emission_detect_ai/将电厂的天数据合并.ipynb

1152 lines
227 KiB
Plaintext
Raw Permalink Normal View History

2022-10-25 15:11:12 +08:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"import matplotlib.pyplot as plt\n",
"#新增加的两行\n",
"from pylab import mpl\n",
"\n",
"# 设置显示中文字体\n",
2022-10-31 14:20:50 +08:00
"\n",
2022-10-25 15:11:12 +08:00
"mpl.rcParams[\"font.sans-serif\"] = [\"SimHei\"]\n",
"\n",
"mpl.rcParams[\"axes.unicode_minus\"] = False"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 2,
"outputs": [
{
"data": {
"text/plain": " 日期 企业名称 地址 省份 经度 纬度 烟囱高度m \\\n0 2018-10-01 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n1 2018-10-02 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n2 2018-10-03 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n3 2018-10-04 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n4 2018-10-05 浙江秀舟热电有限公司 嘉兴市南湖区凤桥镇 浙江省 120°515.54″ 30°3914.76″ 80 \n\n 脱硝工艺 脱硝剂名称 脱硝设备数量 ... 供热量(吉焦) 产渣量(吨) 机组运行时间(小时) 硫分(% 脱硫副产品产量(吨) \\\n0 SNCR SCR 氨水 3 ... 6536.83 NaN 24.0 0.51 NaN \n1 SNCR SCR 氨水 3 ... 2484.64 NaN 24.0 0.51 NaN \n2 SNCR SCR 氨水 3 ... 3020.83 NaN 24.0 0.51 NaN \n3 SNCR SCR 氨水 3 ... 5599.23 NaN 24.0 0.51 72.52 \n4 SNCR SCR 氨水 3 ... 4702.65 NaN 24.0 0.51 NaN \n\n 脱硫剂使用量(吨) 脱硫设施运行时间(小时) 脱硝还原剂消耗量(吨) 脱硝运行时间(小时) 燃料消耗量(吨) \n0 5.06 24.0 2.98 24.0 323 \n1 5.04 24.0 2.97 24.0 218 \n2 5.04 24.0 2.95 24.0 212 \n3 5.03 24.0 2.98 24.0 223 \n4 5.06 24.0 3.01 24.0 243 \n\n[5 rows x 44 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>日期</th>\n <th>企业名称</th>\n <th>地址</th>\n <th>省份</th>\n <th>经度</th>\n <th>纬度</th>\n <th>烟囱高度m</th>\n <th>脱硝工艺</th>\n <th>脱硝剂名称</th>\n <th>脱硝设备数量</th>\n <th>...</th>\n <th>供热量(吉焦)</th>\n <th>产渣量(吨)</th>\n <th>机组运行时间(小时)</th>\n <th>硫分(%</th>\n <th>脱硫副产品产量(吨)</th>\n <th>脱硫剂使用量(吨)</th>\n <th>脱硫设施运行时间(小时)</th>\n <th>脱硝还原剂消耗量(吨)</th>\n <th>脱硝运行时间(小时)</th>\n <th>燃料消耗量(吨)</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-10-01</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>6536.83</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>323</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-10-02</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>2484.64</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.97</td>\n <td>24.0</td>\n <td>218</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-10-03</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>3020.83</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.95</td>\n <td>24.0</td>\n <td>212</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-10-04</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>5599.23</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>72.52</td>\n <td>5.03</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>223</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-10-05</td>\n <td>浙江秀舟热电有限公司</td>\n <td>嘉兴市南湖区凤桥镇</td>\n <td>浙江省</td>\n <td>120°515.54″</td>\n <td>30°3914.76″</td>\n <td>80</td>\n <td>SNCR SCR</td>\n <td>氨水</td>\n <td>3</td>\n <td>...</td>\n <td>4702.65</td>\n <td>NaN</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>NaN</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>3.01</td>\n <td>24.0</td>\n <td>243</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 44 columns</p>\n</div>"
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zjxz_daily = pd.read_excel('./data/机器学习样表.xlsx', sheet_name=0, header=[0, 1])\n",
"old_cols = zjxz_daily.columns\n",
"new_cols = [x[0].strip() if 'Unnamed' in x[1] else x[0] + '_' + x[1] for x in old_cols]\n",
"zjxz_daily.columns = new_cols\n",
"zjxz_daily.head()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"zjxz_daily_data = zjxz_daily[['日期', '企业名称', '发电量(千瓦时)', '供热量(吉焦)', '燃料消耗量(吨)']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 49,
"outputs": [
{
"data": {
"text/plain": " 日期 企业名称 发电量(千瓦时) 供热量(吉焦) 燃料消耗量(吨)\n0 2018-10-01 浙江秀舟热电有限公司 156796.00 6536.83 323\n1 2018-10-02 浙江秀舟热电有限公司 133984.00 2484.64 218\n2 2018-10-03 浙江秀舟热电有限公司 134023.00 3020.83 212\n3 2018-10-04 浙江秀舟热电有限公司 124765.00 5599.23 223\n4 2018-10-05 浙江秀舟热电有限公司 134414.00 4702.65 243\n... ... ... ... ... ...\n1173 2022-01-22 浙江秀舟热电有限公司 52.24 12472.00 822\n1174 2022-01-23 浙江秀舟热电有限公司 51.36 12051.00 790\n1175 2022-01-24 浙江秀舟热电有限公司 51.12 11276.00 751\n1176 2022-01-25 浙江秀舟热电有限公司 49.32 11007.00 672\n1177 2022-01-26 浙江秀舟热电有限公司 29.64 8132.00 484\n\n[1178 rows x 5 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>日期</th>\n <th>企业名称</th>\n <th>发电量(千瓦时)</th>\n <th>供热量(吉焦)</th>\n <th>燃料消耗量(吨)</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-10-01</td>\n <td>浙江秀舟热电有限公司</td>\n <td>156796.00</td>\n <td>6536.83</td>\n <td>323</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-10-02</td>\n <td>浙江秀舟热电有限公司</td>\n <td>133984.00</td>\n <td>2484.64</td>\n <td>218</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-10-03</td>\n <td>浙江秀舟热电有限公司</td>\n <td>134023.00</td>\n <td>3020.83</td>\n <td>212</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-10-04</td>\n <td>浙江秀舟热电有限公司</td>\n <td>124765.00</td>\n <td>5599.23</td>\n <td>223</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-10-05</td>\n <td>浙江秀舟热电有限公司</td>\n <td>134414.00</td>\n <td>4702.65</td>\n <td>243</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>1173</th>\n <td>2022-01-22</td>\n <td>浙江秀舟热电有限公司</td>\n <td>52.24</td>\n <td>12472.00</td>\n <td>822</td>\n </tr>\n <tr>\n <th>1174</th>\n <td>2022-01-23</td>\n <td>浙江秀舟热电有限公司</td>\n <td>51.36</td>\n <td>12051.00</td>\n <td>790</td>\n </tr>\n <tr>\n <th>1175</th>\n <td>2022-01-24</td>\n <td>浙江秀舟热电有限公司</td>\n <td>51.12</td>\n <td>11276.00</td>\n <td>751</td>\n </tr>\n <tr>\n <th>1176</th>\n <td>2022-01-25</td>\n <td>浙江秀舟热电有限公司</td>\n <td>49.32</td>\n <td>11007.00</td>\n <td>672</td>\n </tr>\n <tr>\n <th>1177</th>\n <td>2022-01-26</td>\n <td>浙江秀舟热电有限公司</td>\n <td>29.64</td>\n <td>8132.00</td>\n <td>484</td>\n </tr>\n </tbody>\n</table>\n<p>1178 rows × 5 columns</p>\n</div>"
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zjxz_daily_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 52,
"outputs": [
{
"data": {
"text/plain": " days 发电量(千瓦时) 供热量(吉焦) 机组运行时间(小时) 硫分(% 脱硫剂使用量(吨) \\\n0 2018-10-01 156796.00 6536.83 24.0 0.51 5.06 \n1 2018-10-02 133984.00 2484.64 24.0 0.51 5.04 \n2 2018-10-03 134023.00 3020.83 24.0 0.51 5.04 \n3 2018-10-04 124765.00 5599.23 24.0 0.51 5.03 \n4 2018-10-05 134414.00 4702.65 24.0 0.51 5.06 \n... ... ... ... ... ... ... \n1082 2022-01-22 52.24 12472.00 24.0 0.59 8.46 \n1083 2022-01-23 51.36 12051.00 24.0 0.59 8.46 \n1084 2022-01-24 51.12 11276.00 24.0 0.59 8.43 \n1085 2022-01-25 49.32 11007.00 24.0 0.59 8.43 \n1086 2022-01-26 29.64 8132.00 24.0 0.59 8.44 \n\n 脱硫设施运行时间(小时) 脱硝还原剂消耗量(吨) 脱硝运行时间(小时) 燃料消耗量(吨) ... cSO2 \\\n0 24.0 2.98 24.0 323 ... 2.148473e+07 \n1 24.0 2.97 24.0 218 ... 1.587722e+07 \n2 24.0 2.95 24.0 212 ... 2.829086e+07 \n3 24.0 2.98 24.0 223 ... 1.030569e+07 \n4 24.0 3.01 24.0 243 ... 1.830254e+06 \n... ... ... ... ... ... ... \n1082 24.0 4.56 24.0 822 ... 3.626034e+06 \n1083 24.0 4.58 24.0 790 ... 4.074431e+06 \n1084 24.0 4.57 24.0 751 ... 4.928013e+06 \n1085 24.0 4.56 24.0 672 ... 4.584759e+06 \n1086 24.0 4.57 24.0 484 ... 5.701371e+06 \n\n cO2 csmoke flow rNOx rO2 \\\n0 3.745944e+07 6.519466e+05 162345.192917 28.981417 9.900000 \n1 2.832146e+07 3.656575e+05 140175.330833 22.220750 9.400000 \n2 3.174159e+07 5.181773e+05 154686.184167 24.816708 8.550000 \n3 2.511504e+07 2.299438e+06 120345.545833 21.875125 10.202083 \n4 4.106346e+07 6.230433e+06 162533.103542 25.605917 11.497917 \n... ... ... ... ... ... \n1082 4.149625e+07 6.512159e+06 218349.604167 2.603662 7.921417 \n1083 4.422277e+07 6.203422e+06 210121.608333 6.638867 8.756333 \n1084 4.655727e+07 6.101480e+06 211378.329167 12.277371 9.110167 \n1085 7.959093e+07 6.326125e+06 240801.208333 5.684492 13.636042 \n1086 9.866431e+07 6.632631e+06 263197.579167 1.672292 15.621583 \n\n temp rSO2 rsmoke day_of_year \n0 51.250000 5.581667 0.209167 273 \n1 50.679167 4.364167 0.190417 274 \n2 52.808333 7.580000 0.139583 275 \n3 48.854167 2.808958 0.893333 276 \n4 45.783333 0.393333 2.141875 277 \n... ... ... ... ... \n1082 55.441542 0.690904 1.242762 21 \n1083 54.574333 0.810112 1.230213 22 \n1084 53.031042 0.973396 1.203483 23 \n1085 42.908458 0.807300 1.098229 24 \n1086 36.412917 0.904429 1.050008 25 \n\n[1087 rows x 165 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>days</th>\n <th>发电量(千瓦时)</th>\n <th>供热量(吉焦)</th>\n <th>机组运行时间(小时)</th>\n <th>硫分(%</th>\n <th>脱硫剂使用量(吨)</th>\n <th>脱硫设施运行时间(小时)</th>\n <th>脱硝还原剂消耗量(吨)</th>\n <th>脱硝运行时间(小时)</th>\n <th>燃料消耗量(吨)</th>\n <th>...</th>\n <th>cSO2</th>\n <th>cO2</th>\n <th>csmoke</th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n <th>day_of_year</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-10-01</td>\n <td>156796.00</td>\n <td>6536.83</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>323</td>\n <td>...</td>\n <td>2.148473e+07</td>\n <td>3.745944e+07</td>\n <td>6.519466e+05</td>\n <td>162345.192917</td>\n <td>28.981417</td>\n <td>9.900000</td>\n <td>51.250000</td>\n <td>5.581667</td>\n <td>0.209167</td>\n <td>273</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-10-02</td>\n <td>133984.00</td>\n <td>2484.64</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.97</td>\n <td>24.0</td>\n <td>218</td>\n <td>...</td>\n <td>1.587722e+07</td>\n <td>2.832146e+07</td>\n <td>3.656575e+05</td>\n <td>140175.330833</td>\n <td>22.220750</td>\n <td>9.400000</td>\n <td>50.679167</td>\n <td>4.364167</td>\n <td>0.190417</td>\n <td>274</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-10-03</td>\n <td>134023.00</td>\n <td>3020.83</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.04</td>\n <td>24.0</td>\n <td>2.95</td>\n <td>24.0</td>\n <td>212</td>\n <td>...</td>\n <td>2.829086e+07</td>\n <td>3.174159e+07</td>\n <td>5.181773e+05</td>\n <td>154686.184167</td>\n <td>24.816708</td>\n <td>8.550000</td>\n <td>52.808333</td>\n <td>7.580000</td>\n <td>0.139583</td>\n <td>275</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-10-04</td>\n <td>124765.00</td>\n <td>5599.23</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.03</td>\n <td>24.0</td>\n <td>2.98</td>\n <td>24.0</td>\n <td>223</td>\n <td>...</td>\n <td>1.030569e+07</td>\n <td>2.511504e+07</td>\n <td>2.299438e+06</td>\n <td>120345.545833</td>\n <td>21.875125</td>\n <td>10.202083</td>\n <td>48.854167</td>\n <td>2.808958</td>\n <td>0.893333</td>\n <td>276</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-10-05</td>\n <td>134414.00</td>\n <td>4702.65</td>\n <td>24.0</td>\n <td>0.51</td>\n <td>5.06</td>\n <td>24.0</td>\n <td>3.01</td>\n <td>24.0</td>\n <td>243</td>\n <td>...</td>\n <td>1.830254e+06</td>\n <td>4.106346e+07</td>\n <td>6.230433e+06</td>\n <td>162533.103542</td>\n <td>25.605917</td>\n <td>11.497917</td>\n <td>45.783333</td>\n <td>0.393333</td>\n <td>2.141875</td>\n <td>277</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zjxz_emiss_data = pd.read_csv('data/train_data.csv')\n",
"zjxz_emiss_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 60,
"outputs": [
{
"data": {
"text/plain": " days 发电量(千瓦时) 供热量(吉焦) 燃料消耗量(吨) flow rNOx \\\n0 2018-10-01 156796.00 6536.83 323 162345.192917 28.981417 \n1 2018-10-02 133984.00 2484.64 218 140175.330833 22.220750 \n2 2018-10-03 134023.00 3020.83 212 154686.184167 24.816708 \n3 2018-10-04 124765.00 5599.23 223 120345.545833 21.875125 \n4 2018-10-05 134414.00 4702.65 243 162533.103542 25.605917 \n... ... ... ... ... ... ... \n1082 2022-01-22 52.24 12472.00 822 218349.604167 2.603662 \n1083 2022-01-23 51.36 12051.00 790 210121.608333 6.638867 \n1084 2022-01-24 51.12 11276.00 751 211378.329167 12.277371 \n1085 2022-01-25 49.32 11007.00 672 240801.208333 5.684492 \n1086 2022-01-26 29.64 8132.00 484 263197.579167 1.672292 \n\n rO2 temp rSO2 rsmoke \n0 9.900000 51.250000 5.581667 0.209167 \n1 9.400000 50.679167 4.364167 0.190417 \n2 8.550000 52.808333 7.580000 0.139583 \n3 10.202083 48.854167 2.808958 0.893333 \n4 11.497917 45.783333 0.393333 2.141875 \n... ... ... ... ... \n1082 7.921417 55.441542 0.690904 1.242762 \n1083 8.756333 54.574333 0.810112 1.230213 \n1084 9.110167 53.031042 0.973396 1.203483 \n1085 13.636042 42.908458 0.807300 1.098229 \n1086 15.621583 36.412917 0.904429 1.050008 \n\n[1087 rows x 10 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>days</th>\n <th>发电量(千瓦时)</th>\n <th>供热量(吉焦)</th>\n <th>燃料消耗量(吨)</th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-10-01</td>\n <td>156796.00</td>\n <td>6536.83</td>\n <td>323</td>\n <td>162345.192917</td>\n <td>28.981417</td>\n <td>9.900000</td>\n <td>51.250000</td>\n <td>5.581667</td>\n <td>0.209167</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-10-02</td>\n <td>133984.00</td>\n <td>2484.64</td>\n <td>218</td>\n <td>140175.330833</td>\n <td>22.220750</td>\n <td>9.400000</td>\n <td>50.679167</td>\n <td>4.364167</td>\n <td>0.190417</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-10-03</td>\n <td>134023.00</td>\n <td>3020.83</td>\n <td>212</td>\n <td>154686.184167</td>\n <td>24.816708</td>\n <td>8.550000</td>\n <td>52.808333</td>\n <td>7.580000</td>\n <td>0.139583</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-10-04</td>\n <td>124765.00</td>\n <td>5599.23</td>\n <td>223</td>\n <td>120345.545833</td>\n <td>21.875125</td>\n <td>10.202083</td>\n <td>48.854167</td>\n <td>2.808958</td>\n <td>0.893333</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-10-05</td>\n <td>134414.00</td>\n <td>4702.65</td>\n <td>243</td>\n <td>162533.103542</td>\n <td>25.605917</td>\n <td>11.497917</td>\n <td>45.783333</td>\n <td>0.393333</td>\n <td>2.141875</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>1082</th>\n <td>2022-01-22</td>\n <td>52.24</td>\n <td>12472.00</td>\n <td>822</td>\n <td>218349.604167</td>\n <td>2.603662</td>\n <td>7.921417</td>\n <td>55.441542</td>\n <td>0.690904</td>\n <td>1.242762</td>\n </tr>\n <tr>\n <th>1083</th>\n <td>2022-01-23</td>\n <td>51.36</td>\n <td>12051.00</td>\n <td>790</td>\n <td>210121.608333</td>\n <td>6.638867</td>\n <td>8.756333</td>\n <td>54.574333</td>\n <td>0.810112</td>\n <td>1.230213</td>\n </tr>\n <tr>\n <th>1084</th>\n <td>2022-01-24</td>\n <td>51.12</td>\n <td>11276.00</td>\n <td>751</td>\n <td>211378.329167</td>\n <td>12.277371</td>\n <td>9.110167</td>\n <td>53.031042</td>\n <td>0.973396</td>\n <td>1.203483</td>\n </tr>\n <tr>\n <th>1085</th>\n <td>2022-01-25</td>\n <td>49.32</td>\n <td>11007.00</td>\n <td>672</td>\n <td>240801.208333</td>\n <td>5.684492</td>\n <td>13.636042</td>\n <td>42.908458</td>\n <td>0.807300</td>\n <td>1.098229</td>\n </tr>\n <tr>\n <th>1086</th>\n <td>2022-01-26</td>\n <td>29.64</td>\n <td>8132.00</td>\n <td>484</td>\n <td>263197.579167</td>\n <td>1.672292</td>\n <td>15.621583</td>\n <td>36.412917</td>\n <td>0.904429</td>\n <td>1.050008</td>\n </tr>\n </tbody>\n</table>\n<p>1087 rows × 10 columns</p>\n</div>"
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zjxz_save_cols = zjxz_emiss_data.columns[:3].tolist() + ['燃料消耗量(吨)'] + zjxz_emiss_data.columns[-7:-1].tolist()\n",
"zjxz_save_data = zjxz_emiss_data[zjxz_save_cols].copy()\n",
"zjxz_save_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 61,
"outputs": [],
"source": [
"for col in ['rNOx', 'rSO2', 'rsmoke']:\n",
" zjxz_save_data[col] = zjxz_save_data[col]*101800*273 / (101325 * (273 + zjxz_save_data.temp))"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 62,
"outputs": [
{
"data": {
"text/plain": " days 发电量(千瓦时) 供热量(吉焦) 燃料消耗量(吨) flow rNOx \\\n0 2018-10-01 156796.00 6536.83 323 162345.192917 24.515087 \n1 2018-10-02 133984.00 2484.64 218 140175.330833 18.829456 \n2 2018-10-03 134023.00 3020.83 212 154686.184167 20.891797 \n3 2018-10-04 124765.00 5599.23 223 120345.545833 18.641687 \n4 2018-10-05 134414.00 4702.65 243 162533.103542 22.031219 \n... ... ... ... ... ... ... \n1082 2022-01-22 52.24 12472.00 822 218349.604167 2.174305 \n1083 2022-01-23 51.36 12051.00 790 210121.608333 5.558760 \n1084 2022-01-24 51.12 11276.00 751 211378.329167 10.328571 \n1085 2022-01-25 49.32 11007.00 672 240801.208333 4.935421 \n1086 2022-01-26 29.64 8132.00 484 263197.579167 1.482407 \n\n rO2 temp rSO2 rsmoke \n0 9.900000 51.250000 4.721475 0.176932 \n1 9.400000 50.679167 3.698115 0.161356 \n2 8.550000 52.808333 6.381178 0.117507 \n3 10.202083 48.854167 2.393757 0.761287 \n4 11.497917 45.783333 0.338422 1.842860 \n... ... ... ... ... \n1082 7.921417 55.441542 0.576970 1.037824 \n1083 8.756333 54.574333 0.678312 1.030064 \n1084 9.110167 53.031042 0.818888 1.012453 \n1085 13.636042 42.908458 0.700918 0.953511 \n1086 15.621583 36.412917 0.801733 0.930782 \n\n[1087 rows x 10 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>days</th>\n <th>发电量(千瓦时)</th>\n <th>供热量(吉焦)</th>\n <th>燃料消耗量(吨)</th>\n <th>flow</th>\n <th>rNOx</th>\n <th>rO2</th>\n <th>temp</th>\n <th>rSO2</th>\n <th>rsmoke</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2018-10-01</td>\n <td>156796.00</td>\n <td>6536.83</td>\n <td>323</td>\n <td>162345.192917</td>\n <td>24.515087</td>\n <td>9.900000</td>\n <td>51.250000</td>\n <td>4.721475</td>\n <td>0.176932</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2018-10-02</td>\n <td>133984.00</td>\n <td>2484.64</td>\n <td>218</td>\n <td>140175.330833</td>\n <td>18.829456</td>\n <td>9.400000</td>\n <td>50.679167</td>\n <td>3.698115</td>\n <td>0.161356</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2018-10-03</td>\n <td>134023.00</td>\n <td>3020.83</td>\n <td>212</td>\n <td>154686.184167</td>\n <td>20.891797</td>\n <td>8.550000</td>\n <td>52.808333</td>\n <td>6.381178</td>\n <td>0.117507</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2018-10-04</td>\n <td>124765.00</td>\n <td>5599.23</td>\n <td>223</td>\n <td>120345.545833</td>\n <td>18.641687</td>\n <td>10.202083</td>\n <td>48.854167</td>\n <td>2.393757</td>\n <td>0.761287</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2018-10-05</td>\n <td>134414.00</td>\n <td>4702.65</td>\n <td>243</td>\n <td>162533.103542</td>\n <td>22.031219</td>\n <td>11.497917</td>\n <td>45.783333</td>\n <td>0.338422</td>\n <td>1.842860</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>1082</th>\n <td>2022-01-22</td>\n <td>52.24</td>\n <td>12472.00</td>\n <td>822</td>\n <td>218349.604167</td>\n <td>2.174305</td>\n <td>7.921417</td>\n <td>55.441542</td>\n <td>0.576970</td>\n <td>1.037824</td>\n </tr>\n <tr>\n <th>1083</th>\n <td>2022-01-23</td>\n <td>51.36</td>\n <td>12051.00</td>\n <td>790</td>\n <td>210121.608333</td>\n <td>5.558760</td>\n <td>8.756333</td>\n <td>54.574333</td>\n <td>0.678312</td>\n <td>1.030064</td>\n </tr>\n <tr>\n <th>1084</th>\n <td>2022-01-24</td>\n <td>51.12</td>\n <td>11276.00</td>\n <td>751</td>\n <td>211378.329167</td>\n <td>10.328571</td>\n <td>9.110167</td>\n <td>53.031042</td>\n <td>0.818888</td>\n <td>1.012453</td>\n </tr>\n <tr>\n <th>1085</th>\n <td>2022-01-25</td>\n <td>49.32</td>\n <td>11007.00</td>\n <td>672</td>\n <td>240801.208333</td>\n <td>4.935421</td>\n <td>13.636042</td>\n <td>42.908458</td>\n <td>0.700918</td>\n <td>0.953511</td>\n </tr>\n <tr>\n <th>1086</th>\n <td>2022-01-26</td>\n <td>29.64</td>\n <td>8132.00</td>\n <td>484</td>\n <td>263197.579167</td>\n <td>1.482407</td>\n <td>15.621583</td>\n <td>36.412917</td>\n <td>0.801733</td>\n <td>0.930782</td>\n </tr>\n </tbody>\n</table>\n<p>1087 rows × 10 columns</p>\n</div>"
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"zjxz_save_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 4,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": "Index(['企业名称', '地址', '省份', '经度', '纬度', '烟囱高度(m)', '机组数量', '单机容量MW', '生产设备类型',\n '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺', '除尘工艺',\n 'Unnamed: 16', '日期', '机组编号', '投产日期', '燃煤干燥无灰基挥发分vda%',\n '入炉煤低位发热量GJ/t', '入炉煤消耗量发电(吨)', '入炉煤消耗量供热(吨)', '脱硝还原剂使用量a侧',\n '脱硝还原剂使用量b侧', '脱硝设施运行时间a侧小时', '脱硝设施运行时间b侧小时', '发电量', '供热量(吉焦)',\n '机组运行时间', '硫分(%', '脱硫副产品产量(吨)', '脱硫剂使用量(吨)', '脱硫设施运行时间(小时)',\n '脱硝还原剂消耗量(吨)', '燃料消耗量(吨)', '石灰石总量(吨)', 'Unnamed: 38', 'Unnamed: 39',\n '日期.1', '机组编号.1', '投产日期.1', '燃煤干燥无灰基挥发分vda%.1', '入炉煤低位发热量GJ/t.1',\n '入炉煤消耗量发电(吨).1', '入炉煤消耗量供热(吨).1', '脱硝还原剂使用量a侧.1', '脱硝还原剂使用量b侧.1',\n '脱硝设施运行时间a侧小时.1', '脱硝设施运行时间b侧小时.1', '发电量(万千瓦时)', '供热量(吉焦)',\n '机组运行时间(小时)', '硫分(%.1', '脱硫副产品产量(吨).1', '脱硫剂使用量(吨).1',\n '脱硫设施运行时间(小时).1', '脱硝还原剂消耗量(吨).1', '燃料消耗量(吨).1', '石灰石总量(吨).1'],\n dtype='object')"
},
2022-10-31 14:20:50 +08:00
"execution_count": 4,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_daily = pd.read_excel('./data/机器学习样表.xlsx', sheet_name=3)\n",
"xswx_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 5,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": " days 发电量_2万千瓦时 供热量_2吉焦 燃料消耗量_2\n149 2021-05-30 1033 0.0 4763.4\n150 2021-05-31 909 0.0 4516.5",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>days</th>\n <th>发电量_2万千瓦时</th>\n <th>供热量_2吉焦</th>\n <th>燃料消耗量_2</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>149</th>\n <td>2021-05-30</td>\n <td>1033</td>\n <td>0.0</td>\n <td>4763.4</td>\n </tr>\n <tr>\n <th>150</th>\n <td>2021-05-31</td>\n <td>909</td>\n <td>0.0</td>\n <td>4516.5</td>\n </tr>\n </tbody>\n</table>\n</div>"
},
2022-10-31 14:20:50 +08:00
"execution_count": 5,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_daily_unit_1 = xswx_daily[xswx_daily['日期'] >= '2021-01-01'][['日期', '发电量', '供热量(吉焦)', '燃料消耗量(吨)']].copy()\n",
"xswx_daily_unit_1.columns = ['days', \"发电量_1万千瓦时\", '供热量_1吉焦', '燃料消耗量_1']\n",
"xswx_daily_unit_2 = xswx_daily[xswx_daily['日期.1'] >= '2021-01-01'][\n",
" ['日期.1', '发电量(万千瓦时)', '供热量(吉焦)', '燃料消耗量(吨).1']].copy()\n",
"xswx_daily_unit_2.columns = ['days', \"发电量_2万千瓦时\", '供热量_2吉焦', '燃料消耗量_2']\n",
"xswx_daily_unit_2.tail(2)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 6,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": "DatetimeIndex(['2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04',\n '2021-01-05', '2021-01-06', '2021-01-07', '2021-01-08',\n '2021-01-09', '2021-01-10',\n ...\n '2021-05-22', '2021-05-23', '2021-05-24', '2021-05-25',\n '2021-05-26', '2021-05-27', '2021-05-28', '2021-05-29',\n '2021-05-30', '2021-05-31'],\n dtype='datetime64[ns]', length=151, freq='D')"
},
2022-10-31 14:20:50 +08:00
"execution_count": 6,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"min_start = min(xswx_daily_unit_1.days.min(), xswx_daily_unit_2.days.min())\n",
"max_end = max(xswx_daily_unit_1.days.max(), xswx_daily_unit_2.days.max())\n",
"date_range = pd.date_range(min_start, max_end, freq='D')\n",
"date_range"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 7,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_daily_unit_1 = xswx_daily_unit_1.set_index('days').reindex(date_range).fillna(0)\n",
"xswx_daily_unit_2 = xswx_daily_unit_2.set_index('days').reindex(date_range).fillna(0)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 8,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_daily_data = pd.concat([xswx_daily_unit_1, xswx_daily_unit_2], axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 9,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_daily_data['企业名称'] = '武乡西山发电有限责任公司'\n",
"xswx_daily_data['发电量(万千瓦时)'] = xswx_daily_data['发电量_1万千瓦时'] + xswx_daily_data['发电量_2万千瓦时']\n",
"xswx_daily_data['供热量(吉焦)'] = xswx_daily_data['供热量_1吉焦'] + xswx_daily_data['供热量_2吉焦']\n",
"xswx_daily_data['燃料消耗量(吨)'] = xswx_daily_data['燃料消耗量_1'] + xswx_daily_data['燃料消耗量_2']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 10,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": " 发电量_1万千瓦时 供热量_1吉焦 燃料消耗量_1 发电量_2万千瓦时 供热量_2吉焦 \\\n2021-01-01 952.0 11032.5 5478.8 893 0.0 \n2021-01-02 1127.0 11180.5 6125.4 1061 0.0 \n2021-01-03 1051.0 11197.7 5717.6 1053 0.0 \n2021-01-04 1179.0 11146.6 6172.5 1237 0.0 \n2021-01-05 1142.0 10922.4 6053.3 1082 0.0 \n... ... ... ... ... ... \n2021-05-27 0.0 0.0 0.0 1192 0.0 \n2021-05-28 0.0 0.0 0.0 1159 0.0 \n2021-05-29 0.0 0.0 0.0 998 0.0 \n2021-05-30 0.0 0.0 0.0 1033 0.0 \n2021-05-31 0.0 0.0 0.0 909 0.0 \n\n 燃料消耗量_2 企业名称 发电量(万千瓦时) 供热量(吉焦) 燃料消耗量(吨) \n2021-01-01 4689.7 武乡西山发电有限责任公司 1845.0 11032.5 10168.5 \n2021-01-02 5455.5 武乡西山发电有限责任公司 2188.0 11180.5 11580.9 \n2021-01-03 4060.5 武乡西山发电有限责任公司 2104.0 11197.7 9778.1 \n2021-01-04 5574.7 武乡西山发电有限责任公司 2416.0 11146.6 11747.2 \n2021-01-05 6363.9 武乡西山发电有限责任公司 2224.0 10922.4 12417.2 \n... ... ... ... ... ... \n2021-05-27 5684.3 武乡西山发电有限责任公司 1192.0 0.0 5684.3 \n2021-05-28 5349.3 武乡西山发电有限责任公司 1159.0 0.0 5349.3 \n2021-05-29 4851.2 武乡西山发电有限责任公司 998.0 0.0 4851.2 \n2021-05-30 4763.4 武乡西山发电有限责任公司 1033.0 0.0 4763.4 \n2021-05-31 4516.5 武乡西山发电有限责任公司 909.0 0.0 4516.5 \n\n[151 rows x 10 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>发电量_1万千瓦时</th>\n <th>供热量_1吉焦</th>\n <th>燃料消耗量_1</th>\n <th>发电量_2万千瓦时</th>\n <th>供热量_2吉焦</th>\n <th>燃料消耗量_2</th>\n <th>企业名称</th>\n <th>发电量(万千瓦时)</th>\n <th>供热量(吉焦)</th>\n <th>燃料消耗量(吨)</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2021-01-01</th>\n <td>952.0</td>\n <td>11032.5</td>\n <td>5478.8</td>\n <td>893</td>\n <td>0.0</td>\n <td>4689.7</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1845.0</td>\n <td>11032.5</td>\n <td>10168.5</td>\n </tr>\n <tr>\n <th>2021-01-02</th>\n <td>1127.0</td>\n <td>11180.5</td>\n <td>6125.4</td>\n <td>1061</td>\n <td>0.0</td>\n <td>5455.5</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2188.0</td>\n <td>11180.5</td>\n <td>11580.9</td>\n </tr>\n <tr>\n <th>2021-01-03</th>\n <td>1051.0</td>\n <td>11197.7</td>\n <td>5717.6</td>\n <td>1053</td>\n <td>0.0</td>\n <td>4060.5</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2104.0</td>\n <td>11197.7</td>\n <td>9778.1</td>\n </tr>\n <tr>\n <th>2021-01-04</th>\n <td>1179.0</td>\n <td>11146.6</td>\n <td>6172.5</td>\n <td>1237</td>\n <td>0.0</td>\n <td>5574.7</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2416.0</td>\n <td>11146.6</td>\n <td>11747.2</td>\n </tr>\n <tr>\n <th>2021-01-05</th>\n <td>1142.0</td>\n <td>10922.4</td>\n <td>6053.3</td>\n <td>1082</td>\n <td>0.0</td>\n <td>6363.9</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2224.0</td>\n <td>10922.4</td>\n <td>12417.2</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2021-05-27</th>\n <td>0.0</td>\n <td>0.0</td>\n <td>0.0</td>\n <td>1192</td>\n <td>0.0</td>\n <td>5684.3</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1192.0</td>\n <td>0.0</td>\n <td>5684.3</td>\n </tr>\n <tr>\n <th>2021-05-28</th>\n <td>0.0</td>\n <td>0.0</td>\n <td>0.0</td>\n <td>1159</td>\n <td>0.0</td>\n <td>5349.3</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1159.0</td>\n <td>0.0</td>\n <td>5349.3</td>\n </tr>\n <tr>\n <th>2021-05-29</th>\n <td>0.0</td>\n <td>0.0</td>\n <td>0.0</td>\n <td>998</td>\n <td>0.0</td>\n <td>4851.2</td>\n <td>武乡西山发电有限责任公司</td>\n <td>998.0</td>\n <td>0.0</td>\n <td>4851.2</td>\n </tr>\n <tr>\n <th>2021-05-30</th>\n <td>0.0</td>\n <td>0.0</td>\n <td>0.0</td>\n <td>1033</td>\n <td>0.0</td>\n <td>4763.4</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1033.0</td>\n <td>0.0</td>\n <td>4763.4</td>\n </tr>\n <tr>\n <th>2021-05-31</th>\n <td>0.0</td>\n <td>0.0</td>\n <td>0.0</td>\n <td>909</td>\n <td>0.0</td>\n <td>4516.5</td>\n <td>武乡西山发电有限责任公司</td>\n <td>909.0</td>\n <td>0.0</td>\n <td>4516.5</td>\n </tr>\n </tbody>\n</table>\n<p>151 rows × 10 columns</p>\n<
},
2022-10-31 14:20:50 +08:00
"execution_count": 10,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_daily_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 11,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": " Unnamed: 0 Unnamed: 1 监控点名称 二氧化硫浓度(mg/m3) 氮氧化物浓度(mg/m3) \\\n0 2021.1.1 武乡西山发电有限责任公司 1号炉废气排放口 20.15 31.49 \n1 2021.1.2 武乡西山发电有限责任公司 1号炉废气排放口 20.27 31.65 \n2 2021.1.3 武乡西山发电有限责任公司 1号炉废气排放口 19.72 31.68 \n3 2021.1.4 武乡西山发电有限责任公司 1号炉废气排放口 17.64 31.51 \n4 2021.1.5 武乡西山发电有限责任公司 1号炉废气排放口 18.66 31.72 \n.. ... ... ... ... ... \n113 2021.4.26 武乡西山发电有限责任公司 1号炉废气排放口 0.22 0.01 \n114 2021.4.27 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.01 \n115 2021.4.28 武乡西山发电有限责任公司 1号炉废气排放口 0.01 0.00 \n116 2021.4.29 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.01 \n117 2021.4.30 武乡西山发电有限责任公司 1号炉废气排放口 0.00 0.02 \n\n 烟尘浓度(mg/m3) 流速(m/s) 流量(m3/h) Unnamed: 8 Unnamed: 9 ... \\\n0 2.49 11.24 1558502.96 NaN NaN ... \n1 2.51 12.03 1648629.50 NaN NaN ... \n2 2.50 12.11 1656682.63 NaN NaN ... \n3 2.52 11.79 1610496.46 NaN NaN ... \n4 2.50 11.97 1652330.08 NaN NaN ... \n.. ... ... ... ... ... ... \n113 0.19 0.00 0.00 NaN NaN ... \n114 0.21 0.00 0.00 NaN NaN ... \n115 0.25 0.00 0.00 NaN NaN ... \n116 0.26 0.00 0.00 NaN NaN ... \n117 0.56 0.00 0.00 NaN NaN ... \n\n Unnamed: 14 监控点名称.1 二氧化硫浓度(mg/m3).1 氮氧化物浓度(mg/m3).1 烟尘浓度(mg/m3).1 \\\n0 武乡西山发电有限责任公司 2号炉废气排放口 22.00 33.09 2.25 \n1 武乡西山发电有限责任公司 2号炉废气排放口 20.45 34.37 2.37 \n2 武乡西山发电有限责任公司 2号炉废气排放口 19.82 33.55 2.38 \n3 武乡西山发电有限责任公司 2号炉废气排放口 20.18 32.47 2.39 \n4 武乡西山发电有限责任公司 2号炉废气排放口 21.07 33.73 2.42 \n.. ... ... ... ... ... \n113 武乡西山发电有限责任公司 2号炉废气排放口 18.31 35.41 2.03 \n114 武乡西山发电有限责任公司 2号炉废气排放口 0.14 0.43 0.08 \n115 武乡西山发电有限责任公司 2号炉废气排放口 0.00 0.01 0.09 \n116 武乡西山发电有限责任公司 2号炉废气排放口 0.01 0.05 0.07 \n117 武乡西山发电有限责任公司 2号炉废气排放口 3.96 22.90 0.68 \n\n 流速(m/s).1 流量(m3/h).1 Unnamed: 21 Unnamed: 22 状态.1 \n0 5.00 731609.00 NaN NaN 正常运行 \n1 9.18 1326387.42 NaN NaN 正常运行 \n2 9.85 1417186.13 NaN NaN 正常运行 \n3 9.07 1304455.88 NaN NaN 正常运行 \n4 9.71 1390566.88 NaN NaN 正常运行 \n.. ... ... ... ... ... \n113 9.59 1316204.83 NaN NaN 正<><E6ADA3>
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Unnamed: 0</th>\n <th>Unnamed: 1</th>\n <th>监控点名称</th>\n <th>二氧化硫浓度(mg/m3)</th>\n <th>氮氧化物浓度(mg/m3)</th>\n <th>烟尘浓度(mg/m3)</th>\n <th>流速(m/s)</th>\n <th>流量(m3/h)</th>\n <th>Unnamed: 8</th>\n <th>Unnamed: 9</th>\n <th>...</th>\n <th>Unnamed: 14</th>\n <th>监控点名称.1</th>\n <th>二氧化硫浓度(mg/m3).1</th>\n <th>氮氧化物浓度(mg/m3).1</th>\n <th>烟尘浓度(mg/m3).1</th>\n <th>流速(m/s).1</th>\n <th>流量(m3/h).1</th>\n <th>Unnamed: 21</th>\n <th>Unnamed: 22</th>\n <th>状态.1</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2021.1.1</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1号炉废气排放口</td>\n <td>20.15</td>\n <td>31.49</td>\n <td>2.49</td>\n <td>11.24</td>\n <td>1558502.96</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>...</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2号炉废气排放口</td>\n <td>22.00</td>\n <td>33.09</td>\n <td>2.25</td>\n <td>5.00</td>\n <td>731609.00</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2021.1.2</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1号炉废气排放口</td>\n <td>20.27</td>\n <td>31.65</td>\n <td>2.51</td>\n <td>12.03</td>\n <td>1648629.50</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>...</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2号炉废气排放口</td>\n <td>20.45</td>\n <td>34.37</td>\n <td>2.37</td>\n <td>9.18</td>\n <td>1326387.42</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2021.1.3</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1号炉废气排放口</td>\n <td>19.72</td>\n <td>31.68</td>\n <td>2.50</td>\n <td>12.11</td>\n <td>1656682.63</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>...</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2号炉废气排放口</td>\n <td>19.82</td>\n <td>33.55</td>\n <td>2.38</td>\n <td>9.85</td>\n <td>1417186.13</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2021.1.4</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1号炉废气排放口</td>\n <td>17.64</td>\n <td>31.51</td>\n <td>2.52</td>\n <td>11.79</td>\n <td>1610496.46</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>...</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2号炉废气排放口</td>\n <td>20.18</td>\n <td>32.47</td>\n <td>2.39</td>\n <td>9.07</td>\n <td>1304455.88</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2021.1.5</td>\n <td>武乡西山发电有限责任公司</td>\n <td>1号炉废气排放口</td>\n <td>18.66</td>\n <td>31.72</td>\n <td>2.50</td>\n <td>11.97</td>\n <td>1652330.08</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>...</td>\n <td>武乡西山发电有限责任公司</td>\n <td>2号炉废气排放口</td>\n <td>21.07</td>\n <td>33.73</td>\n <td>2.42</td>\n <td>9.71</td>\n <td>1390566.88</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>正常运行</td>\n </tr
},
2022-10-31 14:20:50 +08:00
"execution_count": 11,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=2)\n",
"xswx_emiss_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 12,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": " Unnamed: 0 二氧化硫浓度(mg/m3) 氮氧化物浓度(mg/m3) 烟尘浓度(mg/m3) 流速(m/s) \\\n0 2021.1.1 20.15 31.49 2.49 11.24 \n1 2021.1.2 20.27 31.65 2.51 12.03 \n2 2021.1.3 19.72 31.68 2.50 12.11 \n3 2021.1.4 17.64 31.51 2.52 11.79 \n4 2021.1.5 18.66 31.72 2.50 11.97 \n.. ... ... ... ... ... \n113 2021.4.26 0.22 0.01 0.19 0.00 \n114 2021.4.27 0.00 0.01 0.21 0.00 \n115 2021.4.28 0.01 0.00 0.25 0.00 \n116 2021.4.29 0.00 0.01 0.26 0.00 \n117 2021.4.30 0.00 0.02 0.56 0.00 \n\n 流量(m3/h) 状态 \n0 1558502.96 正常运行 \n1 1648629.50 正常运行 \n2 1656682.63 正常运行 \n3 1610496.46 正常运行 \n4 1652330.08 正常运行 \n.. ... ... \n113 0.00 停运 \n114 0.00 停运 \n115 0.00 停运 \n116 0.00 停运 \n117 0.00 停运 \n\n[118 rows x 7 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Unnamed: 0</th>\n <th>二氧化硫浓度(mg/m3)</th>\n <th>氮氧化物浓度(mg/m3)</th>\n <th>烟尘浓度(mg/m3)</th>\n <th>流速(m/s)</th>\n <th>流量(m3/h)</th>\n <th>状态</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2021.1.1</td>\n <td>20.15</td>\n <td>31.49</td>\n <td>2.49</td>\n <td>11.24</td>\n <td>1558502.96</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2021.1.2</td>\n <td>20.27</td>\n <td>31.65</td>\n <td>2.51</td>\n <td>12.03</td>\n <td>1648629.50</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2021.1.3</td>\n <td>19.72</td>\n <td>31.68</td>\n <td>2.50</td>\n <td>12.11</td>\n <td>1656682.63</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2021.1.4</td>\n <td>17.64</td>\n <td>31.51</td>\n <td>2.52</td>\n <td>11.79</td>\n <td>1610496.46</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2021.1.5</td>\n <td>18.66</td>\n <td>31.72</td>\n <td>2.50</td>\n <td>11.97</td>\n <td>1652330.08</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>113</th>\n <td>2021.4.26</td>\n <td>0.22</td>\n <td>0.01</td>\n <td>0.19</td>\n <td>0.00</td>\n <td>0.00</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>114</th>\n <td>2021.4.27</td>\n <td>0.00</td>\n <td>0.01</td>\n <td>0.21</td>\n <td>0.00</td>\n <td>0.00</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>115</th>\n <td>2021.4.28</td>\n <td>0.01</td>\n <td>0.00</td>\n <td>0.25</td>\n <td>0.00</td>\n <td>0.00</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>116</th>\n <td>2021.4.29</td>\n <td>0.00</td>\n <td>0.01</td>\n <td>0.26</td>\n <td>0.00</td>\n <td>0.00</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>117</th>\n <td>2021.4.30</td>\n <td>0.00</td>\n <td>0.02</td>\n <td>0.56</td>\n <td>0.00</td>\n <td>0.00</td>\n <td>停运</td>\n </tr>\n </tbody>\n</table>\n<p>118 rows × 7 columns</p>\n</div>"
},
2022-10-31 14:20:50 +08:00
"execution_count": 12,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_emiss_data_1 = xswx_emiss_data[np.array(xswx_emiss_data.columns)[[0, 3, 4, 5, 6, 7, 10]]].copy()\n",
"xswx_emiss_data_2 = xswx_emiss_data[np.array(xswx_emiss_data.columns)[[13, 16, 17, 18, 19, 20, 23]]].copy()\n",
"xswx_emiss_data_1"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 13,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_emiss_data_1.columns = ['days'] + xswx_emiss_data_1.columns[1:].tolist()\n",
"xswx_emiss_data_2.columns = xswx_emiss_data_1.columns.tolist()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 14,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_emiss_data_1.index = pd.to_datetime(xswx_emiss_data_1.days)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 15,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_emiss_data_2.index = pd.to_datetime(xswx_emiss_data_2.days)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 16,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_emiss_data_1.drop(columns=['days'], inplace=True)\n",
"xswx_emiss_data_2.drop(columns=['days'], inplace=True)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 17,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"xswx_emiss_data_1.columns = [f'机组1_{x}' for x in xswx_emiss_data_1.columns]\n",
"xswx_emiss_data_2.columns = [f'机组2_{x}' for x in xswx_emiss_data_2.columns]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 18,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": "2021-01-01 1\n2021-03-17 1\n2021-03-29 1\n2021-03-28 1\n2021-03-27 1\n ..\n2021-02-05 1\n2021-02-04 1\n2021-02-03 1\n2021-02-02 1\n2021-04-30 1\nName: days, Length: 118, dtype: int64"
},
2022-10-31 14:20:50 +08:00
"execution_count": 18,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xswx_emiss_data_1.reset_index().days.value_counts()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 64,
"outputs": [],
2022-10-25 15:11:12 +08:00
"source": [
2022-10-31 14:20:50 +08:00
"wxxs_save_data = pd.concat([xswx_daily_data, xswx_emiss_data_1, xswx_emiss_data_2], axis=1)\n",
"wxxs_save_data.index = wxxs_save_data.index.astype(str)"
2022-10-25 15:11:12 +08:00
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "markdown",
"source": [
"### 邯郸东郊"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 20,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": "Index(['企业名称', '地址', '省份', '经度', '纬度', '机组数量', '单机容量MW', '生产设备类型',\n '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺', '除尘工艺', '日期',\n '机组编号', '投产日期', '燃料类型', '低位发热量GJ/t', '产灰量(吨)', '发电量(万千瓦时)', '供热量',\n '产渣量', '机组运行时间', '发电煤耗(克/千瓦时)', '燃料消耗量(吨)', 'Unnamed: 27', '日期.1',\n '机组编号.1', '投产日期.1', '燃料类型.1', '低位发热量GJ/t.1', '产灰量(吨).1',\n '发电量(万千瓦时).1', '供热量.1', '产渣量.1', '机组运行时间.1', '发电煤耗(克/千瓦时).1',\n '燃料消耗量(吨).1'],\n dtype='object')"
},
2022-10-31 14:20:50 +08:00
"execution_count": 20,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_daily = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=5)\n",
"hddj_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 21,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"hddj_daily_1 = hddj_daily[['日期', '发电量(万千瓦时)', '供热量', '燃料消耗量(吨)']].copy()\n",
"hddj_daily_1.columns = ['days', \"发电量_1万千瓦时\", '供热量_1吉焦', '燃料消耗量_1']\n",
"hddj_daily_2 = hddj_daily[['日期.1', '发电量(万千瓦时).1', '供热量.1', '燃料消耗量(吨).1']].copy()\n",
"hddj_daily_2.columns = ['days', \"发电量_2万千瓦时\", '供热量_2吉焦', '燃料消耗量_2']"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 22,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": "DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04',\n '2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08',\n '2022-01-09', '2022-01-10', '2022-01-11', '2022-01-12',\n '2022-01-13', '2022-01-14', '2022-01-15', '2022-01-16',\n '2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20',\n '2022-01-21', '2022-01-22', '2022-01-23', '2022-01-24',\n '2022-01-25', '2022-01-26', '2022-01-27', '2022-01-28',\n '2022-01-29', '2022-01-30', '2022-01-31', '2022-02-01',\n '2022-02-02', '2022-02-03', '2022-02-04', '2022-02-05',\n '2022-02-06', '2022-02-07', '2022-02-08', '2022-02-09',\n '2022-02-10', '2022-02-11', '2022-02-12', '2022-02-13',\n '2022-02-14', '2022-02-15', '2022-02-16', '2022-02-17',\n '2022-02-18', '2022-02-19', '2022-02-20', '2022-02-21',\n '2022-02-22', '2022-02-23', '2022-02-24', '2022-02-25',\n '2022-02-26', '2022-02-27', '2022-02-28'],\n dtype='datetime64[ns]', freq='D')"
},
2022-10-31 14:20:50 +08:00
"execution_count": 22,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"min_start = min(hddj_daily_1.days.min(), hddj_daily_2.days.min())\n",
"max_end = max(hddj_daily_1.days.max(), hddj_daily_2.days.max())\n",
"date_range = pd.date_range(min_start, max_end, freq='D')\n",
"date_range"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 23,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"hddj_daily_1 = hddj_daily_1.set_index('days').reindex(date_range).fillna(0)\n",
"hddj_daily_2 = hddj_daily_2.set_index('days').reindex(date_range).fillna(0)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 24,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
"text/plain": " 发电量_1万千瓦时 供热量_1吉焦 燃料消耗量_1\n2022-01-01 494.20 30829 2861\n2022-01-02 554.30 32122 2536\n2022-01-03 558.30 33451 2911\n2022-01-04 529.70 33179 3023\n2022-01-05 563.90 29731 3191\n2022-01-06 561.00 32505 3357\n2022-01-07 570.00 33189 3231\n2022-01-08 526.80 31881 2765\n2022-01-09 517.10 30799 2574\n2022-01-10 512.80 29277 2512\n2022-01-11 521.20 32460 2757\n2022-01-12 543.32 33593 3132\n2022-01-13 512.52 33326 2950\n2022-01-14 495.42 31417 2755\n2022-01-15 500.06 32434 2834\n2022-01-16 527.93 31986 3182\n2022-01-17 496.50 32268 3121\n2022-01-18 529.31 31814 3241\n2022-01-19 552.01 30414 3274\n2022-01-20 544.00 32416 3594\n2022-01-21 561.29 34300 3891\n2022-01-22 574.00 38342 4276\n2022-01-23 534.94 37444 3767\n2022-01-24 543.91 34539 3175\n2022-01-25 538.31 36753 3860\n2022-01-26 529.59 34148 3749\n2022-01-27 525.88 33630 3725\n2022-01-28 545.06 34181 3866\n2022-01-29 522.68 30637 3395\n2022-01-30 509.69 34254 3101\n2022-01-31 516.51 32145 2985\n2022-02-01 500.46 25687 2662\n2022-02-02 477.03 29061 2821\n2022-02-03 439.93 29598 2779\n2022-02-04 452.76 28709 2523\n2022-02-05 508.35 30133 2884\n2022-02-06 485.41 27635 2902\n2022-02-07 469.75 28259 2939\n2022-02-08 452.87 26685 2556\n2022-02-09 470.87 26037 2691\n2022-02-10 490.75 25530 2901\n2022-02-11 467.50 24359 2790\n2022-02-12 446.31 24180 2766\n2022-02-13 466.12 25274 3054\n2022-02-14 464.96 29338 2533\n2022-02-15 466.40 27394 2611\n2022-02-16 493.26 27639 2905\n2022-02-17 495.53 30228 2894\n2022-02-18 524.59 28126 3030\n2022-02-19 466.49 27575 2470\n2022-02-20 503.46 27424 2799\n2022-02-21 521.02 26965 3098\n2022-02-22 528.08 26886 3317\n2022-02-23 533.95 25022 3174\n2022-02-24 505.76 26727 3079\n2022-02-25 445.43 21930 2580\n2022-02-26 491.01 16645 2733\n2022-02-27 465.33 17884 2862\n2022-02-28 487.21 15457 3029",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>发电量_1万千瓦时</th>\n <th>供热量_1吉焦</th>\n <th>燃料消耗量_1</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2022-01-01</th>\n <td>494.20</td>\n <td>30829</td>\n <td>2861</td>\n </tr>\n <tr>\n <th>2022-01-02</th>\n <td>554.30</td>\n <td>32122</td>\n <td>2536</td>\n </tr>\n <tr>\n <th>2022-01-03</th>\n <td>558.30</td>\n <td>33451</td>\n <td>2911</td>\n </tr>\n <tr>\n <th>2022-01-04</th>\n <td>529.70</td>\n <td>33179</td>\n <td>3023</td>\n </tr>\n <tr>\n <th>2022-01-05</th>\n <td>563.90</td>\n <td>29731</td>\n <td>3191</td>\n </tr>\n <tr>\n <th>2022-01-06</th>\n <td>561.00</td>\n <td>32505</td>\n <td>3357</td>\n </tr>\n <tr>\n <th>2022-01-07</th>\n <td>570.00</td>\n <td>33189</td>\n <td>3231</td>\n </tr>\n <tr>\n <th>2022-01-08</th>\n <td>526.80</td>\n <td>31881</td>\n <td>2765</td>\n </tr>\n <tr>\n <th>2022-01-09</th>\n <td>517.10</td>\n <td>30799</td>\n <td>2574</td>\n </tr>\n <tr>\n <th>2022-01-10</th>\n <td>512.80</td>\n <td>29277</td>\n <td>2512</td>\n </tr>\n <tr>\n <th>2022-01-11</th>\n <td>521.20</td>\n <td>32460</td>\n <td>2757</td>\n </tr>\n <tr>\n <th>2022-01-12</th>\n <td>543.32</td>\n <td>33593</td>\n <td>3132</td>\n </tr>\n <tr>\n <th>2022-01-13</th>\n <td>512.52</td>\n <td>33326</td>\n <td>2950</td>\n </tr>\n <tr>\n <th>2022-01-14</th>\n <td>495.42</td>\n <td>31417</td>\n <td>2755</td>\n </tr>\n <tr>\n <th>2022-01-15</th>\n <td>500.06</td>\n <td>32434</td>\n <td>2834</td>\n </tr>\n <tr>\n <th>2022-01-16</th>\n <td>527.93</td>\n <td>31986</td>\n <td>3182</td>\n </tr>\n <tr>\n <th>2022-01-17</th>\n <td>496.50</td>\n <td>32268</td>\n <td>3121</td>\n </tr>\n <tr>\n <th>2022-01-18</th>\n <td>529.31</td>\n <td>31814</td>\n <td>3241</td>\n </tr>\n <tr>\n <th>2022-01-19</th>\n <td>552.01</td>\n <td>30414</td>\n <td>3274</td>\n </tr>\n <tr>\n <th>2022-01-20</th>\n <td>544.00</td>\n <td>32416</td>\n <td>3594</td>\n </tr>\n <tr>\n <th>2022-01-21</th>\n <td>561.29</td>\n <td>34300</td>\n <td>3891</td>\n </tr>\n <tr>\n <th>2022-01-22</th>\n <td>574.00</td>\n <td>38342</td>\n <td>4276</td>\n </tr>\n <tr>\n <th>2022-01-23</th>\n <td>534.94</td>\n <td>37444</td>\n <td>3767</td>\n </tr>\n <tr>\n <th>2022-01-24</th>\n <td>543.91</td>\n <td>34539</td>\n <td>3175</td>\n </tr>\n <tr>\n <th>2022-01-25</th>\n <td>538.31</td>\n <td>36753</td>\n <td>3860</td>\n </tr>\n <tr>\n <th>2022-01-26</th>\n <td>529.59</td>\n <td>34148</td>\n <td>3749</td>\n </tr>\n <tr>\n <th>2022-01-27</th>\n <td>525.88</td>\n <td>33630</td>\n <td>3725</td>\n </tr>\n <tr>\n <th>2022-01-28</th>\n <td>545.06</td>\n <td>34181</td>\n <td>3866</td>\n </tr>\n <tr>\n <th>2022-01-29</th>\n <td>522.68</td>\n <td>30637</td>\n <td>3395</td>\n </tr>\n <tr>\n <th>2022-01-30</th>\n <td>509.69</td>\n <td>34254</td>\n <td>3101</td>\n </tr>\n <tr>\n <th>2022-01-31</th>\n <td>516.51</td>\n <td>32145</td>\n <td>2985</td>\n </tr>\n <tr>\n <th>
},
2022-10-31 14:20:50 +08:00
"execution_count": 24,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_daily_1"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 25,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"hddj_daily_data = pd.concat([hddj_daily_1, hddj_daily_2], axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 26,
2022-10-25 15:11:12 +08:00
"outputs": [
{
2022-10-31 14:20:50 +08:00
"data": {
"text/plain": "Index(['时间', '企业名称', '监测点', '流量 m3/h', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n '烟尘浓度(mg/m3)', '含氧量(%', '温度(℃)', '烟气湿度(%', '烟气压力(千帕)', '烟气流速m/s',\n '状态', 'Unnamed: 13', '时间.1', '企业名称.1', '监测点.1', '流量 m3/h.1',\n 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%.1',\n '温度(℃).1', '烟气湿度(%.1', '烟气压力(千帕).1', '烟气流速m/s.1', '状态.1'],\n dtype='object')"
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
2022-10-25 15:11:12 +08:00
}
],
"source": [
"hddj_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=4)\n",
"hddj_emiss_data.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 27,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
2022-10-31 14:20:50 +08:00
"text/plain": " 时间 企业名称 监测点 流量 m3/h \\\n0 2022-01-01 00:00:00 国电电力邯郸东郊热电有限责任公司 1号机组排口DA002DCS 930582.0 \n1 2022-01-01 01:00:00 国电电力邯郸东郊热电有限责任公司 1号机组排口DA002DCS 891316.8 \n\n NOx浓度(mg/m3) SO2浓度(mg/m3) 烟尘浓度(mg/m3) 含氧量(% 温度(℃) 烟气湿度(% ... \\\n0 13.379 13.158 3.438 6.435 48.604 14.695 ... \n1 19.312 17.951 2.798 7.164 47.819 14.156 ... \n\n 流量 m3/h.1 NOx浓度(mg/m3).1 SO2浓度(mg/m3).1 烟尘浓度(mg/m3).1 含氧量(%.1 温度(℃).1 \\\n0 1111474.8 18.171 18.171 0.476 7.065 48.307 \n1 1103194.8 20.524 22.773 0.479 7.130 48.887 \n\n 烟气湿度(%.1 烟气压力(千帕).1 烟气流速m/s.1 状态.1 \n0 13.253 -0.012 13.693 停运 \n1 13.734 -0.021 13.691 停运 \n\n[2 rows x 27 columns]",
2022-10-25 15:11:12 +08:00
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>时间</th>\n <th>企业名称</th>\n <th>监测点</th>\n <th>流量 m3/h</th>\n <th>NOx浓度(mg/m3)</th>\n <th>SO2浓度(mg/m3)</th>\n <th>烟尘浓度(mg/m3)</th>\n <th>含氧量(%</th>\n <th>温度(℃)</th>\n <th>烟气湿度(%</th>\n <th>...</th>\n <th>流量 m3/h.1</th>\n <th>NOx浓度(mg/m3).1</th>\n <th>SO2浓度(mg/m3).1</th>\n <th>烟尘浓度(mg/m3).1</th>\n <th>含氧量(%.1</th>\n <th>温度(℃).1</th>\n <th>烟气湿度(%.1</th>\n <th>烟气压力(千帕).1</th>\n <th>烟气流速m/s.1</th>\n <th>状态.1</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2022-01-01 00:00:00</td>\n <td>国电电力邯郸东郊热电有限责任公司</td>\n <td>1号机组排口DA002DCS</td>\n <td>930582.0</td>\n <td>13.379</td>\n <td>13.158</td>\n <td>3.438</td>\n <td>6.435</td>\n <td>48.604</td>\n <td>14.695</td>\n <td>...</td>\n <td>1111474.8</td>\n <td>18.171</td>\n <td>18.171</td>\n <td>0.476</td>\n <td>7.065</td>\n <td>48.307</td>\n <td>13.253</td>\n <td>-0.012</td>\n <td>13.693</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2022-01-01 01:00:00</td>\n <td>国电电力邯郸东郊热电有限责任公司</td>\n <td>1号机组排口DA002DCS</td>\n <td>891316.8</td>\n <td>19.312</td>\n <td>17.951</td>\n <td>2.798</td>\n <td>7.164</td>\n <td>47.819</td>\n <td>14.156</td>\n <td>...</td>\n <td>1103194.8</td>\n <td>20.524</td>\n <td>22.773</td>\n <td>0.479</td>\n <td>7.130</td>\n <td>48.887</td>\n <td>13.734</td>\n <td>-0.021</td>\n <td>13.691</td>\n <td>停运</td>\n </tr>\n </tbody>\n</table>\n<p>2 rows × 27 columns</p>\n</div>"
},
2022-10-31 14:20:50 +08:00
"execution_count": 27,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_emiss_data.head(2)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 28,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"hddj_emiss_data_1 = hddj_emiss_data[['时间', '流量 m3/h', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n",
" '烟尘浓度(mg/m3)', '含氧量(%', '温度(℃)', '烟气湿度(%', '烟气压力(千帕)', '烟气流速m/s',\n",
" '状态', ]].copy()\n",
"hddj_emiss_data_2 = hddj_emiss_data[['时间.1', '流量 m3/h.1',\n",
" 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%.1',\n",
" '温度(℃).1', '烟气湿度(%.1', '烟气压力(千帕).1', '烟气流速m/s.1', '状态.1']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 29,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
"hddj_emiss_data_1.columns = ['date'] + hddj_emiss_data_1.columns[1:].tolist()\n",
"hddj_emiss_data_2.columns = hddj_emiss_data_1.columns.tolist()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 30,
"outputs": [],
"source": [
"hddj_emiss_data_1['days'] = hddj_emiss_data_1.date.apply(lambda x: str(x).split(' ')[0])\n",
"hddj_emiss_data_2['days'] = hddj_emiss_data_2.date.apply(lambda x: str(x).split(' ')[0])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 31,
"outputs": [],
"source": [
"num_cols = hddj_emiss_data_1.columns[1:-2]\n",
"hddj_emiss_daily_1 = hddj_emiss_data_1.ffill().groupby('days')[num_cols].mean()\n",
"hddj_emiss_daily_1['状态'] = '正常运行'\n",
"hddj_emiss_daily_1.columns = [f\"机组1_{x}\" for x in hddj_emiss_daily_1.columns]\n",
"hddj_emiss_daily_2 = hddj_emiss_data_2.ffill().groupby('days')[num_cols].mean()\n",
"hddj_emiss_daily_2['状态'] = '正常运行'\n",
"hddj_emiss_daily_2.columns = [f\"机组2_{x}\" for x in hddj_emiss_daily_2.columns]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 32,
"outputs": [],
"source": [
"hddj_daily_data.index = hddj_daily_data.index.astype(str)\n",
"hddj_daily_data['企业名称'] = \"国电电力邯郸东郊热电有限责任公司\""
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 33,
"outputs": [
{
"data": {
"text/plain": " 发电量_1万千瓦时 供热量_1吉焦 燃料消耗量_1 发电量_2万千瓦时 供热量_2吉焦 \\\n2022-01-01 494.20 30829 2861 536.50 324 \n2022-01-02 554.30 32122 2536 567.90 1008 \n2022-01-03 558.30 33451 2911 566.20 1296 \n2022-01-04 529.70 33179 3023 563.50 1248 \n2022-01-05 563.90 29731 3191 609.30 1362 \n2022-01-06 561.00 32505 3357 577.20 1236 \n2022-01-07 570.00 33189 3231 579.00 1035 \n2022-01-08 526.80 31881 2765 542.90 1323 \n2022-01-09 517.10 30799 2574 538.90 1305 \n2022-01-10 512.80 29277 2512 483.40 1335 \n2022-01-11 521.20 32460 2757 536.10 1299 \n2022-01-12 543.32 33593 3132 558.85 1368 \n2022-01-13 512.52 33326 2950 527.32 1398 \n2022-01-14 495.42 31417 2755 512.83 1536 \n2022-01-15 500.06 32434 2834 517.19 1242 \n2022-01-16 527.93 31986 3182 542.34 1116 \n2022-01-17 496.50 32268 3121 513.14 1362 \n2022-01-18 529.31 31814 3241 544.11 1305 \n2022-01-19 552.01 30414 3274 565.96 1161 \n2022-01-20 544.00 32416 3594 581.34 1329 \n2022-01-21 561.29 34300 3891 617.18 1383 \n2022-01-22 574.00 38342 4276 585.25 1368 \n2022-01-23 534.94 37444 3767 550.24 1242 \n2022-01-24 543.91 34539 3175 550.61 1362 \n2022-01-25 538.31 36753 3860 551.21 1131 \n2022-01-26 529.59 34148 3749 545.59 891 \n2022-01-27 525.88 33630 3725 537.33 777 \n2022-01-28 545.06 34181 3866 554.88 558 \n2022-01-29 522.68 30637 3395 544.47 399 \n2022-01-30 509.69 34254 3101 526.92 258 \n2022-01-31 516.51 32145 2985 528.13 210 \n2022-02-01 500.46 25687 2662 543.60 207 \n2022-02-02 477.03 29061 2821 534.40 186 \n2022-02-03 439.93 29598 2779 494.86 204 \n2022-02-04 452.76 28709 2523 493.99 282 \n2022-02-05 508.35 30133 2884 521.49 285 \n2022-02-06 485.41 27635 2902 503.13 363 \n2022-02-07 469.75 28259 2939 484.85 363 \n2022-02-08 452.87 26685 2556 481.92 603 \n2022-02-09 470.87 26037 2691 488.17 681 \n2022-02-10 490.75 25530 2901 508.89 591 \n2022-02-11 467.50 24359 2790 497.45 735 \n2022-02-12 446.31 24180 2766 474.04 621 \n2022-02-13 466.12 25274 3054 491.41 594 \n2022-02-14 464.96 29338 2533 491.96 651 \n2022-02-15 466.40 27394 2611 444.04 474 \n2022-02-16 493.26 27639 2905 420.10 1074 \n2022-02-17 495.53 30228 2894 469.32 1362 \n2022-02-18 524.59 28126 3030 531.28 1413 \n2022-02-19 466.49 27575 2470 497.11 1317 \n2022-02-20 503.46 27424 2799 460.91 1281 \n2022-02-21 521.02 26965 3098 482.89 1317 \n2022-02-22 5
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>发电量_1万千瓦时</th>\n <th>供热量_1吉焦</th>\n <th>燃料消耗量_1</th>\n <th>发电量_2万千瓦时</th>\n <th>供热量_2吉焦</th>\n <th>燃料消耗量_2</th>\n <th>企业名称</th>\n <th>机组1_流量 m3/h</th>\n <th>机组1_NOx浓度(mg/m3)</th>\n <th>机组1_SO2浓度(mg/m3)</th>\n <th>...</th>\n <th>机组2_流量 m3/h</th>\n <th>机组2_NOx浓度(mg/m3)</th>\n <th>机组2_SO2浓度(mg/m3)</th>\n <th>机组2_烟尘浓度(mg/m3)</th>\n <th>机组2_含氧量%</th>\n <th>机组2_温度</th>\n <th>机组2_烟气湿度%</th>\n <th>机组2_烟气压力千帕</th>\n <th>机组2_烟气流速m/s</th>\n <th>机组2_状态</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2022-01-01</th>\n <td>494.20</td>\n <td>30829</td>\n <td>2861</td>\n <td>536.50</td>\n <td>324</td>\n <td>2752</td>\n <td>国电电力邯郸东郊热电有限责任公司</td>\n <td>941229.60</td>\n <td>18.200375</td>\n <td>18.165208</td>\n <td>...</td>\n <td>1095004.20</td>\n <td>19.098625</td>\n <td>16.495917</td>\n <td>0.477167</td>\n <td>7.384167</td>\n <td>49.570583</td>\n <td>14.332542</td>\n <td>-0.001208</td>\n <td>13.711958</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-01-02</th>\n <td>554.30</td>\n <td>32122</td>\n <td>2536</td>\n <td>567.90</td>\n <td>1008</td>\n <td>3086</td>\n <td>国电电力邯郸东郊热电有限责任公司</td>\n <td>992216.10</td>\n <td>19.536458</td>\n <td>18.721167</td>\n <td>...</td>\n <td>1113858.45</td>\n <td>20.497292</td>\n <td>15.455208</td>\n <td>0.453042</td>\n <td>6.918208</td>\n <td>48.557083</td>\n <td>13.511000</td>\n <td>-0.004167</td>\n <td>13.774167</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-01-03</th>\n <td>558.30</td>\n <td>33451</td>\n <td>2911</td>\n <td>566.20</td>\n <td>1296</td>\n <td>2914</td>\n <td>国电电力邯郸东郊热电有限责任公司</td>\n <td>1016053.05</td>\n <td>20.577917</td>\n <td>16.690083</td>\n <td>...</td>\n <td>1111516.35</td>\n <td>19.519958</td>\n <td>15.434792</td>\n <td>0.459625</td>\n <td>7.142917</td>\n <td>49.184958</td>\n <td>13.971208</td>\n <td>-0.003500</td>\n <td>13.844875</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-01-04</th>\n <td>529.70</td>\n <td>33179</td>\n <td>3023</td>\n <td>563.50</td>\n <td>1248</td>\n <td>2847</td>\n <td>国电电力邯郸东郊热电有限责任公司</td>\n <td>979135.35</td>\n <td>20.397917</td>\n <td>15.546958</td>\n <td>...</td>\n <td>1112429.55</td>\n <td>17.986042</td>\n <td>13.265125</td>\n <td>0.464458</td>\n <td>7.163542</td>\n <td>49.099500</td>\n <td>13.916375</td>\n <td>-0.008208</td>\n <td>13.842125</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-01-05</th>\n <td>563.90</td>\n <td>29731</td>\n <td>3191</td>\n <td>609.30</td>\n <td>1362</td>\n <td>3014</td>\n <td>国电电力邯郸东郊热电有限责任公司</td>\n <td>996159.15</td>\n <td>17.955417</td>\n <td>14.888333</td>\n <td>...</td>\n <td>1141153.80</td>\n <td>18.756125</td>\n <td>14.446000</td>\n <
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hddj_save_data = pd.concat([hddj_daily_data, hddj_emiss_daily_1, hddj_emiss_daily_2], axis=1)\n",
"hddj_save_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 34,
"outputs": [
{
"data": {
"text/plain": "Index(['企业名称', 'address_reg', 'address1', '经度', '纬度', '机组数量', '单机容量MW',\n '生产设备类型', '锅炉额定蒸发量 t/h ', '汽轮机类型', '压力参数', '冷却方式', '脱硝工艺', '脱硫工艺',\n '除尘工艺', '燃料类型', '低位发热量GJ/t', 'Unnamed: 17', '日期', '机组编号', '投产日期',\n '产灰量(吨)', '产石膏量(吨)', '脱硝设施耗电量(千瓦时)', '运行时间(小时)', '除尘设施运行时间(小时)',\n '除尘耗电量(千瓦时)', '发电量(万千瓦时)', '供热量(万吉焦)', '产渣量', '脱硫剂使用量(吨)', '脱硫耗电量(千瓦时)',\n '脱硫设施运行时间(小时)', '脱硝还原剂消耗量(吨)', '脱硝运行时间(小时)', '燃料消耗量(吨)', 'Unnamed: 36',\n '日期.1', '机组编号.1', '投产日期.1', '产灰量(吨).1', '产石膏量(吨).1', '脱硝设施耗电量(千瓦时).1',\n '运行时间(小时).1', '除尘设施运行时间(小时).1', '除尘耗电量(千瓦时).1', '发电量(万千瓦时).1',\n '供热量(万吉焦).1', '产渣量.1', '脱硫剂使用量(吨).1', '脱硫耗电量(千瓦时).1', '脱硫设施运行时间(小时).1',\n '脱硝还原剂消耗量(吨).1', '脱硝运行时间(小时).1', '燃料消耗量(吨).1'],\n dtype='object')"
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_daily = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=7)\n",
"jtzh_daily.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 35,
2022-10-25 15:11:12 +08:00
"outputs": [],
"source": [
2022-10-31 14:20:50 +08:00
"jtzh_daily_1 = jtzh_daily[['日期', '发电量(万千瓦时)', '供热量(万吉焦)', '燃料消耗量(吨)']].copy()\n",
"jtzh_daily_1.columns = ['days', \"发电量_1万千瓦时\", '供热量_1吉焦', '燃料消耗量_1']\n",
"jtzh_daily_2 = jtzh_daily[['日期.1', '发电量(万千瓦时).1', '供热量(万吉焦).1', '燃料消耗量(吨).1']].copy()\n",
"jtzh_daily_2.columns = ['days', \"发电量_2万千瓦时\", '供热量_2吉焦', '燃料消耗量_2']"
2022-10-25 15:11:12 +08:00
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
2022-10-31 14:20:50 +08:00
"execution_count": 36,
2022-10-25 15:11:12 +08:00
"outputs": [
{
"data": {
2022-10-31 14:20:50 +08:00
"text/plain": " days 发电量_2万千瓦时 供热量_2吉焦 燃料消耗量_2\n0 2022-05-01 0.000 0 0\n1 2022-05-02 0.000 0 0\n2 2022-05-03 0.000 0 0\n3 2022-05-04 0.000 0 0\n4 2022-05-05 0.000 0 0\n5 2022-05-06 0.000 0 0\n6 2022-05-07 0.000 0 426\n7 2022-05-08 218.196 0 1873\n8 2022-05-09 444.756 0 2350\n9 2022-05-10 552.114 0 2636\n10 2022-05-11 481.542 0 2432\n11 2022-05-12 439.788 0 2099\n12 2022-05-13 495.702 0 2340\n13 2022-05-14 486.624 0 2737\n14 2022-05-15 460.524 0 2461\n15 2022-05-16 505.578 0 2615\n16 2022-05-17 432.450 0 2593\n17 2022-05-18 509.586 0 2871\n18 2022-05-19 514.404 0 2637\n19 2022-05-20 514.434 0 2682\n20 2022-05-21 520.626 0 2581\n21 2022-05-22 500.040 0 2632\n22 2022-05-23 584.886 0 3187\n23 2022-05-24 514.488 0 2719\n24 2022-05-25 486.474 0 2599\n25 2022-05-26 501.366 0 2794\n26 2022-05-27 467.106 0 2401\n27 2022-05-28 504.900 0 2611\n28 2022-05-29 462.822 0 2846\n29 2022-05-30 528.960 0 2981\n30 2022-05-31 672.180 0 3560",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>days</th>\n <th>发电量_2万千瓦时</th>\n <th>供热量_2吉焦</th>\n <th>燃料消耗量_2</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2022-05-01</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2022-05-02</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2022-05-03</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2022-05-04</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2022-05-05</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>5</th>\n <td>2022-05-06</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>6</th>\n <td>2022-05-07</td>\n <td>0.000</td>\n <td>0</td>\n <td>426</td>\n </tr>\n <tr>\n <th>7</th>\n <td>2022-05-08</td>\n <td>218.196</td>\n <td>0</td>\n <td>1873</td>\n </tr>\n <tr>\n <th>8</th>\n <td>2022-05-09</td>\n <td>444.756</td>\n <td>0</td>\n <td>2350</td>\n </tr>\n <tr>\n <th>9</th>\n <td>2022-05-10</td>\n <td>552.114</td>\n <td>0</td>\n <td>2636</td>\n </tr>\n <tr>\n <th>10</th>\n <td>2022-05-11</td>\n <td>481.542</td>\n <td>0</td>\n <td>2432</td>\n </tr>\n <tr>\n <th>11</th>\n <td>2022-05-12</td>\n <td>439.788</td>\n <td>0</td>\n <td>2099</td>\n </tr>\n <tr>\n <th>12</th>\n <td>2022-05-13</td>\n <td>495.702</td>\n <td>0</td>\n <td>2340</td>\n </tr>\n <tr>\n <th>13</th>\n <td>2022-05-14</td>\n <td>486.624</td>\n <td>0</td>\n <td>2737</td>\n </tr>\n <tr>\n <th>14</th>\n <td>2022-05-15</td>\n <td>460.524</td>\n <td>0</td>\n <td>2461</td>\n </tr>\n <tr>\n <th>15</th>\n <td>2022-05-16</td>\n <td>505.578</td>\n <td>0</td>\n <td>2615</td>\n </tr>\n <tr>\n <th>16</th>\n <td>2022-05-17</td>\n <td>432.450</td>\n <td>0</td>\n <td>2593</td>\n </tr>\n <tr>\n <th>17</th>\n <td>2022-05-18</td>\n <td>509.586</td>\n <td>0</td>\n <td>2871</td>\n </tr>\n <tr>\n <th>18</th>\n <td>2022-05-19</td>\n <td>514.404</td>\n <td>0</td>\n <td>2637</td>\n </tr>\n <tr>\n <th>19</th>\n <td>2022-05-20</td>\n <td>514.434</td>\n <td>0</td>\n <td>2682</td>\n </tr>\n <tr>\n <th>20</th>\n <td>2022-05-21</td>\n <td>520.626</td>\n <td>0</td>\n <td>2581</td>\n </tr>\n <tr>\n <th>21</th>\n <td>2022-05-22</td>\n <td>500.040</td>\n <td>0</td>\n <td>2632</td>\n </tr>\n <tr>\n <th>22</th>\n <td>2022-05-23</td>\n <td>584.886</td>\n <td>0</td>\n <td>3187</td>\n </tr>\n <tr>\n <th>23</th>\n <td>2022-05-24</td>\n <td>514.488</td>\n <td>0</td>\n <td>2719</td>\n </tr>\n <tr>\n <th>24</th>\n <td>2022-05-25</td>\n <td>486.474</td>\n <td>0</td>\n <td>2599</td>\n </tr>\n <tr>\n <th>25</th>\n <td>2022-05-26</td>\n <td>501.366</td>\n <td>0</td>\n <td>2794</td>\n </tr>\n <tr>\n <th>26</th>\n <td>2022-05-27</td>\n <td>467.106</td>\n <td>0</td>\n <td>2401</td>\n </tr>\n <tr>\n <th>27</th>\n <td>2022-05-28</td>\n <td>
2022-10-25 15:11:12 +08:00
},
2022-10-31 14:20:50 +08:00
"execution_count": 36,
2022-10-25 15:11:12 +08:00
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
2022-10-31 14:20:50 +08:00
"jtzh_daily_2"
2022-10-25 15:11:12 +08:00
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
2022-10-31 14:20:50 +08:00
},
{
"cell_type": "code",
"execution_count": 37,
"outputs": [
{
"data": {
"text/plain": "DatetimeIndex(['2022-05-01', '2022-05-02', '2022-05-03', '2022-05-04',\n '2022-05-05', '2022-05-06', '2022-05-07', '2022-05-08',\n '2022-05-09', '2022-05-10', '2022-05-11', '2022-05-12',\n '2022-05-13', '2022-05-14', '2022-05-15', '2022-05-16',\n '2022-05-17', '2022-05-18', '2022-05-19', '2022-05-20',\n '2022-05-21', '2022-05-22', '2022-05-23', '2022-05-24',\n '2022-05-25', '2022-05-26', '2022-05-27', '2022-05-28',\n '2022-05-29', '2022-05-30', '2022-05-31'],\n dtype='datetime64[ns]', freq='D')"
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"min_start = min(jtzh_daily_1.days.min(), jtzh_daily_2.days.min())\n",
"max_end = max(jtzh_daily_1.days.max(), jtzh_daily_2.days.max())\n",
"date_range = pd.date_range(min_start, max_end, freq='D')\n",
"date_range"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 38,
"outputs": [],
"source": [
"jtzh_daily_1 = jtzh_daily_1.set_index('days').reindex(date_range.astype(str)).fillna(0)\n",
"jtzh_daily_2 = jtzh_daily_2.set_index('days').reindex(date_range.astype(str)).fillna(0)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 39,
"outputs": [
{
"data": {
"text/plain": " 发电量_1万千瓦时 供热量_1吉焦 燃料消耗量_1 发电量_2万千瓦时 供热量_2吉焦 \\\n2022-05-01 444.630 0 1889 0.000 0 \n2022-05-02 516.594 0 2622 0.000 0 \n2022-05-03 410.316 0 2233 0.000 0 \n2022-05-04 421.908 0 2203 0.000 0 \n2022-05-05 486.318 0 2524 0.000 0 \n2022-05-06 457.542 0 2343 0.000 0 \n2022-05-07 451.140 0 2278 0.000 0 \n2022-05-08 484.986 0 1120 218.196 0 \n2022-05-09 0.000 0 0 444.756 0 \n2022-05-10 0.000 0 0 552.114 0 \n2022-05-11 0.000 0 0 481.542 0 \n2022-05-12 0.000 0 0 439.788 0 \n2022-05-13 0.000 0 0 495.702 0 \n2022-05-14 0.000 0 121 486.624 0 \n2022-05-15 159.936 0 2251 460.524 0 \n2022-05-16 516.192 0 2543 505.578 0 \n2022-05-17 432.300 0 2432 432.450 0 \n2022-05-18 508.680 0 2810 509.586 0 \n2022-05-19 516.066 0 2972 514.404 0 \n2022-05-20 517.356 0 2623 514.434 0 \n2022-05-21 521.454 0 2759 520.626 0 \n2022-05-22 504.798 0 2545 500.040 0 \n2022-05-23 587.400 0 3294 584.886 0 \n2022-05-24 515.964 0 2633 514.488 0 \n2022-05-25 485.346 0 2694 486.474 0 \n2022-05-26 503.502 0 2619 501.366 0 \n2022-05-27 470.340 0 2510 467.106 0 \n2022-05-28 508.644 0 2753 504.900 0 \n2022-05-29 460.536 0 1163 462.822 0 \n2022-05-30 8.610 0 0 528.960 0 \n2022-05-31 0.000 0 0 672.180 0 \n\n 燃料消耗量_2 \n2022-05-01 0 \n2022-05-02 0 \n2022-05-03 0 \n2022-05-04 0 \n2022-05-05 0 \n2022-05-06 0 \n2022-05-07 426 \n2022-05-08 1873 \n2022-05-09 2350 \n2022-05-10 2636 \n2022-05-11 2432 \n2022-05-12 2099 \n2022-05-13 2340 \n2022-05-14 2737 \n2022-05-15 2461 \n2022-05-16 2615 \n2022-05-17 2593 \n2022-05-18 2871 \n2022-05-19 2637 \n2022-05-20 2682 \n2022-05-21 2581 \n2022-05-22 2632 \n2022-05-23 3187 \n2022-05-24 2719 \n2022-05-25 2599 \n2022-05-26 2794 \n2022-05-27 2401 \n2022-05-28 2611 \n2022-05-29 2846 \n2022-05-30 2981 \n2022-05-31 3560 ",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>发电量_1万千瓦时</th>\n <th>供热量_1吉焦</th>\n <th>燃料消耗量_1</th>\n <th>发电量_2万千瓦时</th>\n <th>供热量_2吉焦</th>\n <th>燃料消耗量_2</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2022-05-01</th>\n <td>444.630</td>\n <td>0</td>\n <td>1889</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2022-05-02</th>\n <td>516.594</td>\n <td>0</td>\n <td>2622</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2022-05-03</th>\n <td>410.316</td>\n <td>0</td>\n <td>2233</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2022-05-04</th>\n <td>421.908</td>\n <td>0</td>\n <td>2203</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2022-05-05</th>\n <td>486.318</td>\n <td>0</td>\n <td>2524</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2022-05-06</th>\n <td>457.542</td>\n <td>0</td>\n <td>2343</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n </tr>\n <tr>\n <th>2022-05-07</th>\n <td>451.140</td>\n <td>0</td>\n <td>2278</td>\n <td>0.000</td>\n <td>0</td>\n <td>426</td>\n </tr>\n <tr>\n <th>2022-05-08</th>\n <td>484.986</td>\n <td>0</td>\n <td>1120</td>\n <td>218.196</td>\n <td>0</td>\n <td>1873</td>\n </tr>\n <tr>\n <th>2022-05-09</th>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>444.756</td>\n <td>0</td>\n <td>2350</td>\n </tr>\n <tr>\n <th>2022-05-10</th>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>552.114</td>\n <td>0</td>\n <td>2636</td>\n </tr>\n <tr>\n <th>2022-05-11</th>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>481.542</td>\n <td>0</td>\n <td>2432</td>\n </tr>\n <tr>\n <th>2022-05-12</th>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>439.788</td>\n <td>0</td>\n <td>2099</td>\n </tr>\n <tr>\n <th>2022-05-13</th>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>495.702</td>\n <td>0</td>\n <td>2340</td>\n </tr>\n <tr>\n <th>2022-05-14</th>\n <td>0.000</td>\n <td>0</td>\n <td>121</td>\n <td>486.624</td>\n <td>0</td>\n <td>2737</td>\n </tr>\n <tr>\n <th>2022-05-15</th>\n <td>159.936</td>\n <td>0</td>\n <td>2251</td>\n <td>460.524</td>\n <td>0</td>\n <td>2461</td>\n </tr>\n <tr>\n <th>2022-05-16</th>\n <td>516.192</td>\n <td>0</td>\n <td>2543</td>\n <td>505.578</td>\n <td>0</td>\n <td>2615</td>\n </tr>\n <tr>\n <th>2022-05-17</th>\n <td>432.300</td>\n <td>0</td>\n <td>2432</td>\n <td>432.450</td>\n <td>0</td>\n <td>2593</td>\n </tr>\n <tr>\n <th>2022-05-18</th>\n <td>508.680</td>\n <td>0</td>\n <td>2810</td>\n <td>509.586</td>\n <td>0</td>\n <td>2871</td>\n </tr>\n <tr>\n <th>2022-05-19</th>\n <td>516.066</td>\n <td>0</td>\n <td>2972</td>\n <td>514.404</td>\n <td>0</td>\n <td>2637</td>\n </tr>\n <tr>\n <th>2022-05-20</th>\n <td>517.356</td>\n <td>0</td>\n <td>2623</td>\n <td>514.434</td>\n <td>0</td>\n <td>2682</td>\n </tr>\n <t
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_daily_data = pd.concat([jtzh_daily_1, jtzh_daily_2], axis=1)\n",
"jtzh_daily_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 40,
"outputs": [
{
"data": {
"text/plain": "Index(['时间', '企业名称', '监测点', '流量 m3/h', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n '烟尘浓度(mg/m3)', '含氧量(%', '烟气湿度(%', '温度(℃)', '烟气流速m/s', '状态',\n 'Unnamed: 12', '时间.1', '企业名称.1', '监测点.1', '流量 m3/h.1',\n 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%.1',\n '烟气湿度(%.1', '温度(℃).1', '烟气流速m/s.1', '状态.1'],\n dtype='object')"
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_emiss_data = pd.read_excel('data/机器学习样表_单位换算.xlsx', sheet_name=6)\n",
"jtzh_emiss_data.columns"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 41,
"outputs": [],
"source": [
"jtzh_emiss_data_1 = jtzh_emiss_data[['时间', '流量 m3/h', 'NOx浓度(mg/m3)', 'SO2浓度(mg/m3)',\n",
" '烟尘浓度(mg/m3)', '含氧量(%', '温度(℃)', '烟气湿度(%', '烟气流速m/s',\n",
" '状态', ]].copy()\n",
"jtzh_emiss_data_2 = jtzh_emiss_data[['时间.1', '流量 m3/h.1',\n",
" 'NOx浓度(mg/m3).1', 'SO2浓度(mg/m3).1', '烟尘浓度(mg/m3).1', '含氧量(%.1',\n",
" '温度(℃).1', '烟气湿度(%.1', '烟气流速m/s.1', '状态.1']].copy()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 42,
"outputs": [],
"source": [
"jtzh_emiss_data_1.columns = ['date'] + jtzh_emiss_data_1.columns[1:].tolist()\n",
"jtzh_emiss_data_2.columns = jtzh_emiss_data_1.columns.tolist()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 43,
"outputs": [],
"source": [
"jtzh_emiss_data_1['days'] = jtzh_emiss_data_1.date.apply(lambda x: str(x).split(' ')[0])\n",
"jtzh_emiss_data_2['days'] = jtzh_emiss_data_2.date.apply(lambda x: str(x).split(' ')[0])"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 44,
"outputs": [
{
"data": {
"text/plain": " date 流量 m3/h NOx浓度(mg/m3) SO2浓度(mg/m3) 烟尘浓度(mg/m3) \\\n0 2022-05-01 00:00:00 705600 9.79 11.48 1.89 \n1 2022-05-01 01:00:00 716760 14.68 14.25 1.87 \n2 2022-05-01 02:00:00 685080 12.44 11.01 1.92 \n3 2022-05-01 03:00:00 687960 16.18 12.24 1.91 \n4 2022-05-01 04:00:00 691920 19.52 12.77 1.86 \n.. ... ... ... ... ... \n739 2022-05-31 19:00:00 56520 -0.13 0.06 0.68 \n740 2022-05-31 20:00:00 49680 -0.14 0.08 0.67 \n741 2022-05-31 21:00:00 47160 -0.15 0.07 0.68 \n742 2022-05-31 22:00:00 44280 -0.15 0.03 0.67 \n743 2022-05-31 23:00:00 38880 -0.15 0.01 0.66 \n\n 含氧量(% 温度(℃) 烟气湿度(% 烟气流速m/s 状态 days \n0 8.2 51.5 8.8 8.61 正常运行 2022-05-01 \n1 8.3 52.4 9.5 8.83 正常运行 2022-05-01 \n2 8.6 51.9 9.4 8.43 正常运行 2022-05-01 \n3 8.6 51.5 9.4 8.46 正常运行 2022-05-01 \n4 8.8 51.2 9.2 8.47 正常运行 2022-05-01 \n.. ... ... ... ... ... ... \n739 19.8 29.8 0.8 0.59 停运 2022-05-31 \n740 20.0 29.4 0.7 0.52 停运 2022-05-31 \n741 20.0 28.9 0.5 0.49 停运 2022-05-31 \n742 20.0 28.4 0.4 0.46 停运 2022-05-31 \n743 20.0 27.9 0.2 0.40 停运 2022-05-31 \n\n[744 rows x 11 columns]",
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>date</th>\n <th>流量 m3/h</th>\n <th>NOx浓度(mg/m3)</th>\n <th>SO2浓度(mg/m3)</th>\n <th>烟尘浓度(mg/m3)</th>\n <th>含氧量(%</th>\n <th>温度(℃)</th>\n <th>烟气湿度(%</th>\n <th>烟气流速m/s</th>\n <th>状态</th>\n <th>days</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>2022-05-01 00:00:00</td>\n <td>705600</td>\n <td>9.79</td>\n <td>11.48</td>\n <td>1.89</td>\n <td>8.2</td>\n <td>51.5</td>\n <td>8.8</td>\n <td>8.61</td>\n <td>正常运行</td>\n <td>2022-05-01</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2022-05-01 01:00:00</td>\n <td>716760</td>\n <td>14.68</td>\n <td>14.25</td>\n <td>1.87</td>\n <td>8.3</td>\n <td>52.4</td>\n <td>9.5</td>\n <td>8.83</td>\n <td>正常运行</td>\n <td>2022-05-01</td>\n </tr>\n <tr>\n <th>2</th>\n <td>2022-05-01 02:00:00</td>\n <td>685080</td>\n <td>12.44</td>\n <td>11.01</td>\n <td>1.92</td>\n <td>8.6</td>\n <td>51.9</td>\n <td>9.4</td>\n <td>8.43</td>\n <td>正常运行</td>\n <td>2022-05-01</td>\n </tr>\n <tr>\n <th>3</th>\n <td>2022-05-01 03:00:00</td>\n <td>687960</td>\n <td>16.18</td>\n <td>12.24</td>\n <td>1.91</td>\n <td>8.6</td>\n <td>51.5</td>\n <td>9.4</td>\n <td>8.46</td>\n <td>正常运行</td>\n <td>2022-05-01</td>\n </tr>\n <tr>\n <th>4</th>\n <td>2022-05-01 04:00:00</td>\n <td>691920</td>\n <td>19.52</td>\n <td>12.77</td>\n <td>1.86</td>\n <td>8.8</td>\n <td>51.2</td>\n <td>9.2</td>\n <td>8.47</td>\n <td>正常运行</td>\n <td>2022-05-01</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>739</th>\n <td>2022-05-31 19:00:00</td>\n <td>56520</td>\n <td>-0.13</td>\n <td>0.06</td>\n <td>0.68</td>\n <td>19.8</td>\n <td>29.8</td>\n <td>0.8</td>\n <td>0.59</td>\n <td>停运</td>\n <td>2022-05-31</td>\n </tr>\n <tr>\n <th>740</th>\n <td>2022-05-31 20:00:00</td>\n <td>49680</td>\n <td>-0.14</td>\n <td>0.08</td>\n <td>0.67</td>\n <td>20.0</td>\n <td>29.4</td>\n <td>0.7</td>\n <td>0.52</td>\n <td>停运</td>\n <td>2022-05-31</td>\n </tr>\n <tr>\n <th>741</th>\n <td>2022-05-31 21:00:00</td>\n <td>47160</td>\n <td>-0.15</td>\n <td>0.07</td>\n <td>0.68</td>\n <td>20.0</td>\n <td>28.9</td>\n <td>0.5</td>\n <td>0.49</td>\n <td>停运</td>\n <td>2022-05-31</td>\n </tr>\n <tr>\n <th>742</th>\n <td>2022-05-31 22:00:00</td>\n <td>44280</td>\n <td>-0.15</td>\n <td>0.03</td>\n <td>0.67</td>\n <td>20.0</td>\n <td>28.4</td>\n <td>0.4</td>\n <td>0.46</td>\n <td>停运</td>\n <td>2022-05-31</td>\n </tr>\n <tr>\n <th>743</th>\n <td>2022-05-31 23:00:00</td>\n <td>38880</td>\n <td>-0.15</td>\n <td>0.01</td>\n <td>0.66</td>\n <td>20.0</td>\n <td>27.9</td>\n <td>0.2</td>\n <td>0.40</td>\n <td>停运</td>\n <td>2022-05-31</td>\n </tr>\n </tbody>\n</table>\n<p>744 rows × 11 columns</p>\n</div>"
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_emiss_data_1"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 45,
"outputs": [],
"source": [
"num_cols = jtzh_emiss_data_1.columns[1:-2]\n",
"jtzh_emiss_daily_1 = jtzh_emiss_data_1.ffill().groupby('days')[num_cols].mean()\n",
"jtzh_emiss_daily_1['状态'] = jtzh_emiss_data_1.ffill().groupby('days')['状态'].apply(lambda x: x.value_counts().index[0])\n",
"jtzh_emiss_daily_1.columns = [f\"机组1_{x}\" for x in jtzh_emiss_daily_1.columns]\n",
"\n",
"jtzh_emiss_daily_2 = jtzh_emiss_data_2.ffill().groupby('days')[num_cols].mean()\n",
"jtzh_emiss_daily_2['状态'] = jtzh_emiss_data_1.ffill().groupby('days')['状态'].apply(lambda x: x.value_counts().index[0])\n",
"jtzh_emiss_daily_2.columns = [f\"机组2_{x}\" for x in jtzh_emiss_daily_2.columns]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 50,
"outputs": [
{
"data": {
"text/plain": " 机组1_流量 m3/h 机组1_NOx浓度(mg/m3) 机组1_SO2浓度(mg/m3) \\\ndays \n2022-05-01 820965.0 12.952083 12.856250 \n2022-05-02 907380.0 14.641667 11.846250 \n2022-05-03 771360.0 14.414167 12.434167 \n2022-05-04 780390.0 14.922500 12.910417 \n2022-05-05 870075.0 14.102917 13.716667 \n2022-05-06 816300.0 14.321667 14.458750 \n2022-05-07 804405.0 16.310833 13.279583 \n2022-05-08 845610.0 18.585417 13.300417 \n2022-05-09 26370.0 6.152083 0.403750 \n2022-05-10 269970.0 -0.208333 0.264583 \n2022-05-11 163470.0 -0.147917 0.288333 \n2022-05-12 27720.0 -0.182083 0.225417 \n2022-05-13 50760.0 -0.140833 0.102917 \n2022-05-14 48540.0 -0.112500 0.052083 \n2022-05-15 602865.0 85.984583 6.295833 \n2022-05-16 912705.0 14.561250 13.784583 \n2022-05-17 816165.0 13.918333 12.802083 \n2022-05-18 892620.0 14.547083 13.451250 \n2022-05-19 904860.0 15.437083 13.886250 \n2022-05-20 906690.0 13.552917 13.295000 \n2022-05-21 931575.0 16.459583 11.678333 \n2022-05-22 891885.0 15.156250 13.014167 \n2022-05-23 1000560.0 14.451667 13.710833 \n2022-05-24 921300.0 13.775000 12.157083 \n2022-05-25 867765.0 15.344167 12.987083 \n2022-05-26 902100.0 14.439167 13.062917 \n2022-05-27 865320.0 14.760000 12.725417 \n2022-05-28 925965.0 15.012917 14.615833 \n2022-05-29 861255.0 14.035000 12.818750 \n2022-05-30 71640.0 0.266667 0.770417 \n2022-05-31 53550.0 -0.043333 0.085417 \n\n 机组1_烟尘浓度(mg/m3) 机组1_含氧量% 机组1_温度 机组1_烟气湿度% \\\ndays \n2022-05-01 1.787500 7.795833 52.320833 9.204167 \n2022-05-02 1.717917 7.295833 53.145833 9.016667 \n2022-05-03 1.850833 7.650000 51.841667 8.750000 \n2022-05-04 1.922083 7.462500 51.808333 8.495833 \n2022-05-05 1.981667 7.195833 52.354167 8.725000 \n2022-05-06 1.729583 7.433333 51.462500 8.858333 \n2022-05-07 1.837917 7.333333 51.025000 8.595833 \n2022-05-08 1.906667 7.862500 51.854167 9.483333 \n2022-05-09 0.651250 19.887500 34.925000 2.458333 \n2022-05-10 1.107500 19.912500 32.612500 0.000000 \n2022-05-11 1.262083 20.100000 22.850000 0.000000 \n2022-05-12 0.636667 20.216667 19.625000 0.000000 \n2022-05-13 0.629583 20.270833 18.637500 0.000000 \n2022-05-14 0.626667 20.237500 21.245833 0.345833 \n2022-05-15 1.590833 13.391667 39.200000 4.379167 \n2022-05-16 1.407500 7.279167 53.104167 9.058333 \n2022-05-17 1.493333 7.700000 53.766667 9.658333 \n2022-05-18 1.721667 7.141667 52.816667 8.712500 \n2022-05-19 1.705833 7.012500 52.487500 7.966667 \n2022-05-20 1.815417 7.041667 53.208333 8.454167 \n2022-05-21 1.968750 7.241667 53.270833 7.487500 \n2022-05-22 1.800000 7.120833 52.929167 8.608333 \n2022-05-23 2.156667 6.716667 53.529167 8.504167 \n2022-05-24 2.155833 7.191667 53.195833 8.562500 \n2022-05-25 1.666250 7.337500
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>机组1_流量 m3/h</th>\n <th>机组1_NOx浓度(mg/m3)</th>\n <th>机组1_SO2浓度(mg/m3)</th>\n <th>机组1_烟尘浓度(mg/m3)</th>\n <th>机组1_含氧量%</th>\n <th>机组1_温度</th>\n <th>机组1_烟气湿度%</th>\n <th>机组1_烟气流速m/s</th>\n <th>机组1_状态</th>\n </tr>\n <tr>\n <th>days</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2022-05-01</th>\n <td>820965.0</td>\n <td>12.952083</td>\n <td>12.856250</td>\n <td>1.787500</td>\n <td>7.795833</td>\n <td>52.320833</td>\n <td>9.204167</td>\n <td>10.088750</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-02</th>\n <td>907380.0</td>\n <td>14.641667</td>\n <td>11.846250</td>\n <td>1.717917</td>\n <td>7.295833</td>\n <td>53.145833</td>\n <td>9.016667</td>\n <td>11.147917</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-03</th>\n <td>771360.0</td>\n <td>14.414167</td>\n <td>12.434167</td>\n <td>1.850833</td>\n <td>7.650000</td>\n <td>51.841667</td>\n <td>8.750000</td>\n <td>9.415417</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-04</th>\n <td>780390.0</td>\n <td>14.922500</td>\n <td>12.910417</td>\n <td>1.922083</td>\n <td>7.462500</td>\n <td>51.808333</td>\n <td>8.495833</td>\n <td>9.496250</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-05</th>\n <td>870075.0</td>\n <td>14.102917</td>\n <td>13.716667</td>\n <td>1.981667</td>\n <td>7.195833</td>\n <td>52.354167</td>\n <td>8.725000</td>\n <td>10.636667</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-06</th>\n <td>816300.0</td>\n <td>14.321667</td>\n <td>14.458750</td>\n <td>1.729583</td>\n <td>7.433333</td>\n <td>51.462500</td>\n <td>8.858333</td>\n <td>9.971667</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-07</th>\n <td>804405.0</td>\n <td>16.310833</td>\n <td>13.279583</td>\n <td>1.837917</td>\n <td>7.333333</td>\n <td>51.025000</td>\n <td>8.595833</td>\n <td>9.781667</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-08</th>\n <td>845610.0</td>\n <td>18.585417</td>\n <td>13.300417</td>\n <td>1.906667</td>\n <td>7.862500</td>\n <td>51.854167</td>\n <td>9.483333</td>\n <td>10.417500</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-09</th>\n <td>26370.0</td>\n <td>6.152083</td>\n <td>0.403750</td>\n <td>0.651250</td>\n <td>19.887500</td>\n <td>34.925000</td>\n <td>2.458333</td>\n <td>0.285000</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>2022-05-10</th>\n <td>269970.0</td>\n <td>-0.208333</td>\n <td>0.264583</td>\n <td>1.107500</td>\n <td>19.912500</td>\n <td>32.612500</td>\n <td>0.000000</td>\n <td>2.819583</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>2022-05-11</th>\n <td>163470.0</td>\n <td>-0.147917</td>\n <td>0.288333</td>\n <td>1.262083</td>\n <td>20.100000</td>\n <td>22.850000</td>\n <td>0.000000</td>\n <td>1.665833</td>\n <td>停运</td>\n </tr>\n <tr>\n <th>2022-05-12</th>\n <td>27720.0
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_emiss_daily_1"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 47,
"outputs": [],
"source": [
"jtzh_daily_data['企业名称'] = \"建投遵化热电有限责任公司\"\n",
"jtzh_save_data = pd.concat([jtzh_daily_data, jtzh_emiss_daily_1, jtzh_emiss_daily_2], axis=1)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 48,
"outputs": [
{
"data": {
"text/plain": " 发电量_1万千瓦时 供热量_1吉焦 燃料消耗量_1 发电量_2万千瓦时 供热量_2吉焦 \\\n2022-05-01 444.630 0 1889 0.000 0 \n2022-05-02 516.594 0 2622 0.000 0 \n2022-05-03 410.316 0 2233 0.000 0 \n2022-05-04 421.908 0 2203 0.000 0 \n2022-05-05 486.318 0 2524 0.000 0 \n2022-05-06 457.542 0 2343 0.000 0 \n2022-05-07 451.140 0 2278 0.000 0 \n2022-05-08 484.986 0 1120 218.196 0 \n2022-05-09 0.000 0 0 444.756 0 \n2022-05-10 0.000 0 0 552.114 0 \n2022-05-11 0.000 0 0 481.542 0 \n2022-05-12 0.000 0 0 439.788 0 \n2022-05-13 0.000 0 0 495.702 0 \n2022-05-14 0.000 0 121 486.624 0 \n2022-05-15 159.936 0 2251 460.524 0 \n2022-05-16 516.192 0 2543 505.578 0 \n2022-05-17 432.300 0 2432 432.450 0 \n2022-05-18 508.680 0 2810 509.586 0 \n2022-05-19 516.066 0 2972 514.404 0 \n2022-05-20 517.356 0 2623 514.434 0 \n2022-05-21 521.454 0 2759 520.626 0 \n2022-05-22 504.798 0 2545 500.040 0 \n2022-05-23 587.400 0 3294 584.886 0 \n2022-05-24 515.964 0 2633 514.488 0 \n2022-05-25 485.346 0 2694 486.474 0 \n2022-05-26 503.502 0 2619 501.366 0 \n2022-05-27 470.340 0 2510 467.106 0 \n2022-05-28 508.644 0 2753 504.900 0 \n2022-05-29 460.536 0 1163 462.822 0 \n2022-05-30 8.610 0 0 528.960 0 \n2022-05-31 0.000 0 0 672.180 0 \n\n 燃料消耗量_2 企业名称 机组1_流量 m3/h 机组1_NOx浓度(mg/m3) \\\n2022-05-01 0 建投遵化热电有限责任公司 820965.0 12.952083 \n2022-05-02 0 建投遵化热电有限责任公司 907380.0 14.641667 \n2022-05-03 0 建投遵化热电有限责任公司 771360.0 14.414167 \n2022-05-04 0 建投遵化热电有限责任公司 780390.0 14.922500 \n2022-05-05 0 建投遵化热电有限责任公司 870075.0 14.102917 \n2022-05-06 0 建投遵化热电有限责任公司 816300.0 14.321667 \n2022-05-07 426 建投遵化热电有限责任公司 804405.0 16.310833 \n2022-05-08 1873 建投遵化热电有限责任公司 845610.0 18.585417 \n2022-05-09 2350 建投遵化热电有限责任公司 26370.0 6.152083 \n2022-05-10 2636 建投遵化热电有限责任公司 269970.0 -0.208333 \n2022-05-11 2432 建投遵化热电有限责任公司 163470.0 -0.147917 \n2022-05-12 2099 建投遵化热电有限责任公司 27720.0 -0.182083 \n2022-05-13 2340 建投遵化热电有限责任公司 50760.0 -0.140833 \n2022-05-14 2737 建投遵化热电有限责任公司 48540.0 -0.112500 \n2022-05-15 2461 建投遵化热电有限责任公司 602865.0 85.984583 \n20
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>发电量_1万千瓦时</th>\n <th>供热量_1吉焦</th>\n <th>燃料消耗量_1</th>\n <th>发电量_2万千瓦时</th>\n <th>供热量_2吉焦</th>\n <th>燃料消耗量_2</th>\n <th>企业名称</th>\n <th>机组1_流量 m3/h</th>\n <th>机组1_NOx浓度(mg/m3)</th>\n <th>机组1_SO2浓度(mg/m3)</th>\n <th>...</th>\n <th>机组1_状态</th>\n <th>机组2_流量 m3/h</th>\n <th>机组2_NOx浓度(mg/m3)</th>\n <th>机组2_SO2浓度(mg/m3)</th>\n <th>机组2_烟尘浓度(mg/m3)</th>\n <th>机组2_含氧量%</th>\n <th>机组2_温度</th>\n <th>机组2_烟气湿度%</th>\n <th>机组2_烟气流速m/s</th>\n <th>机组2_状态</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2022-05-01</th>\n <td>444.630</td>\n <td>0</td>\n <td>1889</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>建投遵化热电有限责任公司</td>\n <td>820965.0</td>\n <td>12.952083</td>\n <td>12.856250</td>\n <td>...</td>\n <td>正常运行</td>\n <td>64290.0</td>\n <td>0.169583</td>\n <td>-1.430417</td>\n <td>0.210833</td>\n <td>20.512500</td>\n <td>13.150000</td>\n <td>0.000000</td>\n <td>0.630417</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-02</th>\n <td>516.594</td>\n <td>0</td>\n <td>2622</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>建投遵化热电有限责任公司</td>\n <td>907380.0</td>\n <td>14.641667</td>\n <td>11.846250</td>\n <td>...</td>\n <td>正常运行</td>\n <td>71235.0</td>\n <td>0.143333</td>\n <td>-1.401250</td>\n <td>0.211667</td>\n <td>20.416667</td>\n <td>15.525000</td>\n <td>0.000000</td>\n <td>0.704583</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-03</th>\n <td>410.316</td>\n <td>0</td>\n <td>2233</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>建投遵化热电有限责任公司</td>\n <td>771360.0</td>\n <td>14.414167</td>\n <td>12.434167</td>\n <td>...</td>\n <td>正常运行</td>\n <td>71370.0</td>\n <td>1.227500</td>\n <td>-1.264167</td>\n <td>0.218333</td>\n <td>19.479167</td>\n <td>22.129167</td>\n <td>0.200000</td>\n <td>0.722917</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-04</th>\n <td>421.908</td>\n <td>0</td>\n <td>2203</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>建投遵化热电有限责任公司</td>\n <td>780390.0</td>\n <td>14.922500</td>\n <td>12.910417</td>\n <td>...</td>\n <td>正常运行</td>\n <td>73785.0</td>\n <td>0.134583</td>\n <td>-1.037500</td>\n <td>0.214167</td>\n <td>20.095833</td>\n <td>26.258333</td>\n <td>0.016667</td>\n <td>0.757500</td>\n <td>正常运行</td>\n </tr>\n <tr>\n <th>2022-05-05</th>\n <td>486.318</td>\n <td>0</td>\n <td>2524</td>\n <td>0.000</td>\n <td>0</td>\n <td>0</td>\n <td>建投遵化热电有限责任公司</td>\n <td>870075.0</td>\n <td>14.102917</td>\n <td>13.716667</td>\n <td>...</td>\n <td>正常运行</td>\n <td>73605.0</td>\n <td>0.075417</td>\n <td>-0.920417</td>\n <td>0.212083</td>\n <td>20.150000</td>\n <td>23.062500</td>\n <td>0.212500</td>\n <td>0.750000</t
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jtzh_save_data"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 65,
"outputs": [],
"source": [
"writer = pd.ExcelWriter('data/电厂日数据.xlsx',engine='openpyxl')\n",
"\n",
"zjxz_save_data.to_excel(writer,\"浙江秀舟\")\n",
"wxxs_save_data.to_excel(writer,\"武乡西山\")\n",
"hddj_save_data.to_excel(writer,\"邯郸东郊\")\n",
"jtzh_save_data.to_excel(writer,\"建投遵化\")\n",
"\n",
"writer.save()\n",
"writer.close()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
2022-10-25 15:11:12 +08:00
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}