs9mssCISiVj3JwaQbrebm2++mQkTJgBmKHbiiSfy+eefU1BQAMDs2bN57LHHWv1sUvXDDz9w3nnnMWXKFOt7AjjiiCMYN24cLperVSByxRVX4Ha7ueeee5Juj0QiRCIR6/qwYcPwer0cf/zxPPLII4wbN44vv/wSgMWLF3PGGWcwd+5c63vpiNvtZsSIEd3+PmfPns3f//533n77bWw2G99//z1FRUXk5+eTm5tLZWUlF154Ia+88grl5eWdfr3Yv13L8LYj4XCYUaNG8dxzz7X7mPfee48777wz5a/ZHR988AGjR4+mrKwMgGXLlln/v+x2O2+88QYHHnhgq88LBoPYbDbre469VjgcDhoaGvB6veTm5vLDDz/Q2NhIQUFBu+Glx+PhgQceYNy4ce1u5wknnJD0fIo55phj+OabbzjrrLOYNWuW9X2IiIiIiPQ3CttERERERLrI6/Xy3nvvcccddwDw4osvcvzxx7PHHntQXFzMvffey+9+9zsreGmLw+EgJyeHM844g1/84heMGzeOq666Kqlpcvnll7P99ttz2WWXWbe98cYbPPLII7jdbjweD88++yzPPvssOTk5HHvssbz55ptUVlZSU1PD/fffz2677ZbUzolEIvh8PisoikQiNDU10dzcTGFhITk5OTz00EMcdNBBVmDUslEHZpvq8MMPZ9y4cWzatInBgwcDUFBQwHXXXZf0vT/++OP8/e9/T/r8a6+91gqCfvjhBy666CLOOOMMTjrpJE466STr5/raa69Z7auWjjnmGMaMGcPXX39Nfn4+Q4YM4YMPPrDuHzNmDC6XiyuuuILy8vI222kvvPACRUVFnH/++axYsQKfz8cLL7zAG2+8kfS4c889N+n6HXfcwSmnnGJdTzXI6UrgkygYDHLVVVdx8cUXJ/29YDb9YoFkovfff58vvviCN954w/r3aU9FRQVPP/00d999N3l5efz3v/8lJycHgI8++oihQ4e2aj0GAgEGDx7M4MGDiUQibNy4kZKSErxeLwUFBQQCAeuxbrebiRMn0tzcnPQ1brzxRvbaa6+k2z7//HPOOussK4RdsmQJRx99NGD+/O677z5OPPFEXn75ZS699NKkz33iiSd46KGH2vweDz300Fa3PfrooxxxxBGtbrfb7SxevJijjjqqza8FZlDb1v+NnvLFF1+wfPlybrzxxqTtiv1cYv+HWwbmYDbz7r//fuux48aNIy8vj4ceeojrr7/eGiM6ZcoUVq1axWmnncY111zT5nbYbDauueYa6/nQljVr1rT73L7yyiupr69n6tSpVlAuIiIiItLfKGwTEREREemiN998E7/fb7W9nE4nxx9/vNX8ePrpp9scu2gYBkcddRRTp07FMAwCgQDnnHOOFdpdcsklSWMII5FIq0bZOeecw+mnn47L5eLkk09m4sSJnHrqqdhsNsLhMDfccAN//vOfefjhh9l///1bbcPatWtbhQ6vvfYaFRUVfPLJJ0l/f0zLEXRNTU3MmjWLZ599FoCzzz6bI444gquuuqrVY9szaNAgZs+ezfr163nrrbe44oormDhxYtJjli9fzk477dTu1zAMg+22247tttuOhQsXAlBfX891113HVVddZT0uJyenzVBk6dKlPP7449x///243W7uv/9+PvvsM1599VWuvfZa3G43NpuNvfbaiyeeeIJx48ZZ/275+flJX8tut3PTTTdxyy23WNsGJI33i0QiDBs2LKWfT0uvvvoqpaWlTJo0KaXH19bWcsstt1BdXc2OO+6Y0uc4HA6uv/56Vq9e3WYw1VZYedNNN3HWWWfh9Xo56KCDku7bbbfdrMtvv/02S5cu5dxzz2XbbbcF4NZbb6WxsTHpc+bNm8fSpUvZeeedWbp0KaFQiG+++YZJkyYlrat3xx13MHjwYL7++muGDRtmBcqx/3cfffSR9djvv/+eCy64gFdeecVqPobDYcaPH99uWBYKhRg+fDgXXHBBuz+v//73v7z
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(22, 9))\n",
"smaller_rst = test_rst[test_rst.y_true <= 2000].reset_index(drop=True)\n",
"plt.plot(smaller_rst.y_pred, 'o-', color='b', label='预测值')\n",
"plt.plot(smaller_rst.y_true, '*-', color='r', label='真实值')\n",
"# for index in range(smaller_rst.shape[0]):\n",
"# tmp_y = smaller_rst.iloc[index].y_true\n",
"# tmp_yhat = smaller_rst.iloc[index].y_pred\n",
"# plt.plot([index, index], [tmp_yhat, tmp_y], color='grey')\n",
"# # print(f\"从({index}, {tmp_y}) 到 ({index},{tmp_yhat})\")\n",
"plt.legend(loc='best')\n",
"plt.title('低煤耗机组预测结果(不添加发电量、供热量)')\n",
"plt.savefig('./figure/unit_smaller_2.png')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 20,
"outputs": [
{
"data": {
"text/plain": "<Figure size 2200x900 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAABuIAAAL0CAYAAAD5tSE7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5drH8d+mQugt9KoIgiAKqID0Ik0FpEkRFPV4lKIiIgiILzZAOoI0G00QwQYovUnHg6KHJk16bwmkbfb94zmzSUgCKVuyyfdzXblmMjM7z7NLsmTnnvu+bQ6HwyEAAAAAAAAAAAAALuXn7QkAAAAAAAAAAAAAmRGBOAAAAAAAAAAAAMANCMQBAAAAAAAAAAAAbkAgDgAAAAAAAAAAAHADAnEAAAAAAAAAAACAGxCIAwAAAAAAAAAAANyAQBwAAAAAAAAAAADgBgTiAAAAAAAAAAAAADcgEAcAAAAAAAAAAAC4AYE4AAAAwM1++eUXzZw5M8XHr1q1SufPn3d+/+mnn+rAgQMJjvn222+1YcOGZM8RFhamqKio1E/2f37//Xf99ddfaX78tWvX0vxYb4iOjtalS5fkcDgSbD9+/LgOHTqU7GPefvtt7du3zxNTTJHLly8n+D46OloRERGy2+0pPofdbldERESy+yMjI3X06FGdPn1aZ86cSfR1/PhxhYWFJfnYU6dO6fjx4ymey51ER0cn+P7Wf787OXDggHr27KmTJ0+6bE6eEh4enurnG9/FixfVrl07XblyJcH2devWae3atemc3Z05HA5dvXrV7eMAAAAA3hbg7QkAAAAAmcXNmzcVFBQkf3//BNv//PNPff755+rYsaNy586dYJ8VLAsKCnJu69Onj0aPHq3atWsrPDxcU6dOVf78+RM8dsGCBapatarKli2rwoULJ3i8JLVv317t27fX888/n+RcHQ6Hfv31V/n5+al27dqJ9o8aNUrFihXT6NGjndvOnDmT6LgCBQooMDAw0faePXuqQoUK+vDDD53bbty4kWTgwN/fX9myZUtynvFFRkYqIiJCQUFB8vNLeE+hFZDJmTOnJGnQoEEqWrSoXnnlFUVERCQZaClZsqSyZ88uSdqxY4eeffZZ7dmzJ8FrOXv2bC1YsEArVqxQ4cKFE8170aJFatmy5W3nXalSJTkcDtlsNuc2u92e4OfE4XCoQIEC2rRp0x1fh+Ts3btXvXr10owZM1S5cmVJ0o8//qhBgwal+lwVK1bU999/L0n6448/NGvWLA0dOlQFCxbUwYMH1blzZ2XPnl02m01Xr15Vnjx5nM/v5s2bGjt2rJo0aZLovDNmzNCKFSv066+/puk5/vnnn3I4HKpSpYokaf78+Vq8eLHmzZunsLAwvfTSSxo7dqzKlCmTovNFRkZqy5YtqQpUfvHFF/ryyy8T/S7HFxUVpYCAAP34448pPm9qTZ48WevXr9fcuXOVL18+ff311woPD1evXr0UGRmpd955R23atNEjjzyS5ONtNpv++uuvRO9XR48e1cKFC9WwYcM7zqFevXrKlSuXAgKSv7Rw5coVvfbaa2rTpk2C7cuXL9eECRP0xRdfqGjRond+wgAAAICPIhAHAAAAuEirVq1um1lTs2bNJLd37dpVw4YNc37v7++vXLly6eeff9YPP/yg6OhozZ49O8FF/X/++UcXLlzQn3/+qQ8//FBly5bVlStXdP36dQUGBspmsykiIkLHjx9XTEyM8uTJo8OHD+vAgQP6/ffftWXLFp07d061atVKMhAXHBzsDFJZGjVqlChg8dNPP6l8+fIJth06dEh//fWXBg8enGB7w4YNE2XfSFK1atW0YMEC5/cDBw7UmjVrnM9DkooUKaJu3bpp6NChCgwMVGxsrCIjI52Bt6ioKNWuXVuffvqpJKlu3bp6++23tXv3bvXs2VMvvfSSihQp4hzj5MmTWrx4sTNgZQXf4gfhbty4oR9++EH//ve/nUG4qKgo+fv7y9/fX35+frLZbM5ARmxsrHN//OBkUFCQhg0bpnbt2kkyAbM2bdpox44dypEjhyRp8eLFmjx5cqLXJqUOHz6sZ599Vv3793c+J0lq1qyZatSoocDAwETBkldffVVBQUEaNWpUgu2xsbGKjY11fl+sWDGFhYXpiSee0MSJE1WjRg39+eefkqTdu3fr6aef1tq1a53P5XaCgoJUsmTJND/PxYsXa8uWLVq2bJlsNpv+/vtv5cqVSyEhIcqWLZtCQ0P1wgsvaMGCBcqfP/8dz2f9290a2L0du92u0qVL64svvkj2mFWrVumDDz5I8TnTYs2aNSpTpozy5csnSTpy5Ijz98vPz09LlixRvXr1Ej0uKipKNpvN+Zyt9wp/f39du3ZNYWFhypYtmw4fPqybN28qR44cyQY2r1+/rrFjx6pGjRrJzvPJJ59M8PNkadmypfbv369u3bpp0aJFzucBAAAAZDYE4gAAAAAXWbRokTNIc6eykH5+fgoICEiUGSWZ4EBwcLCefvppdenSRTVq1NDrr7+eIEOlb9++Kl++vPr06ePctmTJEk2cOFFBQUG6fv26Zs6cqZkzZyo4OFitWrXS999/r9DQUF26dEljxoxR1apVE2T1xMbGKjw83BlEio2NVUREhGJiYpQzZ04FBwdr/Pjxql+/vjOYdGsmnmSysJo2baoaNWro/PnzKlSokCQpR44cGjhwoDMgJUlTpkzRli1bEjz+zTffdAaJDh8+rBdffFFPP/202rZtq7Zt20qS5syZo2+++caZtXWrli1bqkKFCtq3b59CQkJUpEgRrVmzxrm/QoUKCgwM1Kuvvqr8+fMnmdX21VdfKVeuXHruued07NgxhYeH66uvvtKSJUsSHNejR48E37/33nvq0KGD8/uUBnlSEwyKLyoqSq+//rpeeumlBONKJkPQClbGt3r1av32229asmSJ898nOQULFtT06dM1cuRIZc+eXf/9738VHBwsSVq/fr2KFi2aKFsyMjJShQoVUqFChRQbG6tz584pT548CgsLU44cORQZGek8NigoSO3bt1dMTEyCcwwZMiRR8HrHjh3q1q2bM0C7Z88etWjRQpJ5/T7++GO1adNG8+bNU+/evRM8durUqRo/fnySz7Fx48aJtk2aNEnNmjVLtN3Pz0+7d+9W8+bNkzyXZIK4Sf1uuMpvv/2mo0ePasiQIQnmZb0u1u/wrcF0yWT0jRkzxnlsjRo1lD17do0fP16DBw92libt37+/jh8/rk6dOmnAgAFJzsNms2nAgAHOn4eknDx5Mtmf7ddee01Xr17VoEGDnEF0AAAAILMhEAcAAAC4iJWBs2rVKr3yyisqWLBgksdFRESoWLFiCTLcHA6HmjdvrkGDBsnhcCgyMlLPPPOM3nvvPUnSyy+/nKC0YWxsbKJMtGeeeUadO3dWYGCgnnrqKbVv314dO3aUzWaT3W7X22+/rZ9++kkTJkzQo48+mmhep06dShSQ+Oabb1SwYEH9+uuvCca33BpEjIiI0KJFi5w98bp3765mzZrp9ddfT3RscgoUKKDFixfrzJkz+vHHH/Xqq6+qffv2CY45evSo7r333mTP4XA4dNddd+muu+7Szp07JUlXr17VwIED9frrrzuPCw4OTjJgcujQIU2ZMkVjxoxRUFCQxowZo61bt2rhwoV68803FRQUJJvNppo1a2rq1KmqUaOG898tJCQkwbn8/Pw0dOhQvfPOO865SUpQMjA2NlbFihVL0etzq4ULFypv3rzq2bNnio6/fPmy3nnnHZUoUUIVK1ZM0WP8/f01ePBgnThxIsmgVVKBzKFDh6pbt24KCwtT/fr1E+yrWrWqc33ZsmU6dOiQevTooXLlykmShg8frps3byZ4zIYNG3To0CFVqlRJhw4dUnR0tPbv36+ePXsm6OP33nvvqVChQtq3b5+KFSvmDDZbwan169c7j/3777/Vq1cvLViwwJkxabfb1ahRo2QDadHR0SpevLh69eqV7Ov13//+VytXrkx2f3pNnTpVefPmVZ06dXT27FlnEP3mzZsJgqJXrlzRqVOnJMn58/Xcc8+pZ8+
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(22, 9))\n",
"larger_rst = test_rst[test_rst.y_true > 2000].reset_index(drop=True)\n",
"plt.plot(larger_rst.y_pred, 'o-', color='b', label='预测值')\n",
"plt.plot(larger_rst.y_true, '*-', color='r', label='真实值')\n",
"# for index in range(larger_rst.shape[0]):\n",
"# tmp_y = larger_rst.iloc[index].y_true\n",
"# tmp_yhat = larger_rst.iloc[index].y_pred\n",
"# plt.plot([index, index], [tmp_yhat, tmp_y], color='grey')\n",
"# # print(f\"从({index}, {tmp_y}) 到 ({index},{tmp_yhat})\")\n",
"plt.legend(loc='best')\n",
"plt.title('高煤耗机组预测结果(不添加发电量、供热量)')\n",
"plt.savefig('./figure/unit_larger_2.png')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 21,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MSE: 8.76E+04\n",
"RMSE: 295.91786010538635\n",
"MAE: 195.36140253946826\n",
"MAPE: 0.0663623609341966\n",
"R_2: 0.5412201459987633\n"
]
}
],
"source": [
"y_pred_l = test_rst[test_rst.y_true > 2000].y_pred\n",
"y_true_l = test_rst[test_rst.y_true > 2000].y_true\n",
"MSE_l = mean_squared_error(y_true_l, y_pred_l)\n",
"RMSE_l = np.sqrt(mean_squared_error(y_true_l, y_pred_l))\n",
"MAE_l = mean_absolute_error(y_true_l, y_pred_l)\n",
"MAPE_l = mean_absolute_percentage_error(y_true_l, y_pred_l)\n",
"R_2_l = r2_score(y_true_l, y_pred_l)\n",
"print('MSE:', format(MSE_l, '.2E'))\n",
"print('RMSE:', RMSE_l)\n",
"print('MAE:', MAE_l)\n",
"print('MAPE:', MAPE_l)\n",
"print('R_2:', R_2_l)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 22,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MSE: 5.27E+03\n",
"RMSE: 72.59700673680008\n",
"MAE: 52.1469378966335\n",
"MAPE: 0.1081435925002414\n",
"R_2: 0.6655229354965604\n"
]
}
],
"source": [
"y_pred_s = test_rst[test_rst.y_true <= 2000].y_pred\n",
"y_true_s = test_rst[test_rst.y_true <= 2000].y_true\n",
"MSE_s = mean_squared_error(y_true_s, y_pred_s)\n",
"RMSE_s = np.sqrt(mean_squared_error(y_true_s, y_pred_s))\n",
"MAE_s = mean_absolute_error(y_true_s, y_pred_s)\n",
"MAPE_s = mean_absolute_percentage_error(y_true_s, y_pred_s)\n",
"R_2_s = r2_score(y_true_s, y_pred_s)\n",
"print('MSE:', format(MSE_s, '.2E'))\n",
"print('RMSE:', RMSE_s)\n",
"print('MAE:', MAE_s)\n",
"print('MAPE:', MAPE_s)\n",
"print('R_2:', R_2_s)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 23,
"outputs": [],
"source": [
"import seaborn as sns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 24,
"outputs": [],
"source": [
"feature_importance = pd.DataFrame()\n",
"feature_importance['fea_name'] = feature_cols\n",
"feature_importance['fea_imp'] = gbm.feature_importance(importance_type='split')\n",
"feature_importance = feature_importance.sort_values('fea_imp', ascending=False)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 25,
"outputs": [],
"source": [
"import matplotlib.ticker as ticker"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 26,
"outputs": [
{
"data": {
"text/plain": "<Figure size 2000x1200 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAASmCAYAAABRBbHQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5zWZYH///ccAEFlFFEUUTNtMQlPK9Zaminbqm0leShjNTu4olF5as2zLqZSVJjrIdQWyVQUEa3cH5nlGj3QLQvzAEikK55QFBEQmJl75vcHX+5lnEFhwEYvn8/Ho8cyn+tz3/f1+TD8sb7u6/rUtLa2tgYAAAAAAAAA3uFqu3oCAAAAAAAAALAhCOAAAAAAAAAAFEEABwAAAAAAAKAIAjgAAAAAAAAARRDAAQAAAAAAACiCAA4AAAAAAABAEQRwAAAAAAAAAIoggAMAAAAAAABQBAEcAABgA5g/f3723HPP/PnPf243Nm7cuBxzzDFv+Pq7774706dPf6umlyR55ZVXsmLFijbHWlpasnDhwixdujQrVqxYq/8tW7YsixYtavdeTU1Nee21197Sa3j99XTkpZde6vD4jBkz8thjj72FM1qzpqamNj+3trau0+unT5+e4447rt09fydYsmTJer1+5syZOfroo9sd/8UvfpH/+Z//Wa/3XhuNjY1/099rAAAA1k99V08AAACgBN26dctrr72WTTbZJElSqVTS0tKSbt26pXv37tXg2dLSkhUrVqRHjx6prV35neTFixfnwgsvzBZbbJGJEydm0aJFbcZX19ramsbGxjQ0NKR79+5JkoULF2bevHnVOL1kyZIsXLgwr7zySl588cU8++yzeeKJJzJv3rwce+yxOeuss6rv99JLL+UjH/lIunXrlm7dulXnuHz58vTq1SvJygBYU1NTHa9UKmlqasqll16aT3/609X3uvXWW3PZZZflgQce6PAe7b///jnvvPMydOjQ9brXLS0tueCCC/Liiy/mqquuajf+6U9/OkcddVS+/vWvtzl+4403ZuHChbnmmmve8P0//OEPZ8GCBWs1l/322y/XXnttu+O///3v06dPn+y0005Jku9973t5/PHH8+Mf/ziPP/54zjrrrIwbNy59+vRZq89ZtGhRpk+fnvr6tf9/4y+99NLcfffd1d/Jjixfvjw77LBDxo0bt9bvu67OOuusLFiwIOPHj0/37t1zxRVXZNttt81hhx2W559/PmPHjs0Xv/jFDBw4sMPXNzc35y9/+Uu74zNmzMiTTz6ZffbZ5w0//4UXXsiwYcPSp0+fDv9NrfLSSy9lzJgx+dCHPtTm+PXXX5977rkn11xzTTbddNO1uGIAAAC6kgAOAACwHiZPnpzf//73OfPMM5OkGo3/8Ic/5Nhjj21z7uqB75e//GV22GGHJMn555+fpqamXHnllamvr8/+++//pp87ceLE7LHHHkmSl19+OSeffHIaGhrSu3fvNDQ0JEmmTp2aY445Jh/72Mdy1FFHpW/fvtliiy3avM+WW26Z2bNntzk2Y8aMfPazn83vf//71NfX5/TTT8/WW2+d008/vc15r1/FvHpEX+Vzn/tcvvrVr2a//fbL4sWL3/S61saFF16YmTNn5kc/+lG7sUcffTQvvvhi9ttvvzz11FNtvkhQqVSy0UYb5cUXX0yyMqQ3NjZmiy22qP69JUl9fX1GjRrVJu7vv//+Oe2009ocO+uss7J8+fIO53jttdemubk51113XZJkzpw56devX5Jku+22S2tra0aMGJEJEyZko402etNrrqura/N/10ZjY2M+9KEP5dvf/vYazxk/fnzuueeetX7PddXY2Jhp06blsMMOq35hY+bMmalUKklWBvjbb7+9wxXejY2Nqa2trf5v1d9XbW1tXn311SxfvjzdunXL3Llz89prr2WLLbZI//79271PfX19FixYkNtuuy1bb731Gue69957p6ampt3x4447Ln/961/zxS9+MTfeeGP1OgAAAHh7EsABAADWw6xZs/Lyyy+3O77nnnvm/vvvT/fu3XPLLbfk7rvvzjXXXFNdwd27d+8kyZgxYzJ16tRce+212XbbbZMk999/f3r06JG6uro888wzOeSQQ3LddddlyJAhaWlpSVNTU3r27JkkeeaZZ1JfX58JEya0+fxnn302U6dOzUEHHZTtttuuzdhTTz2VSqWSHXfcsXps+fLlbaJkkixbtiy1tbWpVCppbm7O0qVLq+f37NmzTViuVCrV1e533nlnPvjBD6Zbt27505/+lAEDBiRZGW9XBdzm5ua0tLSsc0y866678tvf/jZTpkyp3sPV3XDDDdlpp52y3Xbb5YADDkj37t2r81x1Xau2mm9ubk5jY2N+9KMfZb/99qu+R11dXerr69OjR4827/36YzU1NR2uyK5UKvnjH/+YMWPGJFn5RYFHHnkk559/fvXeXX755Rk2bFjuuuuufOYzn2nz+nPOOSe33nprh9ff0SrpyZMnZ9CgQe2O19bWZurUqXnwwQc7fK8kefXVV/O+971vjePra+rUqVm6dGn+5V/+pc28VoXmVfdv1e/z6i666KJMnDgxNTU1aW1tza677pqdd945w4cPz5VXXln9+/zmN7+Zv/zlL/nWt76Vz3/+8+3eZ9Xf/zHHHPOGXyBYunRph+PdunXLxRdfnBNOOCGjR4/Oueeeuw53AAAAgL81ARwAAGA9zJ07N0uWLKluIX3ttddmm222yZe//OVq3O3WrVvq6uqy8cYbt3nt+PHjc8011+SCCy7I4MGDM27cuHzpS1/K5ptvXj1n9fdYFV9Xj4UXX3xx/vCHP7QLsati9imnnNIu6lUqlTQ0NGTq1KnVY8cee2weeuihNuftvffebX7+z//8z+qff/7zn1fD6aOPPppjjjkmF154YZLkV7/6Vf7yl79Ut6Y++OCDq68bMWJE9c/Dhg3LpZdemrXV1NSUiy++OGPHju0wfs+fPz8///nP8/d///fp27dvHnnkkTbjZ599diqVypt+5httk702566K1/3798/cuXPz/PPP55VXXkmfPn0yd+7c6nljx47NVlttlZkzZ2bHHXesrgTv1q1btt5660ycOLF67m9/+9ucc845+e///u/qsaeffjrDhw9f45cIGhsbs8suu7QL7Kv73e9+l+eee26tr3ddtLa25kc/+lHe//73573vfW+eeeaZ1NbWZvny5VmyZEmef/756lbzL730UvXLHKtWyp9zzjk599xz85e//CXHHXdcHnjggTQ2NqZ79+45+uij8+///u+pq6vL2WefnY997GPZaqutOpzHquevDx8+vMPfm1UuvPDCds9qX6WmpiajR4/OwQcfnM9//vPVre0BAAB4+xHAAQAA1sPMmTPT0NCQadOmJUkeeOCBbL/99hk2bFhqamrSvXv3NDU1pVKpVFdQt7S0ZNmyZTnqqKPSrVu3HH300fnBD36Qa665JnvuuWeGDBmy1p9/xRVXdHj8f//3f/Pxj388P/3pT9cq1vXo0SMjR47M1772teoW6I8++mi7LdCffvrpHHTQQW1WQj/99NPp379/dVXvpz71qYwaNSorVqzIQQcdVA3jBx98cM4777zsu+++qVQq6/Q86yS5++67s/XWW7cL86v88Ic/bBOkr7766vzwhz+s/tzS0pIkufPOO6vHvvjFL+ab3/xmm/epqanJueeeW12xnayMya8/1tzc3Cbur/Kf//mfefXVVzNs2LB069YtTU1Nqa+vz8iRI9ud29ramhUrVuT222+vfqGgtrY2dXV1bbbrXvWliNWPrVixonr+6pYtW5YePXrkiCOOyLx589p95uoOPPDAbLbZZtV5rM127Gvrpptuypw5c6pfhDjhhBMyZ86cJMl///d/Z/z48dVzjzvuuCTJoYcemh/84AdJ0ibst7a2Zvr06Zk3b1522223LFy4MAsWLKg+BqClpaXdF0yamprS2tqaTTbZJN///vffdL4XX3xxdtppp2oEf/12/ptvvnk+9alP5aabbso555yz9jcCAACAvykBHAAAoJOeeuqpvPTSS7n
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=[20, 12])\n",
"ax = sns.barplot(x=feature_importance['fea_name'], y=feature_importance['fea_imp'])\n",
"ax.set_xticklabels(labels=feature_importance['fea_name'], rotation=45, fontsize=12)\n",
"ax.yaxis.set_major_locator(ticker.MultipleLocator(2000)) # 设置y轴标签间隔\n",
"plt.title('特征重要性(使用发电量、供热量)')\n",
"plt.xlabel('fea_name', fontsize=12)\n",
"plt.ylabel('fea_imp', fontsize=12)\n",
"plt.tight_layout()\n",
"plt.savefig('./figure/机组建模特征重要性_1.png')"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 27,
"outputs": [
{
"data": {
"text/plain": " fea_name fea_imp imp_scale\n8 day_of_week_1 309 0.211354\n2 day_of_week_6 292 0.199726\n12 day_of_week_4 277 0.189466\n7 day_of_week_7 215 0.147059\n9 day_of_week_2 147 0.100547\n3 day_of_week_5 139 0.095075\n0 day_of_week_3 83 0.056772",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>fea_name</th>\n <th>fea_imp</th>\n <th>imp_scale</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>8</th>\n <td>day_of_week_1</td>\n <td>309</td>\n <td>0.211354</td>\n </tr>\n <tr>\n <th>2</th>\n <td>day_of_week_6</td>\n <td>292</td>\n <td>0.199726</td>\n </tr>\n <tr>\n <th>12</th>\n <td>day_of_week_4</td>\n <td>277</td>\n <td>0.189466</td>\n </tr>\n <tr>\n <th>7</th>\n <td>day_of_week_7</td>\n <td>215</td>\n <td>0.147059</td>\n </tr>\n <tr>\n <th>9</th>\n <td>day_of_week_2</td>\n <td>147</td>\n <td>0.100547</td>\n </tr>\n <tr>\n <th>3</th>\n <td>day_of_week_5</td>\n <td>139</td>\n <td>0.095075</td>\n </tr>\n <tr>\n <th>0</th>\n <td>day_of_week_3</td>\n <td>83</td>\n <td>0.056772</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dow_imp = feature_importance[feature_importance.fea_name.str.contains('day_of_week')].copy()\n",
"dow_imp['imp_scale'] = dow_imp.fea_imp / dow_imp.fea_imp.sum()\n",
"dow_imp"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 27,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}